Spline Curves

COMP 575/COMP 770

Motivation: smoothness

- In many applications we need smooth shapes
 - that is, without discontinuities

- So far we can make
 - things with corners (lines, squares, rectangles, ...)
 - circles and ellipses (only get you so far!)

Classical approach

- Pencil-and-paper draftsmen also needed smooth curves
- Origin of "spline:" strip of flexible metal
 - held in place by pegs or weights to constrain shape
 - traced to produce smooth contour

Translating into usable math

Smoothness

- in drafting spline, comes from physical curvature minimization
- in CG spline, comes from choosing smooth functions
 - usually low-order polynomials
- Control
 - in drafting spline, comes from fixed pegs
 - in CG spline, comes from user-specified control points

Defining spline curves

• At the most general they are parametric curves

 $S = \{ \mathbf{p}(t) \, | \, t \in [0, N] \}$

• Generally f(t) is a piecewise polynomial

- for this lecture, the discontinuities are at the integers

Defining spline curves

- Generally f(t) is a piecewise polynomial
 - for this lecture, the discontinuities are at the integers
 - e.g., a cubic spline has the following form over [k, k + 1]:

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$
$$y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

- Coefficients are different for every interval

Coordinate functions

Control of spline curves

- Specified by a sequence of control points
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points

How splines depend on their controls

- Each coordinate is separate
 - the function x(t) is determined solely by the x coordinates of the control points
 - this means ID, 2D, 3D, ... curves are all really the same
- Spline curves are **linear** functions of their controls
 - moving a control point two inches to the right moves x(t)twice as far as moving it by one inch
 - x(t), for fixed t, is a linear combination (weighted sum) of the control points' x coordinates
 - $\mathbf{p}(t)$, for fixed t, is a linear combination (weighted sum) of the control points

- This spline is just a polygon
 control points are the vertices
- But we can derive it anyway as an illustration
- Each interval will be a linear function

$$-x(t) = at + b$$

constraints are values at endpoints

$$-b = x_0; a = x_1 - x_0$$

- this is linear interpolation

• Vector formulation

$$x(t) = (x_1 - x_0)t + x_0$$
$$y(t) = (y_1 - y_0)t + y_0$$
$$\mathbf{p}(t) = (\mathbf{p}_1 - \mathbf{p}_0)t + \mathbf{p}_0$$

• Matrix formulation

$$\mathbf{p}(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

- Basis function formulation
 - regroup expression by \mathbf{p} rather than t

$$\mathbf{p}(t) = (\mathbf{p}_1 - \mathbf{p}_0)t + \mathbf{p}_0$$
$$= (1 - t)\mathbf{p}_0 + t\mathbf{p}_1$$

- interpretation in matrix viewpoint

$$\mathbf{p}(t) = \left(\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \right) \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

- Vector blending formulation: "average of points"
 - blending functions: contribution of each point as t changes

- Basis function formulation: "function times point"
 - basis functions: contribution of each point as t changes

- can think of them as blending functions glued together
- this is just like a reconstruction filter!

Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
 - to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
 - what are x(t) and y(t)?
 - then move one control straight up

Hermite splines

- Less trivial example
- Form of curve: piecewise cubic
- Constraints: endpoints and tangents (derivatives)

Hermite splines

• Solve constraints to find coefficients

$$\begin{aligned} x(t) &= at^{3} + bt^{2} + ct + d \\ x'(t) &= 3at^{2} + 2bt + c \\ x(0) &= x_{0} = d \\ x(1) &= x_{1} = a + b + c + d \\ x'(0) &= x'_{0} = c \\ x'(1) &= x'_{1} = 3a + 2b + c \end{aligned} \qquad \begin{aligned} d &= x_{0} \\ c &= x'_{0} \\ a &= 2x_{0} - 2x_{1} + x'_{0} + x'_{1} \\ b &= -3x_{0} + 3x_{1} - 2x'_{0} - x'_{1} \end{aligned}$$

 $+x'_{0}+x'_{1}$

Hermite Splines

• Matrix form is much simpler

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix}$$

- cofficients = rows
- basis functions = columns
 - note **p** columns sum to $[0\ 0\ 0\ 1]^{\mathsf{T}}$

Longer Hermite splines

- Can only do so much with one Hermite spline
- Can use these splines as segments of a longer curve
 curve from t = 0 to t = 1 defined by first segment
 - curve from t = I to t = 2 defined by second segment
- To avoid discontinuity, match derivatives at junctions
 this produces a C¹ curve

Hermite splines

• Hermite blending functions

Hermite splines

• Hermite basis functions

Continuity

- Smoothness can be described by degree of continuity
 - zero-order (C^0): position matches from both sides
 - first-order (C^{I}): tangent matches from both sides
 - second-order (C^2): curvature matches from both sides
 - $-G^n$ vs. C^n

Continuity

- Parametric continuity (C) of spline is continuity of coordinate functions
- Geometric continuity (G) is continuity of the curve itself
- Neither form of continuity is guaranteed by the other
 - Can be C^{I} but not G^{I} when $\mathbf{p}(t)$ comes to a halt (next slide)
 - Can be G^{I} but not C^{I} when the tangent vector changes length abruptly

Control

- Local control
 - changing control point only affects a limited part of spline
 - without this, splines are very difficult to use
 - many likely formulations lack this
 - natural spline
 - polynomial fits

Control

- Convex hull property
 - convex hull = smallest convex region containing points
 - think of a rubber band around some pins
 - some splines stay inside convex hull of control points
 - make clipping, culling, picking, etc. simpler

Affine invariance

- Transforming the control points is the same as transforming the curve
 - true for all commonly used splines
 - extremely convenient in practice...

Matrix form of spline

$$\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$

 $\mathbf{p}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

Hermite splines

• Constraints are endpoints and endpoint tangents

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix}$$

Affine invariance

 Basis functions associated with points should always sum to I

$$\mathbf{p}(t) = b_0 \mathbf{p}_0 + b_1 \mathbf{p}_1 + b_2 \mathbf{v}_0 + b_3 \mathbf{v}_1$$

$$\mathbf{p}'(t) = b_0 (\mathbf{p}_0 + \mathbf{u}) + b_1 (\mathbf{p}_1 + \mathbf{u}) + b_2 \mathbf{v}_0 + b_3 \mathbf{v}_1$$

$$= b_0 \mathbf{p}_0 + b_1 \mathbf{p}_1 + b_2 \mathbf{v}_0 + b_3 \mathbf{v}_1 + (b_0 + b_1) \mathbf{u}$$

$$= \mathbf{p}(t) + \mathbf{u}$$

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

- note derivative is defined as 3 times offset
- reason is illustrated by linear case

Hermite to Bézier

$$p_0 = q_0$$

 $p_1 = q_3$
 $v_0 = 3(q_1 - q_0)$
 $v_1 = 3(q_3 - q_2)$

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{q}_1 \\ \mathbf{q}_2 \\ \mathbf{q}_3 \end{bmatrix}$$

Bézier matrix

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}$$

- note that these are the Bernstein polynomials

$$C(n,k) t^k (1-t)^{n-k}$$

and that defines Bézier curves for any degree

Bézier basis

Convex hull

- If basis functions are all positive, the spline has the convex hull property
 - we're still requiring them to sum to I

- if any basis function is ever negative, no convex hull prop.
 - proof: take the other three points at the same place

Chaining spline segments

• Hermite CUIVES are convenient

because they can be made long easily

- Bézier curves are convenient because their controls are all points and they have nice properties
 - and they interpolate every 4th point, which is a little odd
- We derived Bézier from Hermite by defining tangents from control points
 - a similar construction leads to the interpolating Catmull-Rom spline

Chaining Bézier splines

- No continuity built in
- Achieve C¹ using collinear control points

Subdivision

• A Bézier spline segment can be split into a twosegment curve:

- de Casteljau's algorithm
- also works for arbitrary t

Cubic Bézier splines

- Very widely used type, especially in 2D
 e.g. it is a primitive in PostScript/PDF
- Can represent C¹ and/or G¹ curves with corners
- Can easily add points at any position

B-splines

- We may want more continuity than C¹
 http://en.wikipedia.org/wiki/Smooth_function
- We may not need an interpolating spline
- B-splines are a clean, flexible way of making long splines with arbitrary order of continuity
- Various ways to think of construction
 - a simple one is convolution
 - relationship to sampling and reconstruction

Cubic B-spline basis

Deriving the B-Spline

- Approached from a different tack than Hermite-style constraints
 - Want a cubic spline; therefore 4 active control points
 - Want C^2 continuity
 - Turns out that is enough to determine everything

Efficient construction of any B-spline

- B-splines defined for all orders
 - order d: degree d I
 - order d: d points contribute to value
- One definition: Cox-deBoor recurrence

$$b_{1} = \begin{cases} 1 & 0 \le u < 1\\ 0 & \text{otherwise} \end{cases}$$
$$b_{d} = \frac{t}{d-1}b_{d-1}(t) + \frac{d-t}{d-1}b_{d-1}(t-1)$$

B-spline construction, alternate view

- Recurrence

 ramp up/down
- Convolution
 - smoothing of basis fn
 - smoothing of curve

Cubic B-spline matrix

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k-1} \\ \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \mathbf{p}_{k+2} \end{bmatrix}$$

Other types of B-splines

- Nonuniform B-splines
 - discontinuities not evenly spaced
 - allows control over continuity or interpolation at certain points
 - e.g. interpolate endpoints (commonly used case)
- Nonuniform Rational B-splines (NURBS)
 - ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)
 - key properties:
 - invariance under perspective as well as affine
 - ability to represent conic sections exactly

Converting spline representations

All the splines we have seen so far are equivalent

 all represented by geometry matrices

 $\mathbf{p}_S(t) = T(t)M_S P_S$

- where S represents the type of spline
- therefore the control points may be transformed from one type to another using matrix multiplication

$$P_1 = M_1^{-1} M_2 P_2$$

$$\mathbf{p}_{1}(t) = T(t)M_{1}(M_{1}^{-1}M_{2}P_{2})$$
$$= T(t)M_{2}P_{2} = \mathbf{p}_{2}(t)$$

Evaluating splines for display

- Need to generate a list of line segments to draw
 - generate efficiently
 - use as few as possible
 - guarantee approximation accuracy
- Approaches
 - reccursive subdivision (easy to do adaptively)
 - uniform sampling (easy to do efficiently)

Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria
 - distance between control points
 - distance of control points from line

Evaluating with uniform spacing

- Forward differencing
 - efficiently generate points for uniformly spaced t values
 - evaluate polynomials using repeated differences