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Figure 1: Animating texture using a flow field. Shown are keyframes from texture sequences following a sink.

Abstract

We present a novel technique for texture synthesis using optimiza-
tion. We define a Markov Random Field (MRF)-based similarity
metric for measuring the quality of synthesized texture with respect
to a given input sample. This allows us to formulate the synthe-
sis problem as minimization of an energy function, which is opti-
mized using an Expectation Maximization (EM)-like algorithm. In
contrast to most example-based techniques that do region-growing,
ours is a joint optimization approach that progressively refines the
entire texture. Additionally, our approach is ideally suited to allow
for controllable synthesis of textures. Specifically, we demonstrate
controllability by animating image textures using flow fields. We al-
low for general two-dimensional flow fields that may dynamically
change over time. Applications of this technique include dynamic
texturing of fluid animations and texture-based flow visualization.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image Gener-
ation; [.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—color, shading, shadowing, and texture.

Keywords: Texture Synthesis, Energy Minimization, Flow Visual-
ization, Texture Animation, Image-based Rendering.

1 Introduction

Synthesis of novel photo-realistic imagery from limited example
input is of wide importance in computer graphics. Many example-
based synthesis approaches rely on the presence of texture. Texture

refers to the class of imagery that can be categorized as a portion of
an infinite pattern consisting of stochastically repeating elements.
This inherent repeatability present in textures is the key behind
texture synthesis techniques. These techniques generate output tex-
tures that are larger in size than the input sample but perceptually
similar to it. Researchers have also extended these techniques to
allow for controllable synthesis in the presence of constraints.

Texture synthesis techniques can be broadly categorized into lo-
cal region-growing methods and global optimization-based meth-
ods. Local methods grow the texture one pixel or patch at a time
with the goal of maintaining coherence of the grown region with
nearby pixels [Efros and Leung 1999; [Wei and Levoy 2000} [Efros
[and Freeman 2001]). In such approaches, small errors can accumu-
late over large distances leading to inconsistencies in the synthe-
sized texture. On the other hand, global methods evolve the entire
texture as a whole, based on some criteria for evaluating similarity
with the input. Most existing global approaches either model only
pixel-to-pixel interactions that may be insufficient to capture large
scale structures of the texture [Heeger and Bergen 1995} Paget and|

Longstaff 1998]), or lead to complex formulations that are difficult

to optimize [[Portilla and Simoncelli 2000} [Freeman et al. 2002].

We present an approach for texture synthesis that is based on op-
timization of texture quality with respect to a similarity metric. This
similarity metric is motivated by the Markov Random Field (MRF)-
based similarity criterion used in most local pixel-based synthe-
sis techniques. Our contribution is to merge these locally defined
similarity measures into a global metric that can be used to jointly
optimize the entire texture. This global metric allows modeling of
interactions between large neighborhoods; nevertheless, it can be
optimized using a simple iterative algorithm with reasonable com-
putational cost.

The MRF property of textures requires that locality and station-
arity be satisfied. Locality implies that the color at a pixel’s location
is dependent only on a neighborhood of pixels around it, while sta-
tionarity means that this dependency is independent of the actual
location of the pixel. Exploiting this property, one can measure en-
ergy of the synthesized texture with respect to the input texture by
comparing local neighborhoods in the two textures. The energy of
a single synthesized neighborhood is defined as its distance to the
closest neighborhood in the input. The total energy of the synthe-



sized texture is then equal to the sum of energies over individual
neighborhoods. Texture synthesis proceeds by optimizing this fex-
ture energy using an iterative algorithm similar to the well-known
Expectation Maximization (EM) algorithm [McLachlan and Krish-
nan 1997). This optimization procedure improves the entire texture
through successive iterations of the algorithm. This form of pro-
gressive refinement of textures can potentially be very useful in
situations that demand fast or real-time computations with level-
of-detail aspects, e.g., video games.

A unique aspect of our technique is that it is intermediate be-
tween pixel and patch based methods. The neighborhood size used
to define texture energy determines the granularity at which synthe-
sis is performed. We begin synthesis using large neighborhood sizes
(~ 32 x 32 pixels), which allows large scale elements of the texture
to settle coherently in the output. We then further refine the texture
using smaller neighborhood sizes (16 x 16, 8 x 8, etc). The use of
large neighborhoods gives our technique a patch-based flavor, but
these patches are not merely copied over. Instead each pixel value is
allowed to deviate differently from the input patch depending upon
weights and overlaps, giving it a pixel-based flavor.

A significant feature of our optimization-based approach is that it
directly supports controllable synthesis of textures. This is achieved
by adding a simple extension that augments the texture energy with
a control energy term, which measures the consistency of the syn-
thesized texture with the control criteria. We specifically demon-
strate controllability by synthesizing texture sequences that follow
a given flow field. The flow field must be a two-dimensional vector
field that may be dynamically changing over time. Many textures
like water, fire, smoke, etc, are visual manifestations of phenom-
ena that can be physically described as fluid flow. One can envision
using our technique as a rendering mechanism in conjunction with
fluid simulation techniques, which usually generate flow fields as
output. Another interesting application is flow visualization using
arbitrary textures. Our technique synthesizes texture sequences that
animate the input texture as guided by the given flow field. Hence,
it facilitates flow visualization using a rich variety of textures.

2 Related Work

There has been a plethora of work towards synthesizing textures
from example inputs. Local region-growing techniques synthesize
the texture one pixel or one patch at a time. Among them, patch-
based techniques [Efros and Freeman 2001} |Liang et al. 2001} |Co-
hen et al. 2003 |[Kwatra et al. 2003;|Wu and Yu 2004]] are generally
more successful at synthesizing high quality textures as they can
maintain global structure of the texture well. On the other hand,
pixel-based methods [DeBonet 1997; |[Efros and Leung 1999; [Wei
and Levoy 2000]] are more amenable to constrained synthesis as
they have control over individual pixel values. Our technique is in-
termediate between pixel and patch based methods and combines
the advantages of both.

Global synthesis methods have usually employed matching of
statistical properties like histograms and wavelet coefficients be-
tween input and output textures [Heeger and Bergen 1995] |Por-
tilla and Simoncelli 2000]]. There has also been previous work that
makes use of optimization over MRFs for synthesis. Paget and
Longstaff [1998] use local annealing over a multi-scale MRF for
texture synthesis. They consider only pixel-to-pixel interactions. In
contrast, our technique uses an EM-like approach for optimization
and can handle interactions between large neighborhoods. Free-
man et al. [2002] use belief propagation over an MRF for super-
resolution. They also consider interactions across large neighbor-
hoods. However, theirs is a fully discrete optimization while our
approach is semi-discrete-continuous, which leads to a simpler as
well as more flexible optimization algorithm. In image analysis,
Jojic et al. [2003]] use a distance metric similar to our texture en-

ergy metric for computing image epitomes. Fitzgibbon et al. [2003]]
also use a similar metric as texture prior for image-based render-
ing, while Wexler et al. [2004] use it for hole-filling in video. [Wei
and Levoy 2002] is a global pixel-based approach where non-causal
neighborhoods are used to simultaneously determine each pixel of
the evolving texture; we, on the other hand, directly combine these
neighborhoods as patches within our optimization.

Although most work in texture synthesis has focussed on uncon-
strained synthesis, there has also been some research on adding user
control to these methods. Ashikhmin [2001] allows a user to spec-
ify large scale properties of the output texture through a painting-
like interface. Efros and Freeman [2001] perform texture trans-
fer on arbitrary images by matching correspondence maps. Hertz-
mann et al. [2001] learn filtering and painting operations from ex-
ample input-output pairs, which are then applied to new inputs.
Zhang et al.[2003|] synthesize progressively varying textures by
identifying and manipulating textons. Neyret [2003] applies tex-
tures to animated fluids through a blend of advection and regener-
ation of the original texture. The goals of their work and our flow-
guided synthesis method are similar, but we can handle a larger
class of structured as well as stochastic textures.

Techniques for synthesizing and controlling textures have also
been extended to the video domain. Even though we focus on im-
age textures, controllable temporal texture synthesis is relevant in
the context of our flow-guided animation technique. In their video
textures work, Schddl et al. [2000]] blend multiple videos at vary-
ing speeds to control the speed of the synthesized video. Doretto
and Soatto [2003] edit the speed, intensity, and scale of video tex-
tures by editing parameters of a Linear Dynamical System. Bre-
gler et al. [[1997] and Ezzat et al. [2002] use speech to control facial
animation synthesis from video data. Bhat et al. [2004] provide an
interactive system for editing video by specifying flow lines in the
input and output sequences. The goal of their work is similar to
ours in that low-level control (in the form of flow) is applied to syn-
thesize new video. However, our texture synthesis algorithms dif-
fer completely. Our synthesis technique can handle arbitrary time-
varying flow fields but uses image textures as input. Their tech-
nique, on the other hand, can handle only stationary flow fields but
focuses on video.

3 Texture Similarity and Synthesis

We now describe the texture energy metric that measures similar-
ity of the synthesized (output) texture to the input sample. We de-
fine this global energy in terms of similarity of local neighborhoods
in the output to local neighborhoods in the input. Note that local
pixel-growing techniques use similar matching of neighborhoods to
maintain local coherence. We, however, combine these local com-
parisons into a global metric that defines a quality measure for the
entire texture. We postulate that a sufficient condition for a given
texture to be similar to the input sample is that all neighborhoods
in the given texture be similar to some neighborhood in the input.
Of course, the neighborhood size should be large enough to capture
repeating elements of the texture. We define the energy of a single
neighborhood to be its distance to the closest neighborhood in the
input. The total energy of the texture is then equal to the sum of
energies over individual local neighborhoods in the texture.
Formally, let X denote the texture over which we want to com-
pute the texture energy and Z denote the input sample to be used
as reference. Let x be the vectorized version of X, i.e., it is formed
by concatenating the intensity values of all pixels in X. For a pre-
specified neighborhood width w, let .4}, represent the neighborhood
in X centered around pixel p. Then, the sub-vector of x that corre-
sponds to the pixels in .4}, is denoted by x,,. Further, let z,, be the
vectorized pixel neighborhood in Z whose appearance is most sim-
ilar to x, under the Euclidean norm. Then, we define the texture
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Figure 2: Schematic demonstrating our texture similarity metric.
The energy of neighborhood x,, centered around pixel p is given by
its distance to the closest input neighborhood z,. When two neigh-
borhoods x,, and x,; overlap, then any mismatch between z,, and z,
will lead to accumulation of error in the overlapping region (shown
in red).

energy over X to be

E(x{zp}) = Y, IIxp— 2> (M
pext

This is shown schematically in Figure 2] We only consider neigh-
borhoods centered around pixels in a set XT C X for computing the
energy. We do so because in practice, it is redundant and computa-
tionally expensive to compute the energy over all neighborhoods in
the texture. Therefore, we pick a subset of neighborhoods that suffi-
ciently overlap with each other and define the energy only over this
subset. This is also advantageous with respect to our synthesis al-
gorithm (explained in the next paragraph); choosing neighborhoods
located on a sparse grid ensures that only a small number of these
neighborhoods simultaneously affect a given pixel. This prevents
the synthesized texture from getting too blurry in regions where
there is a mismatch between overlapping neighborhoods. We have
empirically chosen X' to consist of neighborhood centers that are
w/4 pixels apart, where w is the width of each neighborhood.

We can use the above formulation to perform texture synthesis by
iteratively refining an initial estimate of the texture, decreasing the
texture energy at each iteration. During each iteration, we alternate
between x and {z,, : p € X"} as the variables with respect to which
(I) is minimized. Given an initialization of the texture, x, we first
find the closest input neighborhood z,, corresponding to each output
neighborhood x,,. We then update x to be the texture that minimizes
the energy in ((I)) — note that we treat x as a real-valued continuous
vector variable. Since x changes after this update step, the set of
closest input neighborhoods {z,, } may also change. Hence, we need
to repeat the two steps iteratively until convergence, i.e., until the
set {z,} stops changing. If x is initially unknown, then we bootstrap
the algorithm by assigning a random neighborhood from the input
to each z,. Algorithm [I| describes the pseudocode for our texture
synthesis algorithm.

Our approach is algorithmically similar to Expectation-
Maximization (EM) [McLachlan and Krishnan 1997]]. EM is used
for optimization in circumstances where, in addition to the desired
variables, the parameters of the energy function being optimized
are also unknown. Therefore, one alternates between estimating the
variables and the parameters in the E and the M steps respectively.
In our case, the desired variable is the texture image, x, while the
parameters are the input neighborhoods, {z, }. The two steps of our
algorithm can be thought of as E and M steps. The estimation of x
by minimizing the texture energy in (I corresponds to the E-step,

Algorithm 1 Texture Synthesis
0

2% «— random neighborhood in Z Vp € X*
for iteration n =0 : N do
X" argminy E; (x; {Z)})

ZZ“ « nearest neighbor of XZ+1 inZ vpext

itz =2 Vpe X' then
x «— x"t1
break
end if
end for

while finding the set of closest input neighborhoods, {z,}, corre-
sponds to the M-step.

In the E-step, we need to minimize (1)) w.r.t. x. This is done by
setting the derivative of (I) w.r.t. x to zero, which yields a linear
system of equations that can be solved for x. One can think of each
term in (T) as the potential resulting from a force that pulls the pix-
els in x,, towards pixels in z,. Minimization of this potential cor-
responds to bringing each sub-vector x,, as close to z, as possible.
If neighborhoods centered around different pixels p and g overlap
with each other, then the corresponding sub-vectors x,, and x; will
also contain common pixels. Each such common pixel is pulled to-
wards possibly different intensity values by z,, and z,. The outcome
of the minimization procedure is to assign an intensity value to the
common pixel that is equal to the average of the corresponding val-
ues in z,, and z,. Note that for a quadratic E,(x;{z,}) (as in (1)),
this minimization is equivalent to computing the expected value (or
mean) of x under the following probability distributio

p(x;{zp}) o< exp(—E;(x;{zp}))-

The M-step of our algorithm minimizes (I)) with respect to the
set of input neighborhoods, {z,}, keeping x fixed at the value es-
timated in the E-step. This requires us to solve a nearest neighbor
search problem: for each x,, we need to find its nearest neighbor
z, from the input. To accelerate this search, we use hierarchical
clustering to organize the input neighborhoods into a tree struc-
ture [Johnson 1967; [Elkan 2003 Dellaert et al. 2005]. Starting at
the root node, we perform k-means clustering (with k = 4) over all
input neighborhoods contained in that node. We then create & chil-
dren nodes corresponding to the £ clusters and recursively build the
tree for each of these children nodes. The recursion stops when the
number of neighborhoods in a node falls below a threshold (1%
of total in our implementation). In order to handle large neighbor-
hood sizes, we employ a memory-efficient adaptation that does not
explicitly store neighborhood sub-vectors at leaf nodes. Instead, it
records just the neighborhood’s location in the input image and the
corresponding sub-vectors are constructed on the fly, as necessary.

Intuitively, our algorithm tries to find good relative arrangements
of input neighborhoods in order to synthesize a new texture. Dur-
ing each iteration, the M-step chooses an arrangement of input
neighborhoods that best explains the current estimate of the tex-
ture. The averaging in the E-step allows overlapping neighborhoods
to communicate consistency information among each other: neigh-
borhoods that don’t match well with each other cause blurring in
the synthesized texture. This blurred region represents a transition
between two inconsistent regions and may be significantly different
in appearance from the input neighborhoods that determine it. This
allows the next iteration of the M-step to replace the input neighbor-
hoods corresponding to this region with ones that are more consis-

IFor exact EM, the E-step should also compute the covariance of x in
addition to its mean. Our formulation only computes the mean as it is based
on an energy function and not a probability distribution. Consequently, we
do not perform exact EM.



tent with each other, i.e., neighborhoods that carry out the transition
but get rid of the blurring.

Gradient-based Energy: We can generalize the energy function
defined in () to incorporate other characteristics of the texture be-
sides color. For example, in order to use image gradients as an ad-
ditional similarity metric, we define the energy as

Ei(x;{zp}) = 2 pr_ZpHZ“':u Z ||Dxp—szH2,
pext pext

where D is the differentiation operator and u is a relative weight-
ing coefficient (4 = 10 in our experiments). Minimizing this func-
tion w.r.t. X requires us to solve a linear system very similar to the
Poisson equation (see [Perez et al. 2003]] for image editing applica-
tions). Even though we have experimented with color and gradient,
one could use other energy functions of the form || y/(x,) — y(z,) |
where y(x,) measures some property of the texture neighborhood
Xp. The only requirement is that ¥ should be optimizable w.r.t. X.

3.1 Robust Optimization

The quadratic texture energy as defined in (I) performs least
squares estimation of x w.r.t. z,. This causes outliers — z,, that are
not very close to X, — to have an undue influence on x. Also, it is
desirable to not change x,, by much if it is already very close to z,.
This can be accomplished by using a robust energy function: we
replace the squared term ||x, — z,||* in (1) with ||x, —z,||", where
r < 2. This energy function belongs to a class of robust regressors,
called M-estimators, that are typically solved using iteratively re-
weighted least squares (IRLS) [Coleman et al. 1980]. IRLS is an
iterative technique in which a weighted least squares problem is
solved during every iteration. The weights are adjusted at the end
of the iteration, and this procedure is repeated. Our synthesis algo-
rithm naturally lends itself to IRLS: before applying the E-step, we
choose, for each neighborhood .4}, a weight @, = ||x, — 2,2 —
in our implementation, we have used » = 0.8. We then minimize the
modified energy function:

Ei(x;{zp}) = Z wp||xp_zp‘|2~
pext

Additionally, we apply a per pixel weight within the energy term
for each neighborhood, based on a Gaussian fall-off function. This
ensures that pixels closer to the center of the neighborhood have a
greater bearing on the texture than those far away.

3.2 Multi-level Synthesis

We use our algorithm in a multi-resolution and multi-scale fash-
ion. We first synthesize our texture at a coarse resolution, and then
up-sample it to a higher resolution via interpolation. This serves as
the initialization of the texture at the higher resolution. Also, within
each resolution level, we run our synthesis algorithm using multiple
neighborhood sizes in order from largest to smallest. Such a multi-
level approach is helpful because it allows the finer scale synthesis
to begin with a good initialization of the texture, thereby avoiding
undesirable local minima. Intuitively, at a lower resolution, texture
neighborhoods are spatially close to each other and it is easier to
propagate consistency information across the entire texture. Also,
by starting with a large neighborhood size, we are able to synthe-
size large scale structures of the texture first. Subsequently, synthe-
sis with smaller neighborhood sizes removes fine scale errors from
the texture. In our experiments, we generally use three resolution
levels and successive neighborhood sizes of 32 x 32, 16 x 16, and
8 x 8 pixels — at each resolution, only those neighborhood sizes are
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Figure 3: Texture energy plotted as a function of number of iter-
ations. Also shown is the synthesized texture after each resolution
and scale (neighborhood size) level. Level 1 shows the random ini-
tialization. Level 2 shows synthesis at (1/4 resolution, 8 x 8 neigh-
borhood), Level 3: (1/2, 16 x 16), Level 4: (1/2, 8 x 8), Level 5: (1,
32 x 32), Level 6: (1, 16 x 16), Level 7: (1, 8 x 8).

used that fit in the the corresponding (potentially sub-sampled) in-
put image.

In Figure 3] we plot the energy of the synthesized texture as a
function of number of iterations. The iterations for various resolu-
tion and scale levels are concatenated in the order of synthesis —
we normalize the energy at each level by the number of pixels and
neighborhood size. We also show the synthesized texture at the end
of each synthesis level. The texture energy generally decreases as
the number of iterations increase, thereby improving texture qual-
ity. Note that intermediate iterations produce textures that appear to
be coarse-scale approximations of the final texture. One can poten-
tially exploit this progressive refinement property to synthesize tex-
tures in a level-of-detail fashion. The jumps seen in the energy plot
are due to change of synthesis level — resolution or neighborhood
size. They are in fact desirable because they help the algorithm to
get out of poor local minima.

4 Controllable Synthesis

We perform controllable texture synthesis within our framework by
augmenting the texture energy function with an additional term rep-
resenting the control criteria. Optimization then proceeds by min-
imizing the total energy sum at each iteration. A simple example
of adding control is to perform soft-constrained synthesis where
the desirable color values are specified at certain pixel locations.
We can express the energy representing this criterion as the sum
of squared distances between the synthesized and specified pixel

values:
Ec(x;x) = 3, (x(k) —x°(k))?, ()
ke€
where % is the set of constrained pixels and x¢ is a vector contain-
ing the specified color values. One can use a more general energy

function of the form E.(x;u) where u represents a control vector.
We then optimize the total energy, defined as

E(x) =E/(x;{zp}) + AE.(x;u),

where A is a relative weighting coefficient. The control term,
E.(x;u), attempts to satisfy the control criteria in the synthesized



texture, while the texture term, £;(x;{z,}), tries to ensure that it is
a representative sample of the input texture. The minimization of
E(x) is done in a similar fashion as that of E;(x;{z, }). We modify
the E and M steps to account for E.(x;u) as follows.

In the E-step, we solve a new system of linear equations that
results from the differentiation of E(x) w.rt. x. For the soft-
constrained synthesis example described above, this corresponds to
taking a weighted average of the specified pixel values and those
corresponding to the output of texture synthesis.

We also modify the M-step that estimates {z,}. Even though
E.(x;u) does not directly depend on {z,}, they are indirectly re-
lated to each other through x. We exploit the fact that each synthe-
sized neighborhood x, will be similar to z, after the E-step. Hence,
when searching for z,, we look for input neighborhoods that are
already consistent with the control criteria. The intuition is that if
zp has low control energy, then so will x,,. For each x,, we find the
z,, that minimizes |[x,, — z,||> + AE(y;u), where, y is constructed
from x by replacing its pixels in the neighborhood .4, with z,,, i.e.,

plg—p+w/2) g€
y(g) =
x(q) otherwise,

where w = (wy,w)) encodes the neighborhood width in both spatial
dimensions. As an example, in the case of soft-constrained synthe-
sis, the new M-step searches for z,, that minimizes ||x, — z,|> +
Allzy — x5, 12, i.e., an input neighborhood whose pixel values at the
constrained locations are already close to the specified ones. Algo-
rithm 2] describes the pseudocode for controllable texture synthesis.

Algorithm 2 Controllable Texture Synthesis
0

29 «— random neighborhood in Z Vp € X7
for iteration n =0 : N do
X"t — argminy [E; (x; {2} }) + A Ec(x; u)]
ZZ“  argminy [Ixp = V|* +AEc(y;u)], v is a neighbor-
hood in Z and y is the same as x except for neighborhood x,
which is replaced with v
if z;‘,“ =1z Vp € X' then
x — x"t1
break
end if
end for

4.1 Flow-guided Synthesis

We have experimented with flow as a control criterion: we synthe-
size texture sequences that move according to a given input flow
field. To this end, we augment our energy function with a control
term that measures consistency of the sequence with the given flow.

Let f denote the input flow field using which we want to animate
the texture. fis a sequence of 2D flow fields (f1, f3,-.. f1—1), where
L is the length of the texture sequence being synthesized, and f; is
the desirable flow field between frame i and i + 1. For a given pixel
location p in frame i, f;(p) gives its location in frame i + 1 after it
has been transported through the flow field. Let X; and X;; denote
two consecutive frames of the sequenceﬂ Then we want the pixels
in X; and X;; | that are related via f;, to be similar in appearance.
Pixels (p,i) and (g,i+ 1) are said to be related via f; if ¢ = fi(p).
Intuitively, this means that we want pixels to retain their appearance

2For a texture sequence, X is 3D and X; represents a 2D slice within X.
We denote pixels in X as (p,i) where p is the pixel location in 2D and i is
the frame number.

as much as possible while moving along the flow field. Hence, we
define the control energy function to be

Ec(X;f): 2 Z (X(p,i)—X(q,i+1))27 q:fi(p)' (3)

icl:L—1 (pi)eX;

We perform synthesis in a frame-by-frame fashion. We are able
to do so because texture neighborhoods are 2D, hence any coupling
between neighborhoods in different frames occurs only via the flow
field. During synthesis of frame i + 1, all pixels of frame i, denoted
by x(p,i) in (3), are already known. Consequently, the flow energy
function in has a very similar form to the one defined in (2).
Hence, we can treat it as a soft-constrained synthesis problem with
the pixels of frame i serving as the constraint vector. In particular,
we synthesize the first frame of the sequence using regular texture
synthesis. For each subsequent frame, the desirable pixel values at
each location are obtained by warping the previous frame using its
flow field. The warped previous frame also acts as an initialization
for the current frame. We then synthesize the frame using Algo-
rithm 21

Our technique is well-suited for flow-guided synthesis because
it exercises flexibility in choosing the granularity at which different
texture elements are synthesized — achieved through the use of mul-
tiple neighborhood sizes. Also, modulation of the energy function
with appropriate weights allows for additional control over individ-
ual pixel values. Consequently, our technique can be regarded as
intermediate between patch and pixel based methods. Among exist-
ing techniques, pixel-based methods are more flexible than patch-
based methods and one could extend them for flow-guided synthe-
sis. However, they are known to generate lower quality results than
patch-based techniques. On the other hand, patch-based methods
affect large sets of pixels at the same time. Hence, they may be more
difficult to adapt for flow-guided synthesis which requires control
over individual pixel values. Our technique is successful because it
combines the advantages of both pixel and patch based paradigms.

5 Results

Figure[dshows some of our results for image texture synthesis. Our
technique works well for a wide range of textures varying from
stochastic to structured, as shown in the figure. In Figure[5] we show
comparisons with other techniques. The results of our optimization-
based approach are at par with state-of-the-art patch-based synthe-
sis techniques like image quilting and graph cuts, and compare fa-
vorably against pixel-based techniques like that of Wei and Levoy.

We demonstrate our controllable synthesis algorithm by animat-
ing textures using flow fields. Figure [6] shows a sampling of the
flow fields used in our experiments. It also shows the variability in
the distortion that texture elements undergo under the effect of dif-
ferent flows. We have used an interactive vector field design tech-
nique [Zhang et al. 2004] to create most of our flows. In Figure /]
we compare the result of our approach to that obtained by applying
a simple warp based on a rotational flow field to a keyboard tex-
ture. Warping leaves holes in the texture and does not preserve the
appearance of texture elements. On the other hand, our technique
maintains the shape as well as orientation of the keys as it rotates
the texture. We can use our technique to synthesize texture anima-
tions for time-varying as well as stationary flow fields. We show
results for both cases in the supplementary video.

The computational complexity of our technique is dominated by
nearest neighbor search (M-step). It is linear in the number of near-
est neighbor calls, which are O( %3 ) per iteration — 7, is the number
of pixels in the output texture while w is the width of the neighbor-
hood. Theoretically, the time taken per call is O(w?). In practice,
however, we found it to be less than that — the exact dependence is
not known to us as it is governed by MATLAB’s vectorized matrix
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Figure 4: Results for image texture synthesis. For each texture
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TEXTURE-OPTIMIZATION

Figure 5: Comparison with various other texture synthesis techniques. Results for other techniques were obtained from their web pages.

multiplication algorithm. The implication is that execution is faster
for larger w. Actual execution time per iteration at different reso-
lution levels (averaged over the various neighborhood sizes used
within that resolution) was: 2.5 seconds at 64 x 64, 10 seconds at
128 x 128, and 25 seconds at 256 x 256. Usually 3-5 iterations per
resolution/scale level were found to be enough. Average total ex-
ecution time for multi-level synthesis of 256 x 256 textures was
7-10 minutes, while for 128 x 128 textures, it was 1-3 minutes. For
flow-guided synthesis, each frame was synthesized only at a single
resolution. Execution time per frame was between 20-60 seconds.
All timing results are reported for our unoptimized MATLAB code,
running on a dual-processor 2.4GHz PC with 2GB RAM.

6 Summary & Future Work

We have presented a novel optimization-based technique for texture
synthesis. Our results for image texture synthesis are comparable to
the state-of-the-art. We define a texture energy function that allows
us to quantitatively measure quality of the synthesized texture. Our
synthesis algorithm iteratively improves this texture quality and is
therefore suitable for progressive refinement of texture. We can eas-
ily extend our technique to perform controlled synthesis by adding
new terms to the energy formulation. We demonstrate this by pre-
senting a technique for flow-guided animation of image textures.

A limitation of our technique is that because it tries to decrease
the energy at each iteration, it can get stuck in local minima. This
is manifested as blurring or misalignment of texture elements. It
happens because spatially distant neighborhoods communicate with
each other only through intermediate overlapping neighborhoods.
Multi-level synthesis partially alleviates this problem by bringing
distant neighborhoods closer to each other via down-sampling.

As future work, we want to extend our flow-guided synthesis
technique to handle video textures. Also, we wish to explore other
types of control criteria besides motion, e.g., illumination, shape,
etc. Another research direction is to experiment with other texture
properties besides color and gradient in defining texture energy.
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