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Digitized cel animations are typically composed of frames containing a small number of
regions; each region contains pixels of the same color and exhibits a significant level of

shape coherence through time. To exploit this coherence, we treat the stack of frames
as a 3D volume and represent the evolution of each region by the bounding surface of

the 3D sub-volume V that it sweeps out. To reduce transmission costs, we triangulate
and simplify the bounding surface and then encode it using the Edgebreaker compres-
sion scheme. To restore a close approximation of the original animation, the client

player decompresses the surface and produces the successive frames by intersecting V

with constant-time planes. The intersection is generated in real-time with standard

graphics hardware through an improved capping (i.e. solid clipping) technique, which
correctly handles overlapping facets. We have tested this approach on real and syn-
thetic black&white animations and report compression ratios that improve upon those
produced using the MPEG, MRLE, and GZIP compression standards for an equivalent
quality result.
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1. Introduction

In this paper, we propose a technique for compressing cel animations. Prior re-

search on video compression has been mostly focused on videos of real scenes or on

synthetic video aimed at simulating real environments, which consists of continu-

ously varying colors and brightness levels over the image in a single frame, and also

over time. In contrast, in cel animations, each frame consists of several regions of

uniform color. The regions change their shape over time, but their color remains

the same. We exploit this particularity of cel animations to increase compression

ratios. Since the color inside each region of a cel animation remains constant, we

need to store only one color per region for the entire animation. The remaining

information lies in the geometric evolution of the shape of these regions. Our goal

is to devise a compact representation for these evolving shapes.

One might consider several approaches for encoding the evolution of the shape

of these regions over time. As a frame of reference, consider a short black and white

video of 336 frames showing the evolution of a single region at a 320×240 resolution.
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Fig. 1. (a) Consecutive frames of the animation of a uniform (black) region are shown. (b) The

bounding surface of the region is produced by voxelization and iso-surface extraction. (c) Bounding
surface shown after simplification; this surface is further compressed using Edgebreaker. (d) After

downloading and decompressing the bounding surface, the client player clips it with a plane whose
offset represents time. (e) An improved hardware-assisted capping technique is used to obtain the

cross-section of the surface intersected by this plane (f) Each frame of the animation is rendered
by painting these cross-sections.
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It contains 25,804,800 black or white pixels and thus could be stored as a sequence of

bits (0 for a white voxel and 1 for a black voxel), which without compression would

occupy 3.2MB(Megabytes). Compressing the file using Microsoft’s Run Length En-

coding (MRLE) [1] reduces storage to 1.2MB. MPEG-1 [2] achieves a slightly better

compression, reducing storage to 1.1MB (a 3:1 compression ratio over the raw one-

bit-per-pixel encoding). Surprisingly, running a lossless GZIP compression [3] over

the raw data produces significantly better results than MPEG and MRLE, reducing

its size down to 78KB(Kilobytes). The technique described here compresses that

same animation down to 80KB (a 10:1 compression ratio over MPEG-1 and MRLE)

without any perceivable loss in quality. It is hence comparable to GZIP for high

fidelity compression. However, when a small loss of accuracy is acceptable, our

technique outperforms MPEG-1, MRLE, and GZIP. For example, we compress the

original animation down to 16.8KB (thus achieving a 60:1 compression ratio over

MPEG-1 and MRLE), while a GZIP compressed low-resolution version of the same

video (160×120×168) requires 21KB and produces a clearly lower quality result.

In order to achieve this compression, we treat the black and white video as a

3D arrangement of voxels, extract the bounding surface of the three-dimensional

black region, and then simplify and compress that surface, taking advantage of any

spatio-temporal coherence present in the evolving region.

More precisely, we pile the frames of our 2D animation into a block embedded

in 3D space. A sample point in this space has integer coordinates (x, y, t), where

(x, y) are the coordinates of a pixel in the image plane, and t represents time, or

equivalently, the frame number in the animation. We call this 3D space, the image-

time space. As time evolves, each region sweeps a volume V through the image-time

space. The bounding surface S of V interpolates the bounding curves of the region

for each discrete value of t. We can use compact representations of S to encode the

shape of V . For example, when the region is a constant radius disc that moves at

constant velocity, V is an inclined cylinder and can be accurately represented by

a small number of triangles, regardless of the number of frames. We compress the

surface S using existing 3D geometric simplification [4, 5, 6, 7] and compression

[8, 9, 10, 11, 12, 13, 14, 15] techniques. Our approach will benefit from any further

progress in surface simplification and compression, two active fields of research.

The client player downloads the compressed representation of S and decodes

it. We can play the animation directly from S in real-time, thus avoiding the need

for reconstructing and storing the video. For that, we use the standard graphics

hardware. We exploit the fact that each frame of the animation is a cross-section of

the volume enclosed by the bounding surface. More specifically, the nth frame can

be rendered by computing the cross-section of this volume with the plane t = n.

However, we don’t need to compute a geometric representation of the cross-section

explicitly. Instead, we can use graphics hardware to clip away the portion of the

surface for which t < n. The triangles of S are oriented consistently so that they face

outwards from V . We use a standard capping approach [16] to paint the triangles

that face the viewpoint in white (background color), and the triangles that face
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away (and are seen through the cross-section as shown in Figure 1(d)) in black.

Front-facing triangles that lie behind the visible back-facing triangles could be

eliminated using a standard z-buffer. However, when S is the result of a simplifi-

cation process, it may contain regions where front-facing and back-facing triangles

overlap, and thus have the same depth. To correctly handle such situations, we use

a parity rule to decide on the color of each pixel. This decision process is supported

in hardware using OpenGL’s standard stencil buffers.

The above approach assumes that the animation has already been segmented

into uniformly colored regions and that each region can be analyzed separately. The

bounding surfaces defined by each of these regions can then be combined to obtain

the representation for the entire animation. Hence, we focus our discussion on the

compression and display of a single region of the animation.

We choose to represent the bounding surface as an irregular mesh composed

of arbitrary vertex locations along with connectivity information. The rationale

behind this choice as opposed to an axis-aligned representation (for e.g. an octree)

is that the freedom of placing vertices in a continuous space allows us to capture

shape-redundancy in a much stronger fashion. Further more, such a representation

allows us to visualize the animation as a 3D-surface and gives the animator a very

intuitive and interactive tool for editing the animation using 3D deformation tools.

In the remainder of the paper, we review related work and explain the details of

the various steps of our technique including bounding surface extraction, simplifica-

tion, compression, and animation playback. We then present results obtained from

three test animations, and finally conclude with a summary of our contributions.

2. Prior Art

A vast amount of work has been focused on image and video compression, resulting

in a variety of techniques and standards, which include JPEG (for images) [17] and

MPEG (for video) [2]. These handle images and videos of natural scenes, for which

neighboring pixels may all have different colors. These general-purpose compression

techniques may be inferior to specialized approaches when targeting a specific sub-

class of videos: cel animations in our case.

One of the ways to encode a cel animation consisting of multiple uniformly

colored regions is to convert the animation into a set of binary digital videos, one

for each color. Each video represents a constant-color region and is associated with a

color descriptor. As an example, if we start with a W×H resolution color-animation

with K regions and N frames, the raw data size would be 24WHN bits. Here it

is assumed that we use 24 bits per pixel to store the color information. If we use

K binary videos, each having WHN bits, we obtain a total of WHNK bits and

a color table of size 24K. The compression-ratio of 24/K is not a large gain, even

considering that K is usually small in cel animations. The compression ratios of

these approaches are limited because they exploit coherence only in color, but not

in shape or time. A slightly better approach would be to store the entire animation
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as one video with log K bits per pixel, referencing an entry in a color look-up table.

This choice would result in a storage size of WHN log K + 24K and the resulting

raw data could be compressed directly using entropy-based techniques.

A binary video is highly likely to have a large number of long sequences con-

taining only 0’s or 1’s, therefore run-length encoding (RLE) [1] and entropy-based

compression techniques [3, 18, 19] seem appropriate. However, they only exploit co-

herence in one dimension. An octree encoding [20] of the binary set of black voxels

may be more effective at exploiting the spatio-temporal coherence of the 3D rep-

resentation. The octree approach recursively splits an inhomogeneous volume into

octants, thus avoiding the need to represent the voxels of large uniform regions. The

compression ratio depends on the alignment of the faces of V with the axis-aligned

bisecting planes of the octree. If the octree has L leaf-nodes, then the storage would

be O(L log K). Since the leaf nodes contain boundary voxels, L is expected to be

O((WHN)2/3) and is dominated by the number of the finest resolution boundary

voxels.

A different approach would be to encode the bounding curve of the region in

each frame of the video (obtained after color-segmentation of that region). This

method better addresses the issue of shape-redundancy. By considering just the

bounding curve, we are already removing redundant information about the interior

and exterior of the region. Suppose we encode the curves losslessly; for every curve,

we store the (x, y) coordinates of a seed pixel on the curve. Starting at the seed, we

now move along the curve one pixel at a time, storing for each pixel its displacement

from the previous pixel. Since there are eight possible displacement vectors, we

require three bits to encode each move. If we have on the average, P curve-pixels

in every frame, and we use 20 bits to represent the seed (which we assume is only

one per frame), we would end up with a representation of size (3P + 20)NK bits -

for most animations P should be O(W + H).

Better compression ratios should be easily achievable if lossy encoding is accept-

able. A lossy compression technique would encode approximations to the actual

curves by taking advantage of any smoothness present in the curve. While this

approach takes into account the spatial coherence present in individual curves, it

does not address the fact that they are highly correlated with each other. Our tech-

nique essentially extends this idea into 3D, exploiting the spatio-temporal coherence

present in the animation.

3. Bounding Surface Extraction

To represent an animation by a bounding surface, we need to extract the surface

from the image-time space and build a representation for it.

3.1. Definition of Bounding Surface

The bounding surface S should separate the black voxels from the white ones. The

simplest definition of such a surface is the set of square faces that lie between black
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and white voxels. Such a surface, however, contains sharp edges and corners which

is undesirable. In order to alleviate this problem, we define a scalar field F over the

image-time volume:

F (p) =

{

0 if p is at the center of a black voxel
1 if p is at the center of a white voxel

F is initially not known at points other than these voxel centers and must be

approximated by interpolation. Once F is defined everywhere, the bounding surface

is defined as the set of points for which F = 0.5. Naturally, the smoothness of the

surface depends on the smoothness of the interpolant for F , as shown in Figure 2.

(a) (b) (c)

Fig. 2. The bounding surface obtained by using different interpolation schemes for scalar field F

- shown for a 2D voxel-grid. (a) Piecewise-constant interpolation. (b) Bilinear interpolation. (c)
Piecewise linear interpolation.

If we use a piecewise-constant interpolation for F (Figure 2(a)) using a box-

shaped filter, it takes the value of 0 everywhere inside a black voxel and the value

of 1 everywhere inside a white voxel. Therefore F is discontinuous along the faces

where black and white voxels meet. Although F (p) 6= 0.5 for any p, F does change

from 0 to 1 (or vice-versa) at the points of discontinuity and therefore they are the

natural candidates to be a part of the bounding surface. Note that the surface thus

obtained is exactly the surface we would have obtained by just considering the faces

separating black and white voxels (as discussed above).

A more sophisticated interpolation scheme should definitely give a smoother sur-

face. One such scheme is bilinear interpolation (Figure 2(b)). The surface obtained

using bilinear interpolation is very smooth; however, it is computationally expen-

sive to generate such a surface. Moreover, it is a quadric surface that has to be

resampled in order to convert it to a triangle mesh representation which is desirable

since we want to run a simplification algorithm over it. Taking middle ground, we

choose a piecewise-linear interpolant (Figure 2(c)) that is simple to compute and

still smooth enough for our purpose.

3.2. Iso-surface Extraction
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The procedure for extracting the triangulated surface makes use of tetrahedral de-

composition of each voxel. It may be viewed as a special case of the approach

described in [23]. The main difference lies in the fact that we are not extracting

the iso-surface from an arbitrary voxel-volume. Instead, the voxels have scalar val-

ues of 0 and 1 only, and the iso-surface has a scalar value of 0.5. Consequently, a

linear interpolation between two adjacent voxel centers with different scalar values

would always lie at their mid-point. We briefly describe the iso-surface extraction

procedure and some of the details that were handled differently by us. For more

information on this method, please read [23].

Fig. 3. A cube in the voxel volume is decomposed into five tetrahedra. Four of these tetrahedra are
identical in shape (the canonical shape is shown as shaded in the left figure). The fifth tetrahedron

is embedded within the first four (shown as shaded in the right figure).

Fig. 4. Intersection of the iso-surface with a tetrahedron can either be a triangle (left) or a
quadrilateral (right), depending upon the color of the voxels on its corners.

The traditional approach to iso-surface extraction is the marching-cubes algo-

rithm [24]. In this algorithm, the entire voxel-volume is divided into cubes, so that
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each cube has eight neighboring voxels at its corners. The intersection of the surface

with each of these cubes is computed and the union of these intersections gives us

the iso-surface. The tetrahedral decomposition algorithm modifies marching-cubes

by further dividing each cube into five tetrahedra (see Figure 3), and computing the

intersection of the surface with each tetrahedron. Note that both these algorithms

- marching tetrahedra and marching cubes - implicitly assume a piecewise-linear

scalar field F as is desired. However, such a linear F in 3D can be guaranteed to go

through atmost four points. This fact is crucial because it is the sole reason for the

ambiguities that arise in the marching cubes algorithm [25] - marching cubes tries

to find the level-set of a function obtained through linear interpolation over eight

points. Tetrahedral decomposition alleviates this problem because the interpola-

tion happens only over four points; it also greatly reduces the number of possible

outcomes of the intersection computation.

To compute a surface-tetrahedron intersection, we need to know the binary

scalar values of the voxels at the corners of the tetrahedron. Only tetrahedron

edges with different scalar values at their corners intersect the surface. The possible

outcomes of the intersection can either be a triangle or a quadrilateral, as shown in

Figure 4. If the mid-point of each edge that has different scalar values at its corners

is picked as a vertex of the bounding surface, we may get undesirably sharp corners

in the surface (see Figure 5). This would happen, for example, if the candidate

edge is a face-diagonal of the original cube that was tetrahedralized and three of the

corners of that square face have the same scalar value (Figure 5, top-left). Note that

if the other diagonal had been chosen during tetrahedralization, the sharp corner

wouldn’t have been created (Figure 5, top-right). To avoid this effect, we check

for the condition that can create the sharp corner and if it is true, we displace the

vertex towards the appropriate corner (Figure 5, bottom). In [23], the displacement

is computed using bilinear interpolation. In our case, because of the binary nature

of our voxel-volume, the displacement is always one quarter of the diagonal. This

step ensures that the bounding surface is independent of the tetrahedralization -

we are referring to the tetrahedralization of a single voxel which can be done in two

ways depending on which diagonal is chosen to split each face.

For simplification, compression, and even for rendering, it is important that the

iso-surface extraction procedure generate a triangle mesh that has the connectivity

of a watertight surface. In particular, if we consider the triangles and edges to be

relatively open (i.e., not including their boundaries), then any two elements from

the total set of triangles, edges and vertices must be disjoint. For example, a vertex

cannot coincide with an interior point of a triangle or of an edge. Furthermore,

two edges cannot intersect. Also, each edge must have an even number of incident

triangles. Such meshes are simplicial complexes that represent the boundaries of

solids. They can be represented as pseudo-manifolds using a simple data structure,

such as the one described in [13]. Techniques for pairing triangles incident upon

non-manifold edges in a manner that prevents self-crossings of the surface and that

minimize the number of non-manifold vertices are discussed in [26]. They are im-
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Fig. 5. For the voxel configuration shown above, the computed iso-surface depends on the diagonal
chosen during tetrahedralization - if the diagonal intersects the iso-surface (top-left), a sharp corner
is created. If the diagonal does not intersect the iso-surface (top-right), the iso-surface is smooth.

The sharp corner created in the first case is removed by moving the vertex of the iso-surface

towards the appropriate voxel (bottom). The resulting iso-surface now looks identical in both
cases.
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portant for reducing the storage of the mesh and for guaranteeing the compatibility

of the surface orientation with the status of the volume it bounds.

We obtain a valid triangulation, as defined above, by ensuring that the decom-

position of the cubes generates tetrahedra that are consistent with each other. In

our situation, consistency among tetrahedra is satisfied if two triangles that bound

two different tetrahedra are either identical or disjoint (remember that triangles

are relatively open and do not include their edges). We achieve this by alternating

tetrahedralizations, so that the tetrahedral decompositions of two adjacent cubes

will be mirror images of one another with respect to the plane of symmetry between

the cubes.

The algorithm described above is simple and easy to implement. It also handles

the topological changes between pairs of consecutive slices automatically. This

simplicity comes at a cost though. Since we are dealing with animation, there exists

a correspondence between various structural elements of the object being animated

which is not explicitly captured when the surface is constructed voxel by voxel.

This means that the surface obtained will be sensitive to the sampling frequency

in space and time, and simplification can potentially introduce significant artifacts

in the animation. A possible alternative is to construct a skeleton or Reeb graph

and use it to segment the 3D surface into regions that are suitable for compression

[21, 22]. We, however, stick to the voxel-marching approach mainly for reasons of

simplicity.

4. Simplification

We now have a triangle mesh represented as a pseudo-manifold. We simplify it using

a sequence of edge-collapse operations [4, 7] that at each step minimize the error

between the resulting surface and the original one. We have used the simplification

technique developed by [5].

Fig. 6. Simplification with edge-collapse operations can cause triangles to fold over each other and
overlap. The thick edge (solid in left and dotted in middle and right) is being collapsed here; for

the configuration shown, it ultimately produces a pair of overlapping triangles.

We have found that simplification is very effective at decreasing the triangle

count by 95-99% without noticeable error in the resulting animations. For instance,

the iso-surface for the animation shown in Figure 1 originally involved 1,850,200
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Fig. 7. The mesh obtained through simplification is watertight even if it has overlapping triangles;
a parity test can be used to check if a point lies inside or outside the mesh - shown here for the

2D case.

triangles (top center) and was simplified to 18,502 triangles (top right) with an

error of less than 0.2%, as measured with Metro [27].

The edge-collapse based simplification algorithm can produce degenerate cases

where the surface folds upon itself producing overlaps between triangles (Figure 6).

However, it preserves the manifold connectivity of the mesh which means that it is

watertight; a point can be tested for being inside or outside the volume bounded by

the surface by a simple parity checking logic (Figure 7) - the parity of the number

of intersections of the surface and a ray shot from the point in question to ∞ is

odd if the point is inside and even if the point is outside. As we shall see, this has

implications on the rendering phase.

5. Compression

We have used the compression approach described in [10, 12, 13]. The first step

of this approach is to quantize the coordinates of the vertices of the simplified

surface. For this, we compute a coordinate system in which all vertex coordinates

are represented as integers and span the range [0 2B−1], where B is the number of

bits needed to represent them. Typically, B is chosen to match the original voxel

resolution. For the example in Figure 1, we used B = 9.

We encode the connectivity of the mesh by building a spiraling triangle-spanning

tree and by storing for each visited triangle, one symbol from the set {C,L,E,R,S}.

A C corresponds to a situation where the tip of the triangle has not yet been

visited. The other symbols correspond to the four possible situations where the tip

vertex has been visited, and the left and right triangle neighbors exhibit different

combinations of visited or not visited. The sequence of symbols may always be

encoded with less than 1.8 bits per triangle and suffices to recover the connectivity
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graph for all simply connected triangle meshes. It may be extended to support

meshes with handles by adding two references per handle. In practice, it compresses

to about 1 bit per triangle for sufficiently complex meshes.

The number of vertices is roughly half the number of triangles. We compress

their coordinates by encoding the vertices in the order in which they are encountered

by the connectivity compression traversal described above. Instead of encoding the

location of each vertex, the encoder and the decoder both use the same prediction

mechanism, which is based on the parallelogram rule suggested in [15]. We encode

in a lossless fashion, the residue (i.e., corrective) vectors between the quantized

version of the predicted locations and the actual quantized locations. Because

the predictions are usually accurate, the corrective vectors are short and can be

significantly compressed using entropy codes. For example, the storage necessary

for the corrective vectors of the surface in Figure 1 was compressed to an average

of 4.3 bits per coordinate.

The player would receive and decode the sequence of symbols and the corrective

vectors. It would then decompress them as described in [12, 13], reconstructing a

triangle mesh that is suitable for replaying the animation in real-time. The source

code and compact description of the Edgebreaker compression and decompression

are available [28].

6. Animation Playback

OpenGL has support for arbitrary clipping planes, besides the usual ones necessary

for defining the viewing volume. Once we define a clipping plane, all surfaces

are clipped with that plane before being rendered. Now consider the bounding

surface of an animated region. We clip this surface with the plane t = n. We

retain all points on the surface with t ≥ n and remove the rest. We call the

half space containing points with t ≥ n, the retained half-space. The half space

represented by t < n is called the culled half-space. We render an orthographic

view of the surface onto a projection plane that is parallel to the clipping plane

and lies in the culled half-space (Figure 1(f)). The clipped surface is no longer

watertight, i.e. we can now see back-facing as well as front-facing triangles of the

surface. Also, the projections of the back-facing and front-facing triangles meet

at the intersection-boundary of the surface and the clipping plane. Figure 1(d)

shows the clipped surface with the back and front facing polygons painted in purple

and green respectively. This bounding curve partitions the projection plane into

two regions - interior and exterior. The exterior contains the background and the

projection of front-facing triangles, while the interior contains the projection of

back-facing triangles. If we render the back-facing and front-facing polygons with

different colors, the bounding curve is automatically rendered as the boundary

between the these two colors (Figure 1(d,e)). In particular, if we render the front-

facing triangles in background color, and the back-facing triangles in the actual

color of the animated region, we get back a frame of the animation. We can do
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this for all successive frames of the animation, thereby playing back the animation.

Since we are actually rendering individual frames, we can capture them offline into

a video and then use the video for playback.

Parity:

Even

Odd

Odd

View Plane

Clipping Plane

Even

Fig. 8. Using parity-checking logic to render a frame of the animation - shown for the 2D case.
If a ray shot from the viewing plane towards the volume intersects the surface an odd number of

times, it sees a back facing triangle; conversely, if it intersects the surface an even number of times,
it sees a front-facing triangle. Hence the parity of each pixel uniquely determines if it is a part

of the animating region or not - the back-facing triangles project to the interior of the animating
region and the front-facing ones project to its exterior (or background).

While in theory the above method should always work, there are problems that

may occur in practice and need to be overcome. The simplification stage in com-

pression involves edge-collapses that may lead to overlapping triangles (Figure 6).

Hidden-surface removal using z-buffering would show one of these triangles, but

which one is actually visible cannot be predicted deterministically. We can solve

this problem by using the parity of the number of triangles projecting onto a pixel.

Consider the surface before clipping; as mentioned before, this surface is water-

tight. A ray starting from a point that is inside the volume enclosed by this surface

would hit the surface an odd number of times. On the contrary, a point outside the

enclosed volume would hit the surface an even number of times (Figure 7). Now,

consider the clipped surface; the portion of the clipping plane that lies within the

volume enclosed by the original unclipped bounding surface obviously consists of

points inside that volume. Therefore, any ray that starts at one of those points

would hit the unclipped bounding surface an odd number of times. If the ray is

directed towards the retained half-space, it would hit the clipped surface also an
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odd number of times, because in that half space the surface has not changed. A

similar argument can be used to show that a ray that starts from the portion of the

clipping plane that lies outside the enclosed volume and that is directed towards the

retained half-space would hit the clipped surface an even number of times. The two

portions of the clipping plane that we have talked about are exactly the interior and

exterior of the bounding curve of the animated region in that frame. Therefore, the

portion inside the enclosing volume is where the back-facing triangles project and

the one outside is where the front-facing triangles project. We combine all these

facts to come up with the following test: To decide whether the triangle visible at

a pixel is back-facing or front-facing, we shoot a ray from that pixel, orthogonal to

the projection plane. If the ray pierces an odd number of triangles of the clipped

surface, it should see a back-facing triangle. Otherwise, it should see a front-facing

triangle, or the background (in case of no intersections). In fact, once we have this

information about each pixel, we don’t need to explicitly render the surface again

because we have already gathered the information about what each pixel sees. So

we can just paint each pixel appropriately. See Figure 8 for a schematic description.

We implement this test using the stencil-buffers in OpenGL. We first render the

clipped surface, flipping the bit at a pixel in the stencil buffer whenever it sees a

surface. Assuming that we initialized the buffer to 0, all pixels in the interior of the

animated region will now be set to 1 (on). All remaining pixels would be set to 0

(off). We then use the stencil buffer as a mask, and render the on pixels with the

color of the animated region, and the off pixels with the color of the background.

We do this by rendering a polygon parallel to and as large as the projection plane

with the color of the animated region, and with the stencil buffer as a mask.

7. Results

Human Disc Jello

Fig. 9. Snapshots from the various datasets we used for experimentation.

We have implemented our compression technique for animations with only one

animated region. It is reasonable to assume that an animation with multiple regions

can be decomposed into single-region animations using color information and/or
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connected component analysis. We tested our technique on three videos (Figure 9).

Besides our technique, we also compressed them with GZIP, MPEG-1 and MRLE.

In an attempt at lossy compression with GZIP, we used GZIP to compress a lower

resolution (half of the original in all three dimensions) version of the video. Our

technique outperformed each of the other techniques. The results of lossy GZIP

had compression ratios comparable to ours but were significantly poor in quality.

The results are summarized in Table 1 and Figure 10. The details are as follows:

(i) Silhouette video of a human performing certain actions: this video had a

spatial resolution of 320×240 pixels and 336 frames. There were 359,004

boundary-faces in the video. Using our technique, we could compress it to

80KB without any perceivable loss. With more lossy compression, we could

compress it down to 16.8KB. The original iso-surface had 924,778 vertices and

1,850,200 triangles. We simplified it to 1% of the original number of triangles.

The final mesh had 8,907 vertices and 18,502 triangles. Predictive encoding of

vertices required 13 bits per vertex. Edgebreaker (for connectivity encoding)

used 1 bit per triangle. GZIP compressed the same video to 78KB losslessly;

lossy GZIP achieved 21KB but with considerable loss in quality. MPEG-1

compressed it to 1.1MB, while MRLE compressed it to 1.2MB.

(ii) Video of a circular disc first increasing and then decreasing in radius: this

video had 320×240 pixels per frame and 100 frames. There were 83,948

boundary-faces in the video. We compressed the video to 3.7KB without

much loss in quality, while GZIP achieved 17.5KB with lossless compression

and 4.1KB with lossy compression.. MPEG-1 compressed it to 206KB, while

MRLE compressed it to 170KB.

(iii) Video of a jello-like object performing some actions: this video had 320×240

pixels per frame and 590 frames. There were 456,738 boundary-faces in the

video. We compressed the video to 19.3KB without much loss in quality,

while GZIP achieved 122KB with lossless compression and 25.7KB with lossy

compression. MPEG-1 compressed it to 1.5MB, while MRLE compressed it

to 971KB.

The disc video was relatively simple with only the radius of the disc changing over

the sequence; it helped us to empirically verify the soundness of our technique. The

human and the jello video, on the other hand, were relatively complex where the

animated region changed its shape significantly during the course of the animation;

this allowed us to test the robustness and effectiveness of the technique.

By adjusting the level of simplification and quantization of the original bounding

surface, we can control the quality of compression. Figure 11 shows snapshots

from the animations obtained after applying different amounts of simplification.

The quality of the result deteriorates as the amount of simplification is increased.

Another factor that affects the quality of compression is the initial sampling of

the animation. The temporal sampling in the human video was poor (15 frames

per second), causing more artifacts in regions of large motion. This highlights a
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Table 1. Comparison of compression results. Size is the size of the compressed animation. Ratio

is the (compression) ratio of the animation’s original size to its compressed size.

Technique Human(3.2MB) Disc(957KB) Jello(5.6MB)
320×240×336 320×240×100 320×240×590

Compressed Size(KB) Ratio Size(KB) Ratio Size(KB) Ratio
MPEG 1102.0 2.9 206.0 4.6 1530.0 3.6
MRLE 1200.0 2.7 170.0 5.6 971.0 5.72
GZIP (Lossless) 78.0 41.8 17.5 54.7 122.0 45.6
GZIP (Lossy) 21.0 151.4 4.1 233.4 25.7 216.3
Simplification+Edgebreaker 16.8 189.2 3.7 378.0 19.3 288.1

Fig. 10. These graphs show a comparison of the compression ratios (original to compressed size)

obtained via different techniques. The original size of each animation is indicated below its graph.
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limitation of our technique: it is sensitive to the velocity of motion in the animation.

A better iso-surface extraction procedure should help in alleviating this problem.

Fig. 11. Comparison of animations obtained by applying different amounts of simplification. The

first row shows four frames from the original animation. The subsequent rows show the same
frames from simplified versions of the animation. The simplification (expressed as the ratio of the
number of triangles in the simplified mesh to that in the original mesh) is 5%, 1% and 0.5% in the

2nd, 3rd and 4th rows respectively.

We also built a tool for visualizing the bounding surface extracted from the

animation. Figure 1(b,c,d,e) shows the visualization of the animation. We show

the clipped bounding surface in 3D. The interior of the surface and the clipping

plane are visible. The cross-section of the surface intersecting the clipping plane is

same as the bounding curve of the animated region.

8. Conclusion

We have presented a technique that leverages the power of 3D compression and

simplification, for the task of compressing cel animations. By making use of surface

simplification techniques, we have provided a multi-resolution approach to cel ani-

mation compression. The iso-surface extraction procedure demonstrates the adap-

tation of existing techniques to black and white voxels. We have also devised an

improved capping technique for computing cross-sections of 3D surfaces, which

successfully deals with the problem of overlapping triangles generated as a result

of simplification. Additionally, it runs on standard graphics hardware, allowing

real-time playback of the animation.
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We believe that this technique should also be applicable to other application

domains. Medical imaging and segmentation is one such area where our technique

could be used to segment out and compress 3D shapes of organs from 2D slices.

Other possible applications are compression of weather-visualization data, and web-

based instruction manuals and tutorials containing schematic explanations.
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