
1	

Spline Curves	

COMP 575/COMP 770	

2	

Motivation: smoothness	

•  In many applications we need smooth shapes	

–  that is, without discontinuities	

•  So far we can make	

–  things with corners (lines, squares, rectangles, …)	

–  circles and ellipses (only get you so far!)	

[B
oe

in
g]
	

3	

Classical approach	

•  Pencil-and-paper draftsmen also needed smooth
curves	

•  Origin of “spline:” strip of flexible metal	

–  held in place by pegs or weights to constrain shape	

–  traced to produce smooth contour	

4	

Translating into usable math	

•  Smoothness	

–  in drafting spline, comes from physical curvature

minimization	

–  in CG spline, comes from choosing smooth functions	

•  usually low-order polynomials	

•  Control	

–  in drafting spline, comes from fixed pegs	

–  in CG spline, comes from user-specified control points	

5	

Defining spline curves	

•  At the most general they are parametric curves	

•  Generally f(t) is a piecewise polynomial	

–  for this lecture, the discontinuities are at the integers	

6	

Defining spline curves	

•  Generally f(t) is a piecewise polynomial	

–  for this lecture, the discontinuities are at the integers	

–  e.g., a cubic spline has the following form over [k, k + 1]:	

–  Coefficients are different for every interval	

7	

Coordinate functions	

8	

Control of spline curves	

•  Specified by a sequence of control points	

•  Shape is guided by control points (aka control polygon)	

–  interpolating: passes through points	

–  approximating: merely guided by points	

9	

How splines depend on their controls	

•  Each coordinate is separate	

–  the function x(t) is determined solely by the x coordinates of

the control points	

–  this means 1D, 2D, 3D, … curves are all really the same	

•  Spline curves are linear functions of their controls	

–  moving a control point two inches to the right moves x(t)

twice as far as moving it by one inch	

–  x(t), for fixed t, is a linear combination (weighted sum) of the
control points’ x coordinates	

–  p(t), for fixed t, is a linear combination (weighted sum) of
the control points	

10	

Trivial example: piecewise linear	

•  This spline is just a polygon	

–  control points are the vertices	

•  But we can derive it anyway as an illustration	

•  Each interval will be a linear function	

–  x(t) = at + b	

–  constraints are values at endpoints	

–  b = x0 ; a = x1 – x0	

–  this is linear interpolation	

11	

Trivial example: piecewise linear	

•  Vector formulation	

•  Matrix formulation	

12	

Trivial example: piecewise linear	

•  Basis function formulation	

–  regroup expression by p rather than t	

–  interpretation in matrix viewpoint	

13	

Trivial example: piecewise linear	

•  Vector blending formulation: “average of points”	

–  blending functions: contribution of each point as t changes	

14	

Trivial example: piecewise linear	

•  Basis function formulation: “function times point”	

–  basis functions: contribution of each point as t changes	

–  can think of them as blending functions glued together	

–  this is just like a reconstruction filter!	

15	

Seeing the basis functions	

•  Basis functions of a spline are revealed by how the
curve changes in response to a change in one control	

–  to get a graph of the basis function, start with the curve laid

out in a straight, constant-speed line	

•  what are x(t) and y(t)?	

–  then move one control straight up	

16	

Hermite splines	

•  Less trivial example	

•  Form of curve: piecewise cubic	

•  Constraints: endpoints and tangents (derivatives)	

17	

Hermite splines	

•  Solve constraints to find coefficients	

18	

Hermite splines	

•  Matrix form is much simpler	

–  cofficients = rows	

–  basis functions = columns	

•  note p columns sum to [0 0 0 1]T	

19	

Longer Hermite splines	

•  Can only do so much with one Hermite spline	

•  Can use these splines as segments of a longer curve	

–  curve from t = 0 to t = 1 defined by first segment	

–  curve from t = 1 to t = 2 defined by second segment	

•  To avoid discontinuity, match derivatives at junctions	

–  this produces a C1 curve	

20	

Hermite splines	

•  Hermite blending functions	

21	

Hermite splines	

•  Hermite basis functions	

22	

Continuity	

•  Smoothness can be described by degree of continuity	

–  zero-order (C0): position matches from both sides	

–  first-order (C1): tangent matches from both sides	

–  second-order (C2): curvature matches from both sides	

–  Gn vs. Cn	

zero order	
 first order	
 second order	

23	

Continuity	

•  Parametric continuity (C) of spline is continuity of
coordinate functions	

•  Geometric continuity (G) is continuity of the curve
itself	

•  Neither form of continuity is guaranteed by the other	

–  Can be C1 but not G1 when p(t) comes to a halt (next slide)	

–  Can be G1 but not C1 when the tangent vector changes

length abruptly	

24	

Control	

•  Local control	

–  changing control point only affects a limited part of spline	

–  without this, splines are very difficult to use	

–  many likely formulations lack this	

•  natural spline	

•  polynomial fits	

25	

Control	

•  Convex hull property	

–  convex hull = smallest convex region containing points	

•  think of a rubber band around some pins	

–  some splines stay inside convex hull of control points	

•  make clipping, culling, picking, etc. simpler	

YES	
 YES	
 YES	
 NO	

26	

Affine invariance	

•  Transforming the control points is the same as
transforming the curve	

–  true for all commonly used splines	

–  extremely convenient in practice…	

27	

Matrix form of spline	

28	

Hermite splines	

•  Constraints are endpoints���

 and endpoint tangents	

29	

Hermite basis 	

30	

Affine invariance	

•  Basis functions associated with points should always
sum to 1	

31	

Hermite to Bézier	

•  Mixture of points and vectors is awkward	

•  Specify tangents as differences of points	

–  note derivative is defined as 3 times offset	

•  reason is illustrated by linear case	

32	

Hermite to Bézier	

33	

Bézier matrix	

–  note that these are the Bernstein polynomials	

���
	
 	
C(n,k) tk (1 – t)n – k���
	

	
and that defines Bézier curves for any degree	

34	

Bézier basis	

35	

Convex hull	

•  If basis functions are all positive, the spline has the
convex hull property	

–  we’re still requiring them to sum to 1	

–  if any basis function is ever negative, no convex hull prop.	

•  proof: take the other three points at the same place	

36	

Chaining spline segments	

•  Hermite curves are convenient

because they can be made long easily	

•  Bézier curves are convenient because their controls

are all points and they have nice properties	

–  and they interpolate every 4th point, which is a little odd	

•  We derived Bézier from Hermite by defining tangents
from control points	

–  a similar construction leads to the interpolating Catmull-Rom

spline	

37	

Chaining Bézier splines	

•  No continuity built in	

•  Achieve C1 using collinear control points	

38	

Subdivision	

•  A Bézier spline segment can be split into a two-

segment curve:	

–  de Casteljau’s algorithm	

–  also works for arbitrary t	

[F
vD

FH
]	

39	

Cubic Bézier splines	

•  Very widely used type, especially in 2D	

–  e.g. it is a primitive in PostScript/PDF	

•  Can represent C1 and/or G1 curves with corners	

•  Can easily add points at any position	

40	

B-splines	

•  We may want more continuity than C1	

–  http://en.wikipedia.org/wiki/Smooth_function	

•  We may not need an interpolating spline	

•  B-splines are a clean, flexible way of making long

splines with arbitrary order of continuity	

•  Various ways to think of construction	

–  a simple one is convolution	

–  relationship to sampling and reconstruction	

41	

Cubic B-spline basis	

42	

Deriving the B-Spline	

•  Approached from a different tack than Hermite-style
constraints	

–  Want a cubic spline; therefore 4 active control points	

–  Want C2 continuity	

–  Turns out that is enough to determine everything	

43	

Efficient construction of any B-spline	

•  B-splines defined for all orders	

–  order d: degree d – 1	

–  order d: d points contribute to value	

•  One definition: Cox-deBoor recurrence	

44	

B-spline construction, alternate view	

•  Recurrence	

–  ramp up/down	

•  Convolution	

–  smoothing of basis fn	

–  smoothing of curve	

45	

Cubic B-spline matrix	

46	

Other types of B-splines	

•  Nonuniform B-splines	

–  discontinuities not evenly spaced	

–  allows control over continuity or interpolation at certain
points	

–  e.g. interpolate endpoints (commonly used case)	

•  Nonuniform Rational B-splines (NURBS)	

–  ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)	

–  key properties:	

•  invariance under perspective as well as affine	

•  ability to represent conic sections exactly	

47	

Converting spline representations	

•  All the splines we have seen so far are equivalent	

–  all represented by geometry matrices	

•  where S represents the type of spline	

–  therefore the control points may be transformed from one

type to another using matrix multiplication	

48	

Evaluating splines for display	

•  Need to generate a list of line segments to draw	

–  generate efficiently	

–  use as few as possible	

–  guarantee approximation accuracy	

•  Approaches	

–  reccursive subdivision (easy to do adaptively)	

–  uniform sampling (easy to do efficiently)	

49	

Evaluating by subdivision	

–  Recursively split spline 	

•  stop when polygon is ���

within epsilon of curve	

–  Termination criteria	

•  distance between control points	

•  distance of control points from line	

p1	

p2	

p3	

p4	

[F
vD

FH
]	

50	

Evaluating with uniform spacing	

•  Forward differencing	

–  efficiently generate points for uniformly spaced t values	

–  evaluate polynomials using repeated differences	

