Pipeline and Rasterization

COMPS575/COMP770
Spring 2016

The graphics pipeline

* The standard approach to object-order graphics

* Many versions exist
— software, e.g. Pixar's REYES architecture
* many options for quality and flexibility
— hardware, e.g. graphics cards in PCs
e amazing performance: millions of triangles per frame
« We’'ll focus on an abstract version of hardware
pipeline
* “Pipeline” because of the many stages
— very parallelizable

— leads to remarkable performance of graphics cards
(many times the flops of the CPU at ~1/5 the clock

*2

Pipeline you are here
overview

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

-

)

VERTEX

Primitives

 Points

* Line segments
— and chains of connected line segments

Triangles
And that's all!

— Curves? Approximate them with chains of line
segments

— Polygons? Break them up into triangles

— Curved regions? Approximate them with triangles
Trend has been toward minimal primitives

— simple, uniform, repetitive: good for parallelism

Rasterization

* First job: enumerate the pixels covered by a
primitive
— simple, aliased definition: pixels whose centers fall

Inside

« Second job: interpolate values across the primitive
— e.g. colors computed at vertices
— e.g. normals at vertices
— will see applications later on

Rasterizing lines

* Define line as a
rectangle

« Specify by two
endpoints

 |deal image: black
Inside, white
outside

Point sampling

* Approximate
rectangle by
drawing all pixels
whose centers fall
within the line

* Problem:
sometimes turns
on adjacent pixels

Point sampling
In action

Bresenham lines (midpoint alg.)

* Point sampling unit

width rectangle
eads to uneven
iIne width

* Define line width
parallel to pixel
grid

 Thatis, turn on the
single nearest
pixel in each
column

 Note that 45° lines

Midpoint algorithm
in action

*10

Algorithms for drawing lines

* line equation:
y=b+mx

* Simple algorithm:
evaluate line
equation per
column

« W.l.o.g. x0 <xi;

0<m<I1
for x = ceil(x0) to floor(x1)

y =b + m*x
output(x, round(y))

9
8
7
6
5
4
3
7
I
0

o+ 2 3 4 5 6 7 8 9 10 H

¥=191+ 037 x

12

*11

Optimizing line drawing

* Multiplying and
rounding is slow

* At each pixel the
only options are E
and NE

e d=m(x+1)+b—y

* d>0.5decides
between E and NE

o — N W sy N 0 WD

¢ T ¥+ ¥ ¥ & T % 9

0 FHl

12

*12

Optimizing line drawing

e d=m(x+1)+b—y

* Only need to
update d for
integer steps in x
andy

Do that with
addition

* Known as “DDA”
(digital differential
analyzer)

d+=m

_)gd-;l

9
8
7
6
5
4
3
7
I
0

¢ T ¥+ ¥ ¥ & T % 9

0 FHl

12

*13

Midpoint line algorithm

9

x = ceil(x0) 8

y = round(m*x + b) 7

d=m*(x+1)+b-y 6

while x < floor(x1) 5
ifd>0.5

y +=1 *

d—=1 =

X +=1 2

d+=m |

0

output(x, y)

>

3

4 5 ¢

7

8 9

0 H 12

*14

Linear interpolation

 We often attach attributes to vertices

— e.g. computed diffuse color of a hair being drawn using
lines

— want color to vary smoothly along a chain of line
segments

* Recall basic definition
—1D: fx)=(1 —a) yy + a yq
— where a = (x — xq) / (x1 — xg)

* In the 2D case of a line segment, alpha is just the
fraction of the distance from (x, yy) to (x{, ;)

*15

Linear interpolation

* Pixels are not
exactly on the line

* Define 2D function
by projection on
line
— this is linear in 2D

— therefore can use
DDA to interpolate

*16

Alternate interpretation

 We are updating d and a as we step from pixel to
pixel
— d tells us how far from the line we are
a tells us how far along the line we are

* S0 d and a are coordinates in a coordinate system
oriented to the line

*17

Alternate interpretation

* View loop as visiting |
all pixels the line
passes through

Interpolate 4 and a
for each pixel

Only output frag.
if pixel is in band
* This makes linear
interpolation the
primary operation

18

Pixel-walk line rasterization

x = ceil(x0)
y = round(m*x + b)
d=m*™x+b-y
while x < floor(x1)
ifd>0.5
y+=1,d—=1;
else
Xx+=1,d+=m;
if -0.5<d=<0.5
output(x, y)

*19

Rasterizing triangles

 The most common case in most applications
— with good antialiasing can be the only case
— some systems render a line as two skinny triangles

* Triangle represented by three vertices

« Simple way to think of algorithm follows the pixel-
walk interpretation of line rasterization

— walk from pixel to pixel over (at least) the polygon’s
area

— evaluate linear functions as you go
— use those functions to decide which pixels are inside

*20

Rasterizing triangles

* |nput:
— three 2D points (the triangle’s vertices in pixel space)

* (x()9 y())a (xla yl)a (xza)’2)
— parameter values at each vertex

* 400> ---> don> 910> +-+> 910> 920> -+ > 92n
* QOutput: a list of fragments, each with
— the integer pixel coordinates (x, y)

— interpolated parameter values gy, ..., g,

*21

Rasterizing triangles

« Summary

1 evaluation of linear

functions on pixel

grid

2 functions defined by

parameter values
at vertices

3 using extra

parameters

to determine
fragment set

22

Incremental linear evaluation

* A linear (affine, really) function on the plane is:
q(7,y) = cxT + cyy + i

 Linear functions are efficient to evaluate on a grid:

glx+1,y) =colx+ 1)+ cyy+cr = q(z,y) + s
Q(x7y+ 1) — C$x+cy(y—|_ 1) + Cp = Q(xvy) ‘|_Cy

}'+++
+c+

stk
CX ‘:x EX Cx CX

*23

Incremental linear evaluation

linEval(xl, xh, yl, yh, cx, cy, ck) {

I/ setup
gRow = cx*xl + cy*yl + ck;

Il traversal
fory =yl to yh {
gPix = gRow;
for x = x| to xh {
output(x, y, qPix);
gPix += cx;
}

gRow += cy;
} ¢, =005; ¢, = .005; c; =0
(image size 100x100)

*24

Rasterizing triangles

« Summary

1 evaluation of linear

functions on pixel

grid

2 functions defined by

parameter values
at vertices

3 using extra

parameters

to determine
fragment set

25

Defining parameter functions

* To interpolate parameters across a triangle we

need to find the c,, Cys and ¢, that define the

(unique) linear function that matches the given
values at all 3 vertices

— thic,zo + c, y0 + e = qo! 3 Unkeasmnstafii¢ierttthe function
CoT1 + Cyl1 + k= @1 agrees with the given value
CoZo + Cyta + Ck = G at one vertex)

— leqr,, 1 | * ation for. the coefficients:
170 Yo 1 Ca 40 (%lngular |1'Ifftr|ang e

R | = | is degenerate)

x2 Y2 1 Ck q2

*26

Defining parameter functions

* More efficient version: shift origin to (x,, y)
9(z,y) = cz(z — o) + cy(y — yo) + go
q(z1,91) = cz(x1 — z0) + ¢y(y1 —w0) + 0 = @

q(z2, ye) cz (T2 — Iu) T Cy(yz — yu) T go = g2
— now this is a 2x2 linear system (since ¢, falls out):

(1 —20) (y1 — yo)] [Ca:] _ [fh - QO}
(2 —z0) (Y2 —yo)| |y 42 — 4o
— solve using Cramer's rule (see Shirley):

Cpr = (AqlAyg — Aquyl)/(AazlAyg — AIQAyl)
— (AQQAxl — AqlAﬂfg)/(AﬂilAyz — AZCQAyl)

*27

Defining parameter functions

linlnterp(xI, xh, yl, yh, x0, y0, qO,
x1,y1, g1, x2, y2, q2) {

/] setup

det = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0);

cx = ((q1-q0)*(y2-y0) - (92-q0)*(y1-y0)) / det;
cy = ((92-q0)*(x1-x0) - (q1-90)*(x2-x0)) / det;
gRow = cx*(xI-x0) + cy*(yl-y0) + qO;

// traversal (same as before)
fory =yl to yh {
gPix = gRow;
for x = xl to xh {
output(x, y, gPix);
qPix += cx;
}
gRow += cy;
}
}

*28

Interpolating several parameters

lininterp(xl, xh, yl, yh, n, x0, y0, qO[],
x1, y1, 911, X2, y2, q2[]) {

Il setup

for k =0 to n-1
I/l compute cx[k], cy[k], gRow[K]
I/ from qO[K], q1[k], g2[K]

/] traversal
fory =yl to yh{

for k = 1 to n, gPix[k] = gRow[K];

for x = xl to xh {
output(x, y, qPix);

for k = 1 to n, gPix[k] += cx[K];

}
for k = 1 to n, qRow[k] += cy[K];

}
}

29

Rasterizing triangles

« Summary

1 evaluation of linear

functions on pixel

grid

2 functions defined by

parameter values
at vertices

3 using extra

parameters

to determine
fragment set

*30

Clipping to the triangle

* |Interpolate three barycentric
coordinates across the
plane

— each barycentric coord is
1 at one vert. and 0 at
the other two
* Qutput fragments only
when all three are > 0.

*31

Barycentric coordinates

* A coordinate system for triangles

— algebraic viewpoint:
p=caa+ Ob+ ~c

at+pf+y=1
— geometric viewpoint (areas

* Triangle interior test:
a>0, />0 ~v>0

[Shirley 2000]

*32

Barycentric coordinates

* A coordinate system for triangles
— geometric viewpoint: distances

C

b

— linear viewpoint: basis of edges
a=1-0—1v
p=a+(b—-a)+~y(c—a)

*33

Barycentric coordinates

 Linear viewpoint: basis for the plane

— In this view, the triangle interior test is just

G > 0;

v > 0;

B+~ <1

[Shirley 2000]

*34

Edge equations

* In plane, triangle is the intersection of 3 half
spaces

Walking edge equations

* We need to update values of the three edge
equations with single-pixel steps in x and y

» Edge equation already in form of dot product
« components of vector are the increments

*36

Pixel-walk (Pineda) rasterization

» Conservatively
visit a supersetof
the pixels youwant - - -

* Interpolate linear
functions

+ Use those functions | J
to determine when
to emit a fragment

*37

Rasterizing triangles

» Exercise caution
with rounding and
arbitrary decisions
— need to visit these
pixels once

— but it's important
not to visit them
twice!

Clipping

» Rasterizer tends to assume triangles are on
screen

— particularly problematic to have triangles crossing
the plane z=0

 After projection, before perspective divide
— clip against the planes x, y, z=1, -1 (6 planes)

— primitive operation: clip triangle against axis-aligned
plane

*39

Clipping a triangle against a plane

* 4 cases, based on sidedness of vertices
— all in (keep)
— all out (discard)
— one in, two out (one clipped triangle)
— two in, one out (two clipped triangles)

S

*40

