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Spline Curves	


COMP 575/COMP 770	
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Motivation: smoothness	


•  In many applications we need smooth shapes	

–  that is, without discontinuities	


•  So far we can make	

–  things with corners (lines, squares, rectangles, …)	

–  circles and ellipses (only get you so far!)	
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Classical approach	


•  Pencil-and-paper draftsmen also needed smooth 
curves	


•  Origin of “spline:” strip of flexible metal	

–  held in place by pegs or weights to constrain shape	


–  traced to produce smooth contour	
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Translating into usable math	


•  Smoothness	

–  in drafting spline, comes from physical curvature 

minimization	


–  in CG spline, comes from choosing smooth functions	


•  usually low-order polynomials	


•  Control	

–  in drafting spline, comes from fixed pegs	


–  in CG spline, comes from user-specified control points	




5	


Defining spline curves	


•  At the most general they are parametric curves	


•  Generally f(t) is a piecewise polynomial	

–  for this lecture, the discontinuities are at the integers	




6	


Defining spline curves	


•  Generally f(t) is a piecewise polynomial	

–  for this lecture, the discontinuities are at the integers	


–  e.g., a cubic spline has the following form over [k, k + 1]:	


–  Coefficients are different for every interval	




7	


Coordinate functions	
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Control of spline curves	

•  Specified by a sequence of control points	

•  Shape is guided by control points (aka control polygon)	


–  interpolating: passes through points	


–  approximating: merely guided by points	
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How splines depend on their controls	


•  Each coordinate is separate	

–  the function x(t) is determined solely by the x coordinates of 

the control points	


–  this means 1D, 2D, 3D, … curves are all really the same	


•  Spline curves are linear functions of their controls	

–  moving a control point two inches to the right moves x(t) 

twice as far as moving it by one inch	


–  x(t), for fixed t, is a linear combination (weighted sum) of the 
control points’ x coordinates	


–  p(t), for fixed t, is a linear combination (weighted sum) of 
the control points	
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Trivial example: piecewise linear	


•  This spline is just a polygon	

–  control points are the vertices	


•  But we can derive it anyway as an illustration	

•  Each interval will be a linear function	


–  x(t) = at + b	


–  constraints are values at endpoints	


–  b = x0 ; a = x1 – x0	

–  this is linear interpolation	
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Trivial example: piecewise linear	


•  Vector formulation	


•  Matrix formulation	
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Trivial example: piecewise linear	


•  Basis function formulation	

–  regroup expression by p rather than t	


–  interpretation in matrix viewpoint	
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Trivial example: piecewise linear	


•  Vector blending formulation: “average of points”	

–  blending functions: contribution of each point as t changes	
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Trivial example: piecewise linear	


•  Basis function formulation: “function times point”	

–  basis functions: contribution of each point as t changes	


–  can think of them as blending functions glued together	


–  this is just like a reconstruction filter!	
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Seeing the basis functions	


•  Basis functions of a spline are revealed by how the 
curve changes in response to a change in one control	

–  to get a graph of the basis function, start with the curve laid 

out in a straight, constant-speed line	

•  what are x(t) and y(t)?	


–  then move one control straight up	
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Hermite splines	


•  Less trivial example	

•  Form of curve: piecewise cubic	

•  Constraints: endpoints and tangents (derivatives)	
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Hermite splines	


•  Solve constraints to find coefficients	




18	


Hermite splines	

•  Matrix form is much simpler	


–  cofficients = rows	

–  basis functions = columns	


•  note p columns sum to [0 0 0 1]T	
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Longer Hermite splines	


•  Can only do so much with one Hermite spline	

•  Can use these splines as segments of a longer curve	


–  curve from t = 0 to t = 1 defined by first segment	


–  curve from t = 1 to t = 2 defined by second segment	


•  To avoid discontinuity, match derivatives at junctions	

–  this produces a C1 curve	
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Hermite splines	


•  Hermite blending functions	
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Hermite splines	


•  Hermite basis functions	
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Continuity	


•  Smoothness can be described by degree of continuity	

–  zero-order (C0): position matches from both sides	


–  first-order (C1): tangent matches from both sides	


–  second-order (C2): curvature matches from both sides	


–  Gn vs. Cn	


zero order	
 first order	
 second order	
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Continuity	


•  Parametric continuity (C) of spline is continuity of 
coordinate functions	


•  Geometric continuity (G) is continuity of the curve 
itself	


•  Neither form of continuity is guaranteed by the other	

–  Can be C1 but not G1 when p(t) comes to a halt (next slide)	

–  Can be G1 but not C1 when the tangent vector changes 

length abruptly	
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Control	


•  Local control	

–  changing control point only affects a limited part of spline	


–  without this, splines are very difficult to use	


–  many likely formulations lack this	


•  natural spline	

•  polynomial fits	
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Control	


•  Convex  hull property	

–  convex hull = smallest convex region containing points	


•  think of a rubber band around some pins	


–  some splines stay inside convex hull of control points	


•  make clipping, culling, picking, etc. simpler	


YES	
 YES	
 YES	
 NO	
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Affine invariance	


•  Transforming the control points is the same as 
transforming the curve	

–  true for all commonly used splines	


–  extremely convenient in practice…	
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Matrix form of spline	
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Hermite splines	


•  Constraints are endpoints���

 and endpoint tangents	
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Hermite basis 	
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Affine invariance	


•  Basis functions associated with points should always 
sum to 1	
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Hermite to Bézier	


•  Mixture of points and vectors is awkward	

•  Specify tangents as differences of points	


–  note derivative is defined as 3 times offset	

•  reason is illustrated by linear case	
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Hermite to Bézier	
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Bézier matrix	


–  note that these are the Bernstein polynomials	

���
	
 	
C(n,k) tk (1 – t)n – k���
	


	
and that defines Bézier curves for any degree	
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Bézier basis	
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Convex hull	


•  If basis functions are all positive, the spline has the 
convex hull property	

–  we’re still requiring them to sum to 1	


–  if any basis function is ever negative, no convex hull prop.	


•  proof: take the other three points at the same place	
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Chaining spline segments	


•  Hermite curves are convenient 

because they can be made long easily	

•  Bézier curves are convenient because their controls 

are all points and they have nice properties	

–  and they interpolate every 4th point, which is a little odd	


•  We derived Bézier from Hermite by defining tangents 
from control points	

–  a similar construction leads to the interpolating Catmull-Rom 

spline	
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Chaining Bézier splines	


•  No continuity built in	

•  Achieve C1 using collinear control points	
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Subdivision	

•  A Bézier spline segment can be split into a two-

segment curve:	


–  de Casteljau’s algorithm	


–  also works for arbitrary t	
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Cubic Bézier splines	


•  Very widely used type, especially in 2D	

–  e.g. it is a primitive in PostScript/PDF	


•  Can represent C1 and/or G1 curves with corners	

•  Can easily add points at any position	




40	


B-splines	


•  We may want more continuity than C1	


–  http://en.wikipedia.org/wiki/Smooth_function	


•  We may not need an interpolating spline	

•  B-splines are a clean, flexible way of making long 

splines with arbitrary order of continuity	

•  Various ways to think of construction	


–  a simple one is convolution	


–  relationship to sampling and reconstruction	
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Cubic B-spline basis	
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Deriving the B-Spline	


•  Approached from a different tack than Hermite-style 
constraints	

–  Want a cubic spline; therefore 4 active control points	


–  Want C2 continuity	

–  Turns out that is enough to determine everything	
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Efficient construction of any B-spline	


•  B-splines defined for all orders	

–  order d: degree d – 1	


–  order d: d points contribute to value	


•  One definition: Cox-deBoor recurrence	
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B-spline construction, alternate view	


•  Recurrence	

–  ramp up/down	


•  Convolution	

–  smoothing of basis fn	

–  smoothing of curve	
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Cubic B-spline matrix	
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Other types of B-splines	


•  Nonuniform B-splines	

–  discontinuities not evenly spaced	


–  allows control over continuity or interpolation at certain 
points	


–  e.g. interpolate endpoints (commonly used case)	


•  Nonuniform Rational B-splines (NURBS)	

–  ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)	


–  key properties:	


•  invariance under perspective as well as affine	

•  ability to represent conic sections exactly	
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Converting spline representations	


•  All the splines we have seen so far are equivalent	

–  all represented by geometry matrices	


•  where S represents the type of spline	

–  therefore the control points may be transformed from one 

type to another using matrix multiplication	
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Evaluating splines for display	


•  Need to generate a list of line segments to draw	

–  generate efficiently	


–  use as few as possible	


–  guarantee approximation accuracy	


•  Approaches	

–  reccursive subdivision (easy to do adaptively)	


–  uniform sampling (easy to do efficiently)	
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Evaluating by subdivision	


–  Recursively split spline 	

•  stop when polygon is ���

within epsilon of curve	


–  Termination criteria	


•  distance between control points	


•  distance of control points from line	


p1	


p2	


p3	


p4	
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Evaluating with uniform spacing	


•  Forward differencing	

–  efficiently generate points for uniformly spaced t values	


–  evaluate polynomials using repeated differences	



