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Abstract—We present a simple algorithm for complete motion especially when there is no collision-free path.
planning using deterministic sampling. Our approach relies
on computing a star-shapedroadmap of the free space. We Main Results: We present a new motion planning algo-
partition the free space into star-shaped regions such that a \jihm for robots with translational and rotational dof. Our work

single point called the guard can see every point in the star- . . L. . .
shgpedpregion. The res%lting set of guardsyc%pture the intra- COMbines the simplicity of sampling-based approaches with

region connectivity. We capture the inter-region connectivity the completeness of exact algorithms. We compute a sampling
by computing connectors that link guards of adjacent regions. of the free space in a deterministic manner using an adaptive
We use the guards and connectors to construct a star-shapedyvolumetric grid. We generate sufficient number of samples to
roadmap of the free space. We present an efficient algorithm .antre the connectivity of the free space, as long as there is

to compute the roadmap in a deterministic manner without .
computing an explicit representation of the free space. We show no tangential contact on the boundary of the free space. As a

that the star-shaped roadmap captures the connectivity of the result, we are guaranteed to find a collision-free path if one
free space while providing sufficient information to perform exists or detect non-existence of any collision-free path.

complete motion planning. Our approach is relatively simple 0 o approach is based on the notionstdr-shapedness
implement for robots with translational and rotational degrees

of freedom (dof). We highlight the performance of our algorithm region R is star-shapedf there e?(ist'ls a poinb € R*, called
on challenging scenarios with narrow passages or when there is @ guard that can see every point in the region, i.e., the

no collision-free path for low-dof robots. straight line segmenbp does not intersect the boundary of
R. We show that star-shapedness provides a congraxiding
. INTRODUCTION of the connectivity of a region. We decompose the free space

into star-shaped regions without computing an explicit repre-
Motion planning is a fundamental problem in roboticsentation of the free space. The resulting set of guards capture
and has been extensively researched for more than thtlke intra-region connectivity for each region. Furthermore, we
decades. We address the problem of planning the path ofapture the inter-region connectivity by computcmnnectors
robot navigating through a static environment. At a brodtiat connect guards of adjacent regions. We use these guards
level, prior motion planning algorithms can be classified intand connectors to construcstar-shapedoadmap of the free
exact criticality-based algorithms and approximate approactesmce.

[7] Some of the early work on Criticality-based algorithms The under|ying Computation in our p|anner is the star-
includes exact free-space computation, roadmap methods, gRélped test. We present a simple and efficient algorithm that
exact cell decomposition methods. These approaches perf/§es linear programming and interval arithmetic to perform
completeplanning — they find a collision-free path if onethis test. Unlike prior criticality-based methods, we are able
exists, or guarantee that there is no collision-free path fro avoid exact computation of roots of algebraic equations
the initial to the goal configuration. However, these a|gOI’ithn’}§1d are able to perform conservative Star-shaped tests for
have a high theoretical complexity and are difficult to implegarly termination. As a result, our algorithm is relatively
ment in practice for general robots. As a result, most practicample to implement. In the worst case, the complexity of
algorithms for complete planning have been restricted to rigiflir algorithm can increase exponentially with the number
planar objects, 3D convex polytopes or special objects (edf. dof. We also compare some features of our approach
ladders, discs or spheres). Given the underlying complexity @fth approximate cell-based decomposition and randomized
exact motion planning, a number of approximate approachgsmpling based algorithms. We have implemented our planner
have been have been proposed. These include approximaig demonstrated its performance to compute collision free
cell decomposition, potential-field methods and randomizgfths for low dof robots in challenging scenarios: when there

sampling based methods. The approximate cell decompositigia narrow-passages in free space or no collision-free paths.
methods can be madesolution completgorovided the resolu-

tion parameters are chosen appropriately. Many of the currédrganization: The rest of the paper is organized in the
planners compute a probabilistic roadmap using technigdetowing manner. We give an overview of related work in
based on randomized sampling [5]. These methods are simpletion planning in Section II. In Section IIl, we give a brief

to implement and have been successfully applied to high-dmferview of configuration space formulation and present the
motion planning problems in different applications. Howevenotation used in the rest of the paper. We present star-shaped
the approximate algorithms may not guarantee completenassdmaps in Section IV. We present our deterministic sam-



pling algorithm in Section V and describe its implementatiooan be expressed in terms of a collectioncofitact surfaces

in Section VI. We compare our approach with prior approachéS-surfaces), each being the locus of configurationsdoét

in Section VIl and discuss a few limitations. which a specific feature ofd is in contact with a feature of
Il. PREVIOUS WORK B. We refer the reader to [6] for a detailed explanation of the

. : . _ ..__configuration space formulation and C-surfaces.
Motion planning has been extensively studied in the I|ter<';1r-9¥vg P

. e use two important properties 6f-surfaces for generat-
ture for more than three decades. A comprehensive survey, star-shaped roadmaps:

motion planning results is presented in [6], [7]. Superset property. The setl’ of C-surfaces is a superset of
A. Exact Approaches the boundarydF of free space, i.e9F C [J{y; € T}. T

There are two main approaches for exact or Comp|es§@fines an arrangement aokj is a subset of the cells in this
motion planning. These approaches are based on roadrgi@ngement. Each cell defines one connected component of
computation and cell decomposition. Examples of a roadmaf- ) . i )
based approach include the visibility graph method, retractiéifieéntation property : We can assign an orientation to each
approach [6], and the silhouette method [3]. Exact cell deco,ﬁ:surface. We explain this with an intuitive argument. Con-
position methods have been extensively studied for motig#fler aC-surfacey generated by the contact between a robot
planning and the first complete algorithm was proposed f§ature/1 and an obstacle featurg. Points onone side ofy
Schwartz and Sharir [10]. The details of the above methoB@rrespond to the case whefe has penetrated, and points
are quite involved and are not easy to implement. A number @ theother sidecorrespond to no overlap or contact between
complete algorithms have been proposed for restricted casedioftnd f2. We orienty by assigning a normal g to point in
motion planning problem — including rigid planar objects withhe direction of no overlap.
3dof, 3D convex polytopes, 3D polyhedral objects with onlf. Notation

translational dof, and special objects in 3D such as laddersyye use the following notation in the rest of the paper. We

discs, or balls [6]. use lower case bold letters suchyag to refer to points irR<.
B. Approximate Cell Decomposition and Sampling Based Ay use the symbaobq to refer to the line segment between
proaches the pointsp and q.

: : C denotes the configuration spade denotes the free space
A f al h Il - :
r_1umber of algorithms based on approximate ce deco_m OF denotes its boundary. The lettd C C denotes a

gion in the configuration spac&. denotes the set of’-

the configuration space into a collection of cells. They classi .
g b y urfaces that contribute to the boundary of @@bstacle.

the cells into three typeemptycells that lie completely in free o ;
space.full cells that are completely within C-obstacle, and A restriction of a setS' w.r.t another sef” is denoted as'

mixed cells that contain the boundary of the free space. TI‘?‘@K fﬂ;ﬁgﬁ;ﬁﬂi@sﬂ@g si?\:pglcci)f?r?ers:téxists a
set of empty cells provide a conservative approximation of the’. . -
Py b bp to € RY (called the origin) such thatpNy = {p} V p €

free space and are used for path computation. The approxin%?én. ; et L -
cell decomposition methods aresolution completei.e., they - CIV€N a star-shaped regid, let B* = o. Similarly, if a

can find a path if one exists provided the resolution paramet@¥NtP € &, tggent letp™ ':to g ted if th
are selected small enough [6]. They have been used for low>Ven a sets, wo pointsp, g € 5 are connected If there

dof robots. exists a path betweesp and g that lies inS. We use the
The probabilistic roadmap method (PRM) [5] is perhapghorthand notatiop —— ¢ to meanp andq are connected

the most widely used path planning algorithm for differerift S. The connectivity relation is symmetric. Given a roadmap

applications. It is relatively simple to implement and has bedfn undirected graph = (V, £)) and two vertices, w € V,

successfully used for motion planning of high dof robots 2, w means thav andw are connected iR, i.e., there

Since PRM-based algorithms sample the free space randorakists a path between and w consisting of a sequence of

they may fail to find paths — especially those passing througlges inE.

narrow passages. A number of extensions have been proposed IV. STAR-SHAPED ROADMAPS

to improve the sampling in terms of handling narrow passage

3n this section, we present the concept of a star-shaped
1], [16] or using visibility-based techniques [11]. All these ' . S
En]etrgod]s arqorogabilisticzgllly complete nge éxtgnsions of roadmap and show that it captures the connectivity of the free

space for complete motion planning. We use these properties
PRMs have been proposed that may be able to detect ngg star-shaped roadmaps to design a deterministic sampling
existence of a path [2].

algorithm in Sec. V.
[1l. PRELIMINARIES A. Star-shapedness

A. Configuration Space and Contact Surfaces Our approach is based on the notion of star-shapedness. A
We assume that the robgtis a rigid or an articulated object region R is star-shapedf there exists a poind € R, anorigin,
moving among stationary rigid obstacl8s We also assume that canseeevery pointp in the region, i.e., the straight line
that the geometry of bothl and B is accurately known. The segmentop does not intersect the boundary Bf The origin
free spaceF is the set of configurations at which does not is commonly referred to as guard It is easy to show that a
collide with B. The boundary ofF, denoted a$.F, consists star-shaped region is always connected. Moreover, every point
of those configurations afl at which A makes contact with in the region is connected to the guard along a straight line
B, but does not penetrate into the interior®f Therefore9F segment. Star-shapedness is thus a compact way of encoding



D. Connector Computation

In Step 2, we capture the inter-region connectivity. It suffices
to only consider paths between adjacent regidfsand R;
that cross their common boundaR;. We compute a poing
belonging toR;;. c is a connector. Since the regiols and
R; are star-shaped; is visible to the guards of?; and R;.
Hence,c connects the guards of two adjacent regions (see Fig.

(a) Star-shapedness (b) Star-shaped Test
Fig. 1. Left : This figure shows a star-shaped region (in white). I?(b))'
contains a guard that can see every point within the region. A pathe Roadmap Computation
between any two pointp € R andq € R is given bypo :: oq.
Right: If in a regionR, all C-surfaces are star-shaped w.rt a common In Step 3, we combine the guards and connectors to con-
pointo, then# N R is star-shaped w.r.b. struct a star-shaped roadméap of the free space (see Fig.
2(b)). R is an undirected graph. Lét andC denote the set of

the connectivity of a region. It provides a path between eveélards and connectors. The set of graph verticésis GUC.
point in the region and the guard. We exploit th|s_ propert¥.-n connector: connects two guardg; € G andgs € G
for motion planning. A path between any two POISE o g adjacent regions. This defines two graph edgeg:)

R andq € R is given bypo :: og where:: denotes path ;4 Let GUARDS(¢) denote th Th
concatenation (see Fig. 1(a)). We extend this idea to comp@ﬂq (gfc,ggr;)r;h gdgeE is defi(nceZd :2:0 e the setgs, ga}. The

a path between two arbitrary configurations in free space.
E={(c,g9)| ceC, ge GUARDS(c)}

B. Overall Approach
R is the undirected graptV, F, w) where the weight function

At a conceptual level, our approach computestaa-shaped ;. . R is defined as a distance between the edge vertices
decompositiorof the free space, i.e., it partitions into a set using a suitable metric (e.g. Euclidean).

of star-shaped regions. We present our algorithm to compute

the star-shaped decomposition in Sec. V. Based on sthr-Complete Path Planning

shapedness, we capture the intra-region connectivity. Howevergiven the star-shaped decompositiBnand the roadmap

we also need to take into account the inter-region connectivify, path planning becomes straightforward. fetind g re-

i.e. connectivity between points belonging to separate regiogpectively denote the start and goal configuration respectively.
We achieve this by computingonnectors®. Our approach assume they are connected. The star-shapedness property of

consists of the following steps: each region irt implies we can connegi andq to the guards
1) Compute a star-shaped decompositinof the free p* andg* respectively by straight line paths. We compute a
space into star-shaped regioRs path betweerp* and ¢* in the roadmapR based on graph

2) For every pair of adjacent regionB,(R;) in 3, compute search. The following theorem states that our motion planning
a pointc on the common boundary shared By and algorithm is complete.
R;. We refer toc as aconnector- it connects the guards

of R; and R;. THEOREM 1 A path exists between two poingsand q if
3) Construct a star-shaped roadnfapising the guards and and only if p and p* are connected inF, p* and q* are
connectors computed in Steps 1 and 2. connected inR, and g* and g are connected irF, i.e.,
We illustrate these steps in Fig. 2. Foo,
b———Pp
C. Star-shaped Decomposition and Guard Computation p PRGN g — p* R, q
Step 1 computes a star-shaped decomposition of the free q* LN q

space. The resulting set of guards constitutes a sampling of
the free space and we refer to it astar-shapedgsampling of Due to space limitations, we omit the proof. A detailed proof
the free space. The star-shaped sampling provides an implisigiven in [15].
description of the free space. An important consequence of the above theorem is the
following corollary which enables us to find a collision-free
p € F < p is visible to at least one of the guards. path.

The concept of star-shaped decomposition is related to T@@ROLLARY 1 Path Planning: if p P q, then
famous art gallery problem [9]. The art gallery problem is ’
concerned with finding the minimum number of guards that
can cover a region. In our context, computing a minimum
number of guards would be desirable, but not necessary.

1) There exists a straight line path betweenp and p*.
Similarly, there exists a straight line path betweeng
and qg*.

2) There exists a path betweerp* andg* in the roadmap
R.

1We borrow the termguard and connectorfrom [11] because these are 3) A path betweem and q is given bya :: § :: 3 where::

similar concepts. However, our definitions are different from the ones used in .
[11]. denotes path concatenation.



(a) Star-Shaped Decomposition (b) Star-Shaped Roadmap (c) Path Planning

Fig. 2. Star-shaped Roadmap: This figure shows how to construct a star-shaped roadmap and its application to path planéirapbstaele

is shown in gray while the free space is shown in white. We first compute a star-shaped decomposition of the free space (Fig. (a)). Each
region in the decomposition contains a guard (green star) that can see every point in the region. We connect guards of adjacent regions by
computing connectors (blue circles) on the common boundary between the two regions. The guards and connectors are used to create the

star-shaped roadmap as shown in Fig. (b). Fig (c) shows how a path is computed between twg @ndtg by connecting them to the
roadmap and finding a path along the roadmap.

We use the following corollary of Theorem 1 as a test fdstar-shaped Test Are all the surfaces ifi'; star-shaped w.r.t
non-existence of any collision-free path for complete motiom common poinb?
planning. See Fig. 1(b). IfR satisfies the above test, then we can
answer both the querie® contains a part ofF if and only if
COROLLARY 2 Path Non-Existence: If there is no path o € F. Moreover, if this is true, thetFy is star-shaped w.r.t
betweenp* and g* in the roadmapR, then there is no o. Formally, we have the following lemma:
collision-free path betweep and q

LEMMA 1 If there exists a poinb € R such that every
V. A DETERMINISTIC SAMPLING ALGORITHM ~ € Ty is star-shaped w.rto, then

In this section, we present an algorithm to compute a star-1) Free Space Existence queryFp # () < o € F
shaped roadmap by sampling the free space in a deterministi¢) star-shaped query If o € F then Fx is star-shaped
manner. W.r.t o.

A. Configuration Space Subdivision

The approach presented in Sec. IV relied on a star-shap’%@?ta”ed prq{of of_thel leTmﬁ IS glv?n In [1f5]' ing the st
decomposition of the free space. In practice, we do not have € present a simple techniqué for performing the star-

an explicit representation of and hence it is not possible to>2P€d testin Seg_\/_—E and to compilig in Se_c. V-F.
compute such a decomposition explicitly. In fact, an explic€. Adaptive Subdivision and Guard Computation

decomposition of the free space is not even required. Insteadwe generate an adaptive subdivision@fOur algorithm
we compute a subdivision of the configuration spacento  starts with a regiorR that bounds the boundary &%. It applies
regions 2 such that¥r = F N R is star-shaped. Such athe star-shaped test . If this test is satisfied, our algorithm
subdivision is sufficient for complete motion planning. sets the guard for the regioR to be the origin with respect

In Sec. V-C, we present a simple algorithm for computing, which 7, is star-shaped. Otherwise, if the star-shaped test
such a subdivision adaptively. Our algorithm relies on thgjis, the algorithm subdivides? into a set of sub-regions.
ability to perform two queries: Then the algorithm is recursively applied to the sub-regions.

1) Free Space Existence queryGiven a regionR, deter- Fig. 3(a) illustrates the subdivision algorithm in 2D.

mine if R contains a part of free space, i.Br # 0. D. Connector Computation

2) Star-shaped query Given a regionR, determine ifFg . . .
is star-shaped. The objective of connector computation is to determine

éf] the free space of two adjacent region8; and R;, are
nnected through a point on their common bound&yy.

other words, we wish to test i2;; has a point inF.

This problem is almost identical to the free space existence
problem discussed in the previous section with one difference
B. Star-shaped Test — the dimension of?;; is one less than the dimension of the

Consider all the”-surfacesy; that intersect? and compute configuration space — hence we can use the same approach

their restrictiony; N R to regionR. Let 'z denote the resulting presented in the previous section to solve this problem. We
set of surfaces. We can answer the above querigssitisfies subdivideR;; into subregions that satisfy the star-shaped test
the following condition: and then check if any of the origins of any sub-region lies

Our goal is to perform these queries without computing
explicit representation of the free space. Instead of performiﬁg
exact tests, we present a sufficient condition®m@mand use it
to answer these queries.
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(a) Adaptive Subdivision (b) Star-Shaped Roadmap (c) Path Planning

Fig. 3. Star-Shaped Roadmap Construction: This figure shows how we compute a star-shaped roadmap using adaptive subdivision of the
configuration space. We subdivide the configuration space into regiossch that the free space contained witti given by F N R, is
star-shaped. Fig. (b) shows the star-shaped roadmap that was obtained from the resulting subdivision. Fig. (c) shows how the roadmap is
used for path computation.

in the free space. We merely need to compute just one pofBec. lll), each pointz has a well defined normahk. The
in F (rather than capture all of them). As soon as we fingtar-shapedness property requires that the osgéhould see
one such point, we stop the subdivision process. This pointgsint «; this defines the constraint - (o — ) > 0. In
classified as a connector. R;; contains no point inF, then this manner, each point defines a linear constrainbohVe
the subdivision process will continue until all the sub-regionsse linear programming to check if the resulting constraints
satisfy the star-shaped test and none of the correspondauinit a feasible solution. The feasible region corresponds to
origins lie in the free space. In this case, the free space af approximate kernel of the C-surface. If the feasible region
R; and R; belong to two separate components of the frée non-empty, then we can choose the center of the feasible
space. region to be the candidate point (see [14]).
E. Efficient Implementation of the Star-shaped Test If a candidate poinb is computed, it is likely to be a valid
Given a regionR, we need to determine if all the surface£rigin provided we enumerated a sufficient number of points
in T are star-shaped w.r.t a common point. Here we preséft 7: In general, we do not know how many such points are
an algorithm to test if a singl€-surfacey is star-shaped or N€€ded; so we choose a fixed number of points. To ensure
not. This technique extends directly to the case of mumpﬁgrrectness, we check for the validity of the resulting candidate

C-surfaces. In general, th@-surface is a non-linear algebraid?©int by testing ify is indeed star-shaped w.ot We check
surface defined in a high dimensional configuration space. Thd? - (¢ — ) > 0 Va € . Sincey is an algebraic surface, it
exact test is as follows: is there a poinsuch that-(o—xz) > 'S representedTa$(z,y,z) = 0. Therefore, the expression
0, = € v wheren is the normal at point. This test reduces "€duces tov /" (o —x) > 0 Vo € . We compute a set
to solving a system of high degree algebraic equations. Insté§dintérvals aroundy and verify that the above expression
of computing an exact solution to the algebraic equatiors, positive within each interval. We use interval arithmetic

we use a simple and efficient technique to perform the ted¢] t© perform this test. Using interval arithmetic, we can
conservatively. conservatively check if this property holds for all the points

In general, the origin is not a unique point. Given a 2N 7- If a candidate point is computed and verified by the
surface defined inR%, there exists a sefer(y) C R? interval arithmetic test, theR is said to have passed the star-

of points that can be used as an origin. The K@HG) is Shaped test, otherwisk has failed the star-shaped test.

called the kernel ofy. v is star-shaped if and only if it has As noted earlier, the test is conservative — a surfacey be
a non-empty kernel. The central idea behind our techniqueSi&r-shaped, but as per our techniquenay fail the test. IfR
to guessa candidate point for the origin and then verify thafails the test, we then subdivide into sub-regions and repeat
the candidate point indeed lies within the kernel. Verifyinghe test on the sub-regions. Thus, the conservative test may
whether a surface is star-shaped w.r.t a fixed point is mutgsult in some additional subdivisions. However, computation
easier than performing the exact test. The method proce@fsadditional subdivisions does not affect the correctness of
by estimating a candidate point that lies in the interior of ae algorithm. This is because 1f is star-shaped w.rr, at
approximate kernel of a sampled version of the surface. Theme level of the subdivision aR, all the subregions of?
candidate point is computed by linear programming. We thaill satisfy the star-shaped test. This holds because as a sub-
verify if it belongs to the kernel of the surface by intervaregion@ shrinks, the approximate kernel 9f1Q approaches
arithmetic. A detailed explanation of this technique is givethe exact kernel. As a result, the probability that the candidate
in [14]. We provide a summary here. point lies within the kernel increases as the sub-regions shrink.
We take advantage of a parametrization of the C-surfacedn this manner, we are able to use a conservative test and
[6]. Using the parametric representation, we enumerate a stfl guarantee complete path planning as long as there are no
of points on~. By the orientation property ot’-surfaces tangential contacts on the boundary of fee space. Moreover,



[y

o

L la 8

(a) Gears 1 (b) Configuration Space (c) Narrow Passage (d) Gears 2 (No path)

Fig. 4. 3-DOF Planning with 2T and 1R: This figure highlights application of our algorithm to planar motion planning with both translational

as well as rotational dof. Fig. (a) shows a gear-shaped robot navigating amongst two gear-shaped obftade#4) (shown in gray).

The initial and final locations of the robot are shown in red and green respectivély&( Ay resp.). The robot is allowed to move only

within a bounded workspace (shown as a black rectangle). The figure also shows a number of positions of the robot during its motion along
the path. Fig. (b) shows the path in the configuration space (drawn translucently). Fig. (c) shows a zommed view of the narrow passage.
Fig. (d) shows a similar environment where the two obstacles are moved closer to each other and as a result, no collision-free path exists.

we don't use any exact non-linear equation solver. A tangential
contact occurs when tw@-surfaces touch each other at a point
thus forming a narrow passage of width zero in the free space.
Our algorithm cannot handle them because the free space in
a neighborhood of a tangential contact is never star-shaped —
for any arbitrary neighborhood of nonzero volume.

F. Intersection Computation

The above approach relies on determining whether-a
surface~; intersects a bounded—dimensional regionk; if
they do intersect, the part of the surface contained witRin
is computed. We note thak is axis aligned andy; has a . :
parametric representation. We determine;ifintersectsRk by (a) Assembly (b) Configuration Space
performing interval arithmetic. Interval arithmetic is cheapsig. 5. 3D Translational motion planning: This example shows applica-
conservative, and suffices for our purpose. tion of our algorithm to motion planning of a three-dimensional robot

To obtain; N R, we take advantage of two facts: 1) Th%/ith translational degrees of freedom. It consists of two identical

K3 El .

. . . grts each with pegs and holes. The goal is to assemble the two
C-surfacesy; are parameterized in terms of the coordinates ghrts so that the pegs of one part fit into the holes of the other. The
the configuration space and B) is an axis aligned region in left image shows a Joath that the robot can take so that the two parts
configuration space. Hence we obtainn R by considering -

could be assembled. The right image shows the path in configuration
a restricted parametric domai N R where D is the entire space (drawn transluscently).
parametric domain. pass between them. Our algorithm to@tk secs to compute a
VI. IMPLEMENTATION & RESULTS roadmap for this environment and detected non-existence of a

In this section, we describe the implementation of outath in0.18 secs.
algorithm and demonstrate its performance on several motiorFig. 5 shows application of our algorithm to a three-
planning scenarios. We used C++ programming language wéttinensional assembly planning scenario. The goal is to as-
the GNU g++ compiler under Linux operating system. Tabfgemble two parts such that the pegs of one part fit into the
| reports the performance of our algorithm. All timings are oholes of the other. Our algorithm took6 secs to construct
a 2 GHz Pentium IV PC with a GeForce 4 graphics card asdroadmap and was able to find a path (shown in blue) in
512MB RAM. Our current implementation is unoptimized. 0.22 secs. This is a challenging example because the goal

Fig. 4 highlights application of our algorithm to planaiconfiguration, wherin the pegs fit into the holes, is lodged
motion planning with both translational as well as rotationa¥ithin a very narrow passage in the configuration space.
degrees of freedom. The robot must pass through a veryFig. 6 shows application of our algorithm to3R planar
narrow passage to reach its goal. Moreover, it must undergdiculated robot witl8 revolute joints. Our algorithm took7
both translation as well as rotation. Our algorithm tadkd  secs to construct a star-shaped roadmap. Using this roadmap,
secs to construct a star-shaped roadmap. Using this roadnigpook only 0.43 secs to compute a path. The robot must
it took only 0.22 secs to compute a path (shown as a blygass through a narrow passage to reach its goal. We also
curve). Fig. 4 (d) highlights the use of our algorithm to deteexperimented with a modified environment where the obstacle
nonexistence of a collision-free path. The two obstacles dsecloser to the robot. As a result, no path exists between the
too close to each other and consequently, the robot canimitial and goal configurations. Our algorithm to@K secs to



number of subdivisions considerably making our approach
practical for high-dof robots. Most applications of approximate
cell decomposition have been limited to robots with three or
four dof.

We generate samples in the free space that are represented
by guards and connectors. Table Ill compares our determin-
istic sampling approach with randomized sampling approach
Goal by showing the different steps of the two approaches. Our
approach does not need to perform explicit local planning
to connect nearby samples. The star-shaped property ensures
Fig. 6. 3R Articulated Robot: This example shows application ofthat the connectors link guards belonging to adjacent regions
our algorithm to motion planning of a planar articulated robot withthus providing local planning implicitly. The main benefit of
goa‘?’god‘#;‘t“-iolr?'gfd t\T/vT)eirPt%lrJrﬁneegig?gvioﬁfiaﬁgtig?ngﬁguratlon' 2 9OPRM-based methods is that they easily extend to very high dof

robots, whereas our approach has additional overhead in terms
compute a roadmap for the modified environment and detec®ig2daptive subdivision and conservative star-shaped tests.
non-existence of a path 14 secs. Our approach shares some similarities with the visibility

Table | provides the timings of our algorithm on thes@ased probabilistic roadmap method (Visibility-PRM) [11].
models. It also provides statistics such as the number of guatgPility-PRM method takes inter-sample visibility into ac-

and connectors in the roadmap for each model. count during the randomized sampling process. While the star-
shaped property is related to visibility, it is different from the
[[_Approx. Cell Decomposition [ Star-Shaped Roadmaps 1 type of visibility computed by [11]. While the star-shaped
Decomposition oiC into Decomposition o Into regions property implicitly determines the visibility of an entire region,
empty full and mixedcells satisfying star-shaped property iaihilityv. icihili
Conservafive approximation oF Complete connectivity ofF: the visibility-PRM method computes the visibility of a new
every point inF is captured implicitly || randomly computed sample with respect to the current set
Need to subdivide mixed cells Not necessary to subdivide mixed regiomsof samples Finally the goals of the two methods are very
that satisfy the star-shaped property . § L2 e .
Targe storage and search requiremenisstorage and search varies based on fred different: The objective of the visibility-PRM method is to
function of resolution parameter space complexity; Lower requirements generate a probabilistic roadmap with fewer nodes., whereas
Check for paths through empty Check for paths through empty regions . . !
cells and not mixed cells. as well as mixed regions that our goal is to do complete path planning.
satisfy the star-shaped property
[ Randomized Sampling [ Our Algorithm: Deterministic Sampling 0
TABLE I Compute samples randomly Compute guards & connectors deterministically
Comparison: This table compares a number of aspects of our || Check whether samples are in | The guards and connectors are in free space
. . L free space by construction
approach with approximate cell decomposition. Perform local planning between | No explicit local planning star-shaped
nearby samples property guarantees local collision-free paths
VII. COMPARISON AND DISCUSSION Easily extends to high-dof robot§ Storage complexity and cost of star-shaped
. . . AL tests increases with number of dof
In this section, we compare our approaCh with some pri TMay not terminate with narrow Guaranteed to terminate if there are no
approaches_ We also discuss certain aspects of our motjoressages or no collision-free path tangential contacts in free space

planning algorithm.

. . . TABLE Il
A. Comparison with Prior Approaches Comparison: This table compares the steps of our approach with
Our algorithm performs adaptive subdivision similar to cell those of the randomized sampling approach.

decomposition algorithms [6]. However, there is one major Our current work builds on our prior work on isosurface
difference; unlike exact cell decomposition methods, we dixtraction and translational motion planning [14], [13]. Our
not compute an explicit decomposition of the free spacprevious motion planning algorithm was limited to transla-
Instead, we compute a subdivision of the entire configuratitional dof and usedomplex celland star-shaped tests. Our
space, which represents the free space implicitly. The maiew approach is relatively simpler and uses only the star-
advantage of our approach is that we are able to perfoshaped test. Overall, the star-shaped roadmap based sampling
the subdivision without an explicit representation of the freis less conservative, easily extensible to higher dimensional
space. Most practical algorithms are based on approximate eelhfiguration spaces with translations and rotational dof and
decomposition algorithms, which try to find a path througless prone to degeneracy.

empty cells in the configuration space. By definition, the Our current work shares some similarities with the recent
empty cells lie in the free space and result in a conservaerk of Delanoue et al. [4], which was developed indepen-
tive approximation of the free space. We perform a detailetently. Their work is aimed at proving topological properties
comparison with approximate cell decomposition algorithm isuch as connectedness of sets. Their approach uses the star-
Table II. While approximate cell-decomposition algorithms arghaped property to check if a set defined by a collection
resolution completeour algorithm is able to perform completeof non-linear inequalities is path-connected. Delanoue et al’s
motion planning. One important benefit of our approach @urrent results are for two-dimensional sets defined by a few
that we do not always have to subdivide the mixed regions.rbn-linear constraints. It is not clear whether their approach
a mixed region satisfies the star-shaped test, then we do has been applied to path planning. The focus of our work
subdivide it. We can plan paths through mixed cells directly bg different — to use the star-shaped property to perform
exploiting the star-shapedness property — this reduces the tatetierministic sampling for complete motion planning.



Complexity Performance Statistics |
Model Robot | Obstacle [ # Surf | Subdivision & Guard| Connector [ Planning | # Guards| # Connectors
() ) ) |
Gears 1 36 72 3,929 62 49 0.22 6,764 11362
Gears 2 (No path)] 36 72 3,929 58 32 0.18 3,412 5,348
Assembly 224 224 256 10.1 5.8 0.22 6137 15,399
3R1 3 32 140 12.3 4.9 0.43 11,349 30,566
3R 2 (No path) 3 32 176 12.2 4.4 0.14 10,062 25,270
TABLE |

Performance: This table highlights the performance of our algorithm on different models. The model complexity is provided in terms of
the size of the robot and the obstacle as well as the number of contact surfaces. The size of an object refers to the number of vertices for
the planarGearsexample and the number of triangles for the BBsemblyexample. The performance is measured in terms of the
roadmap construction time and the time to answer a single planning query. The roadmap construction time is the sum of the time taken to
compute an adaptive subdivision (includes guard computation) and the time to compute the connectors. The table also provides statistics
on the number of guards and connectors in the roadmap.

B. Discussion There are many avenues for future work. We are interested

The deterministic sampling algorithm presented in Sec. ¥} the application of our algorithm to higher DOF motion
performs an adaptive subdivision of the configuration space. Bignning. Our approach uses linear programming and interval
each step, we subdivide a region into sub-regions and differéthmetic. Both these techniques are extensible to higher
types of subdivision strategies could be employed. We codlnensional spaces. We would like to combine our approaches
subdivide a region intal> equal sized regions wheré is with randomlggd sampllng techniques in order to generate
the dimension of the configuration space. Another alternatipgtter subdivisions for high-dof robots. We would also like
would be to perform a d-dimensional tetrahedral or simplici# nandle cases, where the robot is allowed to be in contact
subdivision of the region. We could also randomly select ith the boundary of the obstacle.
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