
1

Pipeline Operations

COMP575/COMP770 Spring 2016

2

APPLICATION
COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE
DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

Pipeline
overview

3

Pipeline of transformations
• Standard sequence of transforms

4

Hidden surface elimination
• We have discussed how to map primitives to

image space
– projection and perspective are depth cues
– occlusion is another very important cue

5

Back face culling
• For closed shapes you will never see the inside

– therefore only draw surfaces that face the camera
– implement by checking n . v n

vn
v

6

Painter’s algorithm
• Simplest way to do hidden surfaces
• Draw from back to front, use overwriting in

framebuffer

7

B
A

C
E
D

F AB

C
F

D

E

Painter’s algorithm
• Amounts to a topological sort of the graph of

occlusions
– that is, an edge from A to B means A sometimes

occludes B
– any sort is valid

• ABCDEF
• BADCFE

– if there are cycles
there is no sort [Fo

ley
 et

al.]

8

Painter’s algorithm
• Useful when a valid order is easy to come by
• Compatible with alpha blending

[Fo
ley

 et
al.]

9

The z buffer
• In many (most) applications maintaining a z sort is

too expensive
– changes all the time as the view changes
– many data structures exist, but complex

• Solution: draw in any order, keep track of closest
– allocate extra channel per pixel to keep track of closest

depth so far
– when drawing, compare object’s depth to current

closest depth and discard if greater
– this works just like any other compositing operation

10

The z buffer

– another example of a memory-intensive brute force
approach that works and has become the standard

[Fo
ley

 et
al.]

11

Precision in z buffer
• The precision is distributed between the near and

far clipping planes
– this is why these planes have to exist
– also why you can’t always just set them to very small

and very large distances
• Generally use z’ (not world z) in z buffer

12

Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space

13

Pipeline for minimal operation
• Vertex stage (input: position / vtx; color / tri)

– transform position (object to screen space)
– pass through color

• Rasterizer
– pass through color

• Fragment stage (output: color)
– write to color planes

14

Result of minimal pipeline

15

Pipeline for basic z buffer
• Vertex stage (input: position / vtx; color / tri)

– transform position (object to screen space)
– pass through color

• Rasterizer
– interpolated parameter: z’ (screen z)
– pass through color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

16

Result of z-buffer pipeline

17

Flat shading
• Shade using the real normal of the triangle

– same result as ray tracing a bunch of triangles
• Leads to constant shading and faceted

appearance
– truest view of the

mesh geometry

[Fo
ley

 et
al.]

18

Pipeline for flat shading
• Vertex stage (input: position / vtx; color and normal / tri)

– transform position and normal (object to eye space)
– compute shaded color per triangle using normal
– transform position (eye to screen space)

• Rasterizer
– interpolated parameters: z’ (screen z)
– pass through color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

19

Result of flat-shading pipeline

20

Local vs. infinite viewer, light
• Phong illumination requires geometric information:

– light vector (function of position)
– eye vector (function of position)
– surface normal (from application)

• Light and eye vectors change
– need to be computed (and

normalized) for each face

21

Local vs. infinite viewer, light
• Look at case when eye or light is far away:

– distant light source: nearly parallel illumination
– distant eye point: nearly orthographic projection
– in both cases, eye or light vector changes very little

• Optimization: approximate eye and/or light
as infinitely far away

22

Directional light
• Directional (infinitely distant) light source

– light vector always points in the same direction
– often specified by

position [x y z 0]
– many pipelines are faster

if you use directional lights

23

Infinite viewer
• Orthographic camera

– projection direction is constant
• “Infinite viewer”

– even with perspective,
can approximate eye vector
using the image plane normal

– can produce
weirdness for
wide-angle views

– Blinn-Phong:
light, eye, half vectors
all constant!

24

[Go
ura

ud
the

sis
]

Gouraud shading

[Fo
ley

 et
al.]

• Often we’re trying to draw
smooth surfaces, so facets
are an artifact
– compute colors at

vertices using
vertex normals

– interpolate colors
across triangles

– “Gouraud shading”
– “Smooth shading”

25

Pipeline for Gouraud shading
• Vertex stage (input: position, color, and normal / vtx)

– transform position and normal (object to eye space)
– compute shaded color per vertex
– transform position (eye to screen space)

• Rasterizer
– interpolated parameters: z’ (screen z); r, g, b color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

26

Result of Gouraud shading pipeline

27

Vertex normals
• Need normals at vertices to

compute Gouraud shading
• Best to get vtx. normals from

the underlying geometry
– e. g. spheres example

• Otherwise have to infer vtx.
normals from triangles
– simple scheme: average

surrounding face normals

[Fo
ley

 et
al.]

28

Non-diffuse Gouraud shading
• Can apply Gouraud shading to any illumination

model
– it’s just an interpolation method

• Results are not so good with fast-varying models
like specular ones
– problems with any

highlights smaller
than a triangle

[Fo
ley

 et
al.]

29

Phong shading
• Get higher quality by interpolating the normal

– just as easy as interpolating the color
– but now we are evaluating the illumination model per

pixel rather than per vertex (and normalizing the normal
first)

– in pipeline, this means we are moving illumination from
the vertex processing stage to the fragment processing
stage

30

Phong shading
• Bottom line: produces much better highlights

[Fo
ley

 et
al.]

31

Pipeline for Phong shading
• Vertex stage (input: position, color, and normal / vtx)

– transform position and normal (object to eye space)
– transform position (eye to screen space)
– pass through color

• Rasterizer
– interpolated parameters: z’ (screen z); r, g, b color; x, y,

z normal
• Fragment stage (output: color, z’)

– compute shading using interpolated color and normal
– write to color planes only if interpolated z’ < current z’

32

Result of Phong shading pipeline

