Pipeline Operations

COMPS75/COMP770 Spring 2016

Pipeline you are here
overview

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

-

)

VERTEX

Pipeline of transformations

« Standard sequence of transforms

ﬂbjE{:l space camera space §

2

=

&

3

modeling \ ::;;’.-wraf projection viewport
transformation ransiormation transformation transformation

canonical

world space)
view volume

Hidden surface elimination

* We have discussed how to map primitives to
Image space
— projection and perspective are depth cues
— occlusion is another very important cue

Back face culling

* For closed shapes you will never see the inside
— therefore only draw surfaces that face the camera
— implement by checking n - v !
n

\"

]/
\ Q/

Painter’s algorithm

« Simplest way to do hidden surfaces

* Draw from back to front, use overwriting in
framebuffer

Painter’s algorithm

* Amounts to a topological sort of the graph of
occlusions

— that is, an edge from A to B means A sometimes
occludes B

— any sort is valid
« ABCDEF :
- BADCFE

— if there are cycles
there is no sort

[Foley et al.]

Painter’s algorithm

» Useful when a valid order is easy to come by
« Compatible with alpha blending

i

[Foley et al.]

The z buffer

* In many (most) applications maintaining a z sort is
too expensive
— changes all the time as the view changes
— many data structures exist, but complex

« Solution: draw in any order, keep track of closest

— allocate extra channel per pixel to keep track of closest
depth so far

— when drawing, compare object’s depth to current
closest depth and discard if greater

— this works just like any other compositing operation

The z buffer

[']e 1o As|04]

| -] [-] o Fuhﬁu L&) L&) | =] [&] L&] Lo BN & B - [-])1 D
mim|o|o|lo|lo|loc|o wiwm o|lo|o| o o
wiw|w|/o|o|o|o|o| |v|w|w|o|o o
wiv|w|wv|o|o|o|o| |lv|wv|w|w o
wiv|wlwv|w|o|o|o| |v]|wv|w|wv|w o
wiviwvjvlw|w|o|o| |v|jv|w|wv o
wivviv|v|v|v|o| |[v|v|w o
I I
(0]
wiwn
wlw|nv
wiw|w|w
wlw|w|w|w
wiv/wviwvlov|v
wivlvjv|v|iv|wv
+ +
O|lO|O|O0O|O|lOo|lO| O O|lO|lO|O|O|OC|O| O
olo|lo|o|o|o|lo|o| |w|o|lo|o|o|lo|lo|o
O|lO|O|O0O|O|OC|lO|O nmiwlo|lo|lo|lo|lo| o
O|O|O|O|O|O|O | O niuwulnj|o|lo|lolo| o
o|lojlo|lo|o|o|lo|o nwiuiwvjlnwn|olo|lo|o
O|lOo|O|lO|OC|O|O| O NILILLILIn|o|lO| O
o|lo|lo|o|o|o|o|o| |vlw|lv|lv|w|w|o|o
olo|lolo|o|o|o|o| |lvlwv|v|lwv|w|w|w|o

— another example of a memory-intensive brute force

approach that works and has become the standard

10

Precision in z buffer

* The precision is distributed between the near and
far clipping planes
— this is why these planes have to exist

— also why you can't always just set them to very small
and very large distances

* Generally use z’ (not world z) in z buffer

11

Interpolating in projection

projection plane

eye point

e R
——

equally spaced z' (screen depth)

linear interp. in screen space # linear interp. in world (eye) space

12

Pipeline for minimal operation

* Vertex stage (input: position / vtx; color / tri)
— transform position (object to screen space)
— pass through color

» Rasterizer
— pass through color

* Fragment stage (output: color)
— write to color planes

13

Result of minimal pipeline

14

Pipeline for basic z buffer

* Vertex stage (input: position / vtx; color / tri)
— transform position (object to screen space)
— pass through color
» Rasterizer
— interpolated parameter: z’ (screen z)
— pass through color
* Fragment stage (output: color, z’)
— write to color planes only if interpolated z’ < current z’

15

Result of z-buffer pipeline

16

Flat shading

« Shade using the real normal of the triangle
— same result as ray tracing a bunch of triangles

* Leads to constant shading and faceted
appearance

— truest view of the
mesh geometry

W 7 T -‘.

Plate 11.29 Shutterbug. Individually shaded polygons with diffuse reflection (Sections 14.4.2
and 16.2.3). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using
Pixar's PhotoRealistic RenderMan™ software.)

—~ [Foleyetal]

Pipeline for flat shading

* Vertex stage (input: position / vtx; color and normal / tri)
— transform position and normal (object to eye space)
— compute shaded color per triangle using normal
— transform position (eye to screen space)
» Rasterizer
— interpolated parameters: z’ (screen z)
— pass through color
* Fragment stage (output: color, z’)
— write to color planes only if interpolated z’ < current z’

18

Result of flat-shading pipeline

19

Local vs. infinite viewer, light

* Phong illumination requires geometric information:

— light vector (function of position)
— eye vector (function of position)

L. SN
— surface normal (from application)’{>

* Light and eye vectors change

— need to be computed (and
normalized) for each face

<

20

Local vs. infinite viewer, light

* Look at case when eye or light is far away:
— distant light source: nearly parallel illumination
— distant eye point: nearly orthographic projection
— in both cases, eye or light vector changes very little

* Optimization: approximate eye and/or light
as infinitely far away

21

Directional light

 Directional (infinitely distant) light source
— light vector always points in the same direction
— often specified by
position [x y z 0] N
— many pipelines are faster *
if you use directional lights

22

Infinite viewer

* Orthographic camera
— projection direction is constant

e “Infinite viewer”

— even with perspective,
can approximate eye vector
using the image plane normal

— can produce
weirdness for
wide-angle views

— Blinn-Phong:
light, eye, half vectors
all constant!

23

Gouraud shading

» Often we're trying to draw
smooth surfaces, so facets
are an artifact

Plate I1.30 Shutterbug. Gouraud shaded polygons with diffuse reflection (Sections 14.4.3
CO m p U te CO I O rS at and 16.2.4). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using
Pixar's PhotoRealistic RenderMan™ software.)

vertices using
vertex normals

iInterpolate colors
across triangles

“Gouraud shading”
“Smooth shading”

P

~ [Foley et al.]

B

Pipeline for Gouraud shading

* Vertex stage (input: position, color, and normal / vtx)
— transform position and normal (object to eye space)
— compute shaded color per vertex
— transform position (eye to screen space)

» Rasterizer
— interpolated parameters: z’ (screen z); r, g, b color

* Fragment stage (output: color, z’)
— write to color planes only if interpolated z’ < current z’

25

Result of Gouraud shading pipeline

26

Vertex normals

* Need normals at vertices to
compute Gouraud shading

* Best to get vtx. normals from
the underlying geometry
— €. g. spheres example

* Otherwise have to infer vtx.
normals from triangles

— simple scheme: average
surrounding face normals

Zi N
12 Nill

Ny =

[Foley et al.]

27

Non-diffuse Gouraud shading

* Can apply Gouraud shading to any illumination
model

— It's just an interpolation method
» Results are not so gc
like specular ones

— problems with any
highlights smaller
than a triangle

‘Plate I1.31 Shutterbug. Gouraud shaded polygons with specular reflection (Sections 14.4.4
#nd 16.2.5). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using
rﬂlafs PhotoRealistic RenderMan™ software.)

n [Foley et al.]

oo

Phong shading

* Get higher quality by interpolating the normal
— just as easy as interpolating the color

— but now we are evaluating the illumination model per
pixel rather than per vertex (and normalizing the normal
first)

— in pipeline, this means we are moving illumination from

29

Phong shading

* Bottom line: produces much better highlights

te I1.32 Shutterbug. Phong shaded polygons with specular reflection (Sections 14.4.4 and
-5). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar’s
otoRealistic RenderMan™ software.)

|Foley et al.]

tterbug. Gouraud shaded polygons with specular reflection (Sections 14.4.4
yright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using
listic RenderMan™ software.)

w
o

Pipeline for Phong shading

* Vertex stage (input: position, color, and normal / vtx)
— transform position and normal (object to eye space)
— transform position (eye to screen space)
— pass through color

« Rasterizer

— interpolated parameters: z’ (screen z); r, g, b color; x, y,
Z normal

* Fragment stage (output: color, z’)
— compute shading using interpolated color and normal
— write to color planes only if interpolated z’ < current z’

31

Result of Phong shading pipeline

32

