
Collision detection between geometric

models: a survey

Ming C. Lin & Stefan Gottschalk

University of North Carolina

Abstract

In this paper, we survey the state of the art in collision detec-

tion between general geometric models. The set of models include

polygonal objects, spline or algebraic surfaces, CSG models, and

deformable bodies. We present a number of techniques and sys-

tems available for contact determination. We also describe several

N-body algorithms to reduce the number of pairwise intersection

tests.

1 Introduction

The goal of collision detection (also known as interference detection or con-

tact determination) is to automatically report a geometric contact when
it is about to occur or has actually occurred. The geometric models may
be polygonal objects, splines, or algebraic surfaces. The problem is en-
countered in computer-aided design and machining (CAD/CAM), robotics

and automation, manufacturing, computer graphics, animation and com-

puter simulated environments. Collision detection enables simulation-
based design, tolerance veri�cation, engineering analysis, assembly and

dis-assembly, motion planning, animated �gure articulation, walkthrough,
etc. All these tasks involve contact analysis and spatial reasoning among

static or moving objects. In many of these application areas, collision

detection is considered a major computational bottleneck.
Collision detection is an essential component of robot motion planning

and control, where it helps to steer the robot away from its surround-

ing obstacles. In virtual prototyping, it is used to re�ne designs without

productions of physical prototypes in the initial design stage. Collision

detection can also be a signi�cant aid in simulation for engineering analy-
sis. Experiments which are impractical to conduct can be simulated, such

as support design for tunnels. Another example is automobile crash test
and ergonomics analysis which can be done systematically at much lower

1



2 Collision detection between geometric models: a survey

Solid

Geometry

Implicit

Surfaces

Parametric

Surfaces

Constructive

Convex

3D Models

Nonpolygonal Models Polygonal Models

Structured Polygon Soups

Nonconvex

Figure 1. A Taxonomy of 3D Model Representations

cost and under more controlled, varied conditions using collision detection
algorithms in a computer simulated environment.

In this paper, we survey the state of the art in collision detection be-
tween geometric models represented by a collection of polygons smooth
surfaces. The rest of the paper is organized in the following manner. In
Section 2, we present a classi�cation of the the collision detection prob-
lem. We brie
y survey the algorithms available for polygonal models in

Section 3. Then, we describe the state of art in collision detection for
general geometric models and discuss the advantages and shortcomings of
each method in Section 4. Section 5 highlights techniques in reducing the
number of pairwise intersection tests for a computer simulated environ-
ment consisting of multiple static or moving objects. We list a number of

public domain packages for collision detection in Section 6.

2 Problem domain classi�cation

A wide range of techniques, including hierarchical representation, geo-

metric reasoning, algebraic formulations, spatial partitioning, analytical
methods, and optimization methods, have been proposed. Algorithm de-

sign depends on the model representation, the desired query types, and
the simulation environment.

2.1 Model representations

There are many types of model representations used in CAD/CAM and

3D graphics. One possible taxonomy that we adopt (for the ease of orga-
nization) in this paper is shown in Figure 1.



Ming C. Lin & Stefan Gottschalk 3

2.1.1 Polygonal models

Polygonal objects are the most commonly used models in computer graph-

ics and modeling. They have a simple representation. They are versatile.

Hardware-accelerated rendering of polygon is widely available.

The most general class of polygonal model is the \polygon soup,"which

is a collection of polygons that are not geometrically connected and has

no topology information available. If the polygons form a closed manifold,

then the model has a well-de�ned inside and outside { it is a proper solid.

Some geometric algorithms rely on this structure. If the object de�ned
by the closed manifold is convex, then this additional structure can be

exploited in collision detection algorithms.

2.1.2 Constructive solid geometry

Constructive Solid Geometry or CSG forms objects from primitives such
as blocks, spheres, cylinders, cones, and tori, by combining them with set
theoretic operations such as union, intersection, and set di�erence [RR92,
Hof89]. One strength of the CSG representation is that it enables an in-

tuitive design process of building shapes by means of cutting (intersection
and set di�erence) and joining (union) simple shapes to form more com-
plex ones. It also makes �nding a collision witness easier [Cam91]. The
di�culty with CSG is that certain operations, such as rounding an edge
or �lleting a join, are di�cult to describe with CSG operations. Further-

more, an accurate boundary or surface representation, useful for rendering
or interference computations, can be hard to compute from CSG repre-
sentations [Hof89,KKM97].

2.1.3 Implicit surfaces

Implicit surfaces are de�ned using implicit functions. They are de�ned
with mappings from space to the real numbers, f : R3

7! R, and the

implicit surfaces are the loci of points where f(x; y; z) = 0. Such a function
de�nes unambiguously what is inside the model, f(x; y; z) < 0; and what

is outside, f(x; y; z) > 0. Consequently, implicit surfaces are generically
closed manifolds, a desirable property.

If the function is polynomial in x, y, and z, then it is called alge-

braic, which includes the algebraic surfaces [Sed90], higher-order func-

tions [BW90] and convolution surfaces. Implicits are also often used as

the primitives in CSG systems.
A special case of algebraic surfaces are the quadrics, which are the

second-degree polynomials in x, y, and z. These can represent slabs, cones,

spheres, and cylinders in a uni�ed framework. They are widely used in



4 Collision detection between geometric models: a survey

a number of applications and a number of specialized algorithms have

been developed for intersection computations between quadrics [FNO89,

MG91, SJ91].

2.1.4 Parametric surfaces

Parametric surfaces are mappings from some subset of the plane to space,

f : R2
7! R3. Unlike implicit surfaces, parametric surfaces are not gener-

ally closed manifolds. Hence, unlike CSG and implicit surfaces, they do

not represent a complete solid model, but rather a description of surface
boundary.

Parametric surfaces are easier to polygonalize and render as compared
to the implicits, and a special class called the Non-Uniform Rational B-

Spline (NURBS) has gained in popularity in CAD [LR80, Far93]. NURBS
have some very nice properties which make them easier to operate on.
They can also be represented using B�ezier patches. It is worth noting
that rational parametric surfaces (like NURBS and B�ezier patches) are a
proper subset of algebraic surfaces.

2.2 Di�erent types of queries

In the simplest case, we want to know whether two models touch. Some-
times, we must �nd which parts (if any) touch, i.e. �nd their intersection.
Sometimes we want to know their separation: if two objects are disjoint,

what is the minimum Euclidean distance between them? If they pene-
trate, what is the minimum translational distance required to separate
them [CC86]? Finally, if we know the objects' placements and motions,

when will be their next collision? This is ETA computation, borrowing
from the phrase, \estimated time of arrival".

Di�erent applications need di�erent queries. Distance information is
useful for computing interaction forces and penalty functions in robot mo-

tion planning [Lat91] and dynamic simulation [Lin93,MC95]. Intersection
computation is important for physically-based modeling and animation

systems which must know all contacts in order to compute the collision

response. The ETA solution permits us to control the time step in a

simulation [Lin93, LM95].

2.3 Simulation environments

Special characteristics of each simulation are often considered in designing

and choosing the most appropriate algorithm for collision detection. Here
we examine a few common cases.



Ming C. Lin & Stefan Gottschalk 5

2.3.1 Pair processing vs. nbody processing

If the problem involves only a pair of models, we call it \pair processing."

If we have many di�erent parts, we call it \Nbody processing," in reference

to the classic problem in celestial mechanics (many bodies moving under

mutual gravitational in
uence).

2.3.2 Motions: static vs. dynamic

Queries are often executed repeatedly on the same models in the same
environment, as the objects rotate and translate (or possibly subject to
non-rigid transformations [HLMD96]) at successive time steps. In these
dynamic environments, the geometric relationship may only di�er slightly
from that of the previous step, if the motion between steps is relatively

small. Algorithms that can capitalize on this property are said to be
exploit temporal coherence.

In order to exploit temporal coherence, some algorithms require bounds
[Lin93, LM95] on the motion of the objects (e.g. objects' velocities or ac-
celerations). Other algorithms, such as the ones based on interval arith-

metic, need a closed-form expression of the motion as a function of time.
Some algorithms demand no information on the motion, but need only
the placements of the objects at successive time steps.

Sometimes the problem involves objects which are not in motion. For
example, given a model of an entire power-plant, design engineers may be

interested in performing static interference checks among components of
the entire plant for tolerance veri�cation and access clearance.

2.3.3 Rigid bodies vs. deformable models

When the component of time is introduced, there is also the possibil-

ity that the models deform over time. Assuming that the deformations
between time steps are small, some algorithms may be able to exploit

temporal coherence in this case as well.

3 Collision detection for polygonal models

Most of the earlier work in collision detection has focused on algorithms

for convex polytopes. A number of algorithms with good asymptotic
performance have been proposed in the computational geometry litera-

ture. Using hierarchical representations, an O(log2n) algorithm is given
in [DK90] for polytope-polytope overlap problem, where n is the number

of vertices. This elegant approach has not been robustly implemented in



6 Collision detection between geometric models: a survey

3D, however. Good theoretical and practical approaches based on lin-

ear complexity of the linear programming problem are known [Meg83,

Sei90]. Minkowski di�erence and convex optimization techniques are used

in [GJK88] to compute the distance between convex polytopes by �nding

the closest points.

In applications involving rigid motion, geometric coherence has been

exploited to design algorithms for convex polyhedra based on local fea-

tures [Bar90, LC91, Lin93]. Local properties have been used in the earlier

motion planning algorithms by [Don84, LPW79] when two objects come
into contact. These algorithms exploit the spatial and temporal coherence
between successive queries and work well in practice.

A number of hierarchies have been used for collision detection between
general polygonal models. Typical examples of bounding volumes include
axis-aligned boxes (cubes are a special case) and spheres, and they are
chosen for their fast overlap tests. Other structures include cone trees,
k-d trees and octrees [Sam89], sphere trees [Hub93,Qui94], trees based on

S-bounds [Cam91] etc. Binary space partitions (BSP) [NAT90] and exten-
sions to multi-space partitions [BV91], and spatial partitionings based on
space-time bounds or four-dimensional testing [AANJ94,Cam90,Can86,
Hub93] have been used. All of these hierarchical methods do very well
in performing \rejection tests" whenever two objects are far apart. How-

ever, when the two objects are in close proximity and can have multiple
contacts, these algorithms either use subdivision techniques or check very
large number of bounding volume pairs for potential contacts. In such
cases, their performance slows down considerably.

More recent work seems to have focused on tighter-�tting bounding

volumes. Gottschalk et al. [GLM96], have presented a fast algorithm

and a system, called RAPID, for interference detection based on oriented
bounding boxes, which approximate geometry better than do axis-aligned
bounding boxes. Barequet et al. [BCG+96] have also used oriented

bounding boxes for computing hierarchical representations of surfaces for

performing collision detection. Klosowski et al. [KHM+96] have used

discrete orientation polytopes (k-DOPs), which also are superior approxi-

mations to bounded geometry. Krishnas et. al. [KPLM98] have proposed
a higher order bounding volume, designed to match curvature of the un-

derlying 3D geometry, especially suited for B�ezier patches and NURBS.

4 Algorithms for non-polygonal models

In geometric and solid modeling, the problem of computing the intersec-
tion of surfaces represented as splines or algebraic surfaces has received

a great deal of attention [Pra86,Hof89]. Given two surfaces, the prob-



Ming C. Lin & Stefan Gottschalk 7

lem corresponds to computing all components of the intersection curve,

robustly and accurately. It includes work on curves and surface inter-

sections [SWZ89, SP86,BHHL88,Hof89,Hof90,MD94,MD95,KM97]. All

these algorithms have focussed on accurate computation of the intersection

set for static models. However, for collision detection we are actually deal-

ing with a restricted version of this problem. That is, given two surfaces

we want to know whether they intersect. Furthermore, we are interested

in dynamic environments composed of moving objects.

In general, given two spline surfaces, there is no good and quick solu-
tion to the problem of whether they intersect or have a common geometric
contact. The simplest solution is based on using subdivision and checking

the control polytopes or convex bounding boxes for collision.

4.1 Constructive solid geometry models

Since CSG objects are de�ned using set operations, the intersection prob-

wev



8 Collision detection between geometric models: a survey

4.1.2 Interval arithmetic and CSG combinations of implicit func-

tions

Du� [Duf92] employs interval arithmetic to evaluate implicit functions

over box-like regions of space to determine whether the regions lie entirely

inside, entirely outside, or potentially laying across the boundary of the

implicit surfaces. This is the familiar point classi�cation scheme extended

to regions obtained from adaptive subdivision of space. This technique

is intrinsicaly approximate. It may not be able to determine the contact

status of disjoint models which are almost touching.
Du� applies this approach to a list of two or more CSG models, so it is

an nbody algorithm. He also extends this method to distance computation
and the ETA problem when closed-form solution of the motions of the
objects are known.

This method is adaptive subdivision over the space in which the models
are embedded, and the precision of the results is limited to the �neness of

the subdivision. Allowing for the �nite precision of the method, it is an
extremely robust and concise formulation of the problem, as well as easy
to implement. It is also an expensive method which will not perform real
time collision detection on large models with current computing hardware.

4.2 Parametric surfaces

There are four techniques for �nding the intersection of two paramet-
ric surfaces: subdivision methods, lattice methods, tracing methods, and
analytic methods. Many practitioners actually use some combination of

these. A survey of these techniques is given in [Pra86,Hof89].

4.2.1 Subdivision methods for parametric surfaces

All subdivision methods for parametric surfaces work by recursively sub-
dividing the domain of the two surface patches in tandem, and examining
the spatial relationship between patch subsections. Depending on various

criterion, the subsections are further subdivided and recursively examined,

or the given recursion branch is terminated. In all cases, whether it is the
intersection curve or the distance function, the solution is known only to

�nite precision, according to how �nely the domain has been subdivided
and how it maps into space.

4.2.2 Subdivision of domain with interval arithmetic

Snyder [Sny92] uses interval arithmetic to adaptively subdivide the do-

mains of the surfaces to re�ne an approximation of the intersection curve



Ming C. Lin & Stefan Gottschalk 9

until it is of satisfactory precision. Interval arithmetic is used to obtain

conservative bounding boxes in space for the surface subsections.

The method does not determine with certainty that a contact has oc-

cured { it can only report a conservative upper and lower bounds on the

patches' closest approach in space. Intersection is said to have occured

when the lower bound on distance remains zero. The algorithm can han-

dle distance queries by re�ning the bounds as the patch subdivisions are

directed by a priority queue.

4.2.3 Subdivision of domains of time-varying parametric sur-

faces

A time-varying surface is a time-dependentmapping from a (u; v)-parameter

patch to space: f : (u; v)� t 7! R3. The dependence on time can re
ect
motion as well as deformations with time.

Herzen, Barr, and Zatz [HBZ90] adaptively subdivide the domain (u; v;
and t) of the mappings into subregions and use use Lipschitz Conditions
(bounds on various derivatives of the mappings) to obtain bounds on the
scope of the subregion's range in space. A priority queue is used to direct

the subdivision so as to locate the earliest pair of subregions (ie. containing
the smallest t) which overlap in space.

Hence, they have an ETA algorithm for deformable parametric sur-
faces, which is robust and accurate to any desired precision. It's disad-
vantages are that it is time-consuming, fundamentally approximate, and

requires the motion of the models to be expressed as closed-form functions
of time (such motion functions are not always available or convenient).

4.2.4 Improved interval arithmeticmethods for deformable sur-

faces

In 1993, Snyder et al. [Sny93] improved upon the work of Herzen et al.
by introducing more conditions with which to prune the search space for

collisions. They added a tangency condition, which states that at the
moment of contact, two curved surfaces must have a point in common

but with opposing normals (that is, the surfaces must be tangent). He
also stated that the converging points on the two surfaces must be moving

toward each other.

Consequently, when considering a pair of domain patches for poten-

tial collision, they can be eliminated from consideration not only if they

don't overlap spatially, but also if they don't contain opposing normals, or
if they don't contain converging components in their respective velocity

intervals (the derivatives are also interval-valued functions). This helps

speed convergence to the solution set.



10 Collision detection between geometric models: a survey

4.2.5 Lattice methods

The intersection curve of two surfaces in space has a preimage curve on

the domains of both patches. Lattice methods attempt to locate speci�c

points of these preimages by selecting many isoparametric curves (where

a u- or v-parameter is held constant) which criss-cross the surface like a

lattice-work [Pra86]. Selecting a value for u on one of the patches reduces

the dimensionality of the search space to one { the only free variable is v

on that patch.

So, we can express the points of surface intersection as the zeroes of a
function of v. An analysis of the degree of the polynomial and the deriva-

tives allow us to perform root trapping techniques to robustly �nd where
the intersection preimage meets the isoparametric curve. The di�culty
with this method is that the intersection curve can be a very small closed
loop which is missed by the isoparametric curves { this most often occurs
when the surfaces are grazing or barely penetating. In some cases, lattice

methods or subdivision methods are used to �nd starting points for use
by the tracing methods.

4.2.6 Tracing methods

The tracing method begins with a given point known to be on the in-
tersection curve [BFJP87,BHHL88,Hoh91,MC91,KM97]. Then the in-
tersection curve is traced in su�ciently small steps until the edge of the

patch is found, or until the curve returns to itself to close a loop.
While it is easy to check for meetings with a patch boundary, it is

di�cult to know when the tracing point has returned to its starting posi-

tion, as it requires the use of some arbitrarily chosen tolerance. Frequently
this is posed as an initial-value di�erential equations problem [KPW90] or

solving a system of algebraic equations [BHHL88,MC91,KM97]. At the
intersection point on the surfaces, the intersection curve must be mutually

orthogonal to the normals of the surfaces. Consequently, the vector �eld
which the tracing point must follow is given by the cross product of the

normals.

4.2.7 Analytic methods

Analytic methods usually involve implicitizing one of the parametric sur-

faces { obtaining an implicit representation of the model [SAG84]. The

parametric surface is a mapping from (u; v)-space to (x; y; z)-space, and
the implicit surface is a mapping from (x; y; z)-space to the real numbers.

By substituting the parametric functions fx(u; v); fy(u; v); fz(u; v) for

the x; y; z of the implicit function, we obtain a scalar function in u and v.



Ming C. Lin & Stefan Gottschalk 11

The locus of roots of this scalar function map out curves in the (u; v) plane

which are the preimages of the intersection curve [KPP90,MC91,KM97,

Sar83]. Based on its representation as an algebraic plane curve, e�cient

algorithms have been proposed by a number of researchers [KM97].

4.3 Implicit surface

Pentland and Williams, [PW89], proposed using implicit functions to rep-

resent shape and the property of the \inside-outside" functions for colli-

sion detection. Besides its restriction to implicits, this algorithm has a
drawback in terms of robustness as it only uses point samples. Lin and

Manocha have presented e�cient algorithms for curved models composed
of either spline surfaces and algebraic surfaces undergoing rigid motion,
using extension of their earlier algorithm for polyhedra, hierarchical rep-
resentation and equation solving techniques [LM93, LM95, LM97]. These
algorithms work well on mostly low degree primitives.

5 Nbody processing

For environments consisting of n (possibly moving) objects, performing

O(n2) pairwise interference checks becomes a computational bottleneck,
when n is large. In order to eliminate some unnecessary pairwise checks
and to speed up the runtime performance, several techniques have been
proposed. Algorithms of complexity O(nlog2n +m) have been presented
for spheres in [HSS83] and rectangular bounding boxes in [Ede83], where

m corresponds to the actual number of overlaps. Some of the fastest

practical algorithms assume the knowledge of maximum acceleration and
velocity; others exploit the spatial arrangement to reduce the number of

pairwise interference tests without assuming any knowledge of trajectories.

5.1 Scheduling scheme

With bounds on velocities and accelerations we can estimate lower bounds

on potential collision times. Scheduling algorithms [Lin93, LM95] main-
tain a queue of all object pairs that might collide, which is sorted by lower
bounds on time to collision. These lower bounds on the time to collision

are calculated adaptively and updated when a critical event, such as a

collision, occurs. This technique has been successfully incorporated in the

Impulse-Based Dynamics Simulator [MC95], reducing the frequency of the
collision checks and thereby speeding up dynamics simulation.



12 Collision detection between geometric models: a survey

5.2 Sorting-based sweep and prune

More recently, Cohen et al. have presented algorithms and a system,

I-COLLIDE, based on spatial and temporal coherence, for large environ-

ments composed of multiple moving objects [CLMP95]. The number of

object pair interactions is reduced to only the pairs within close proximity

by sorting axis-aligned bounding boxes (AABBs) surrounding the objects.

It is output sensitive and its run time is linearly dependent on the number

of objects in the environment instead of quadratic dependence. It uses

dynamically sized AABBs, linear sweep and prune, and geometric coher-
ence to quickly reject the object pairs, that are unlikely to collide within

the next time step.

5.3 Interval tree for 2D intersection tests

We can use the interval tree [Ede83] for static query, as well as for the

rectangle intersection problem. Each query of interval intersection takes
O(logn + k) time where k is the number of reported intersection and n

is the number of intervals. Therefore, reporting intersection among n

rectangles can be done in O(nlogn +K) where K is the total number of
intersecting rectangles.

5.4 Uniform spatial subdivision

We can divide the space into unit cells (or volumes) and place each object
(or bounding box) in some cell(s) [Ove92]. To check for collisions, we

have to examine the cell(s) occupied by each box to verify if the cell(s)
is(are) shared by other objects. But, it is di�cult to set a near-optimal

size for each cell and it requires tremendous amount of allocated memory.

If the size of the cell is not properly chosen, the computation can be
expensive. For an environment where objects are of uniform size [Tur89],
this is a rather ideal algorithm and especially suitable for parallelization.

Overmars has shown that using a hash table to look up an entry and O(n)

storage space we can perform the point location queries in constant time
[Ove92].

6 Public Domain Software Packages

Most of public domain systems are applicable to polygonal models and

some are also applicable to large environments composed of multiple mov-

ing objects. It is nearly impossible to compare di�erent algorithms and

systems fairly, since their performance varies, depending on the simulation



Ming C. Lin & Stefan Gottschalk 13

environments (models, varieties of contacts, query types, motion descrip-

tion, etc.) and other factors. Here we only list them in the chronological

order of their release and brie
y describe their special characteristics.

6.1 I-COLLIDE collision detection system

http://www.cs.unc.edu/~geom/I COLLIDE.html.

I-COLLIDE is an interactive and exact collision-detection library for

environments composed of many convex polyhedra or union of convex
pieces, based on the expected constant time, incremental distance compu-
tation algorithm [LC91, Lin93] and algorithms to check for collision be-

tween multiple moving objects [CLMP95].

6.2 RAPID interference detection system

http://www.cs.unc.edu/~geom/OBB/OBBT.html.

RAPID is a robust and accurate polygon interference detection library
for pairs of unstructured polygonal models. It is applicable to polygon
soups { models which contain no adjacency information and obey no topo-
logical constraints. It is most suitable for close proximity con�gurations

between highly tesselated smooth surfaces. [GLM96].

6.3 V-COLLIDE collision detection system

http://www.cs.unc.edu/~geom/V COLLIDE.

V-COLLIDE is a collision detection library for large dynamic envi-

ronments [HLC+97], and unites the nbody processing algorithm of I-

COLLIDE and the pair processing algorithm of RAPID. It is designed
to operate on large numbers of static or moving polygonal objects to al-
low dynamic addition or deletion of objects between timesteps.

6.4 Distance computation between convex polytopes

http://www.comlab.ox.ac.uk/oucl/users/stephen.cameron/distances.html

This package is an enhanced and dynamic version [Cam97b,Cam97a] of
the distance routine of Gilbert, Johnson and Keerthi (GJK), which allows

the tracking of the distance between a pair of convex polyhedra. It requires

a list of all the edges in each convex polyhedra for best performance. Its
performance is comparable to Lin-Canny convex polytope overlap test.



14 Collision detection between geometric models: a survey

6.5 SOLID interference detection system

http://www.win.tue.nl/cs/tt/gino/solid/

SOLID is a library for interference detection of multiple three-dimensional

polygonal objects (including polygon soups) undergoing rigid motion. Its

performance and applicability is comparable to that of V-COLLIDE.

6.6 V-Clip collision detection system

http://www.merl.com/people/mirtich/vclip.html

The Voronoi Clip, or V-Clip, algorithm is a low-level collision detection

algorithm for polyhedral objects { an improvement of the closest-feature
tracking algorithm [LC91, Lin93]. It operates on a pair of convex poly-
hedra, or nonconvex hierarchies of them. In addition to distance compu-
tation, it can also report penetration points and estimated penetration
distance between overlapping models.

7 Future work

Despite abundant wealth of the literature in collision detection, there are
several open research issues. Much remains to be done on detecting con-

tacts between deformable models accurately and e�ciently. In dynamic
simulation, computing collision response requires robust and interactive

computation of the closest features or contact points between general ge-
ometric models, as well as rapid calculation of penetration distance. This

problem is especially di�cult for those models with smooth surfaces and

many concavities. There are also new challenges in applying collision
detection algorithms to massive models, which consist of millions of prim-

itives and are often too large to �t in the main memory. These may include
developing external memory algorithms, dynamic pre-fetching techniques

and parallel computing methods for collision detection.

Acknowledgment: We would like to acknowledge partial support

provided by Intel and Honda and the reviewers for their suggestions.

References

[AANJ94] A.Garica-Alonso, N.Serrano, and J.Flaquer. Solving the collision de-

tection problem. IEEE Computer Graphics and Applications, 13(3):36{43,

1994.



Ming C. Lin & Stefan Gottschalk 15

[AB88] S.S. Abhyankar and C. Bajaj. Computations with algebraic curves. In

Lecture Notes in Computer Science, volume 358, pages 279{284. Springer

Verlag, 1988.

[Bar90] D. Bara�. Curved surfaces and coherence for non-penetrating rigid

body simulation. ACM Computer Graphics, 24(4):19{28, 1990.

[BCG+96] G. Barequet, B. Chazelle, L. Guibas, J. Mitchell, and A. Tal. Box-

tree: A hierarchical representation of surfaces in 3d. In Proc. of Euro-

graphics'96, 1996.

[BFJP87] R. Barnhill, G. Farin, M. Jordan, and B. Piper. Surface/surface in-

tersection. Computer Aided Geometric Design, 4(3):3{16, 1987.

[BHHL88] C.L. Bajaj, C.M. Ho�mann, J.E.H. Hopcroft, and R.E. Lynch. Trac-

ing surface intersections. Computer Aided Geometric Design, 5:285{307,

1988.

[BV91] W. Bouma and G. Vanecek. Collision detection and analysis in a phys-

ically based simulation. Proceedings Eurographics workshop on animation

and simulation, pages 191{203, 1991.

[BW90] Jules Bloomenthal and Brian Wyvill. Interactive techniques for im-

plicit modeling. In Rich Riesenfeld and Carlo Sequin, editors, Com-

puter Graphics (1990 Symposium on Interactive 3D Graphics), volume 24,

pages 109{116, March 1990.

[Cam84] Stephen Cameron.Modelling Solids in Motion. PhD thesis, University

of Edinburgh, 1984.

[Cam85] S. Cameron. A study of the clash detection problem in robotics. Pro-

ceedings of International Conference on Robotics and Automation, pages

488{493, 1985.

[Cam90] S. Cameron. Collision detection by four-dimensional intersection test-

ing. Proceedings of International Conference on Robotics and Automation,

pages 291{302, 1990.

[Cam91] S. Cameron. Approximation hierarchies and s-bounds. In Proceedings.

Symposium on Solid Modeling Foundations and CAD/CAM Applications,

pages 129{137, Austin, TX, 1991.

[Cam97a] S. Cameron. Enhancing GJK: Computing minimum and penetration

distance between convex polyhedra. Proceedings of International Confer-

ence on Robotics and Automation, pages 3112{3117, 1997.

[Cam97b] Stephen Cameron. A comparison of two fast algorithms for com-

puting the distance between convex polyhedra. IEEE Transactions on

Robotics and Automation, 13(6):915{920, December 1997.



16 Collision detection between geometric models: a survey

[Can86] J. F. Canny. Collision detection for moving polyhedra. IEEE Trans.

PAMI, 8:200{209, 1986.

[CC86] S. Cameron and R. K. Culley. Determining the minimum transla-

tional distance between two convex polyhedra. Proceedings of Interna-

tional Conference on Robotics and Automation, pages 591{596, 1986.

[CL90] J. F. Canny and M. C. Lin. An opportunistic global path planner. Pro-

ceedings of International Conference on Robotics and Automation, pages

1554{1559, 1990.

[CLMP95] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. I-collide: An inter-

active and exact collision detection system for large-scale environments.

In Proc. of ACM Interactive 3D Graphics Conference, pages 189{196,

1995.

[DK90] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of

preprocessed polyhedra { A uni�ed approach. In Proc. 17th Internat.

Colloq. Automata Lang. Program., volume 443 of Lecture Notes Comput.

Sci., pages 400{413. Springer-Verlag, 1990.

[Don84] B. R. Donald. Motion planning with six degrees of freedom. Master's

thesis, MIT Arti�cial Intelligence Lab., 1984. AI-TR-791.

[Duf92] Tom Du�. Interval arithmetic and recursive subdivision for implicit

functions and constructive solid geometry. ACM Computer Graphics,

26(2):131{139, 1992.

[Ede83] H. Edelsbrunner. A new approach to rectangle intersections, Part I.

Internat. J. Comput. Math., 13:209{219, 1983.

[Far93] G. Farin. Curves and Surfaces for Computer Aided Geometric Design:

A Practical Guide. Academic Press Inc., 1993.

[FNO89] R.T. Farouki, C.A. Ne�, and M. O'Connor. Automatic parsing of

degenerate quadric-surface intersections. ACM Transactions on Graphics,

8:174{203, 1989.

[GJK88] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure

for computing the distance between objects in three-dimensional space.

IEEE J. Robotics and Automation, vol RA-4:193{203, 1988.

[GLM96] S. Gottschalk, M. Lin, and D. Manocha. Obb-tree: A hierarchical

structure for rapid interference detection. In Proc. of ACM Siggraph'96,

pages 171{180, 1996.

[HBZ90] B. V. Herzen, A. H. Barr, and H. R. Zatz. Geometric collisions for

time-dependent parametric surfaces. Computer Graphics, 24(4):39{48,

1990.



Ming C. Lin & Stefan Gottschalk 17

[HLC+97] T. Hudson, M. Lin, J. Cohen, S. Gottschalk, and D. Manocha. V-

collide: Accelerated collision detection for vrml. In Proc. of VRML Con-

ference, pages 119{125, 1997.

[HLMD96] M. Hughes, M. Lin, D. Manocha, and C. Dimattia. E�cient and

accurate interference detection for polynomial deformation and soft ob-

ject animation. In Proceedings of Computer Animation, pages 155{166,

Geneva, Switzerland, 1996.

[HMPY97] C. Hu, T. Maekwa, N. Patrikalakis, and X. Ye. Robust interval

algorithm for surfaces intersections. Computer-Aided Design, 29(9):617{

627, 1997.

[Hof89] C.M. Ho�mann. Geometric and Solid Modeling. Morgan Kaufmann,

San Mateo, California, 1989.

[Hof90] C.M. Ho�mann. A dimensionality paradigm for surface interrogations.

Computer Aided Geometric Design, 7:517{532, 1990.

[Hoh91] M.E. Hohmeyer. A surface intersection algorithm based on loop detec-

tion. International Journal of Computational Geometry and Applications,

1(4):473{490, 1991. Special issue on Solid Modeling.

[HSS83] J.E. Hopcroft, J.T. Schwartz, and M. Sharir. E�cient detection of

intersections among spheres. The International Journal of Robotics Re-

search, 2(4):77{80, 1983.

[Hub93] P. M. Hubbard. Interactive collision detection. In Proceedings of IEEE

Symposium on Research Frontiers in Virtual Reality, October 1993.

[KHM+96] J. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan.

E�cient collision detection using bounding volume hierarchies of k-dops.

In Siggraph'96 Visual Proceedings, page 151, 1996.

[KKM97] J. Keyser, S. Krishnan, and D. Manocha. E�cient and accurate b-

rep generation of low degree sculptured solids using exact arithmetic. In

ACM/SIGGRAPH Symposium on Solid Modeling, pages 42{55, 1997.

[KM97] S. Krishnan and D. Manocha. An e�cient surface intersection algo-

rithm based on the lower dimensional formulation. ACM Transactions on

Graphics, 16(1):74{106, 1997.

[KPLM98] S. Krishnan, A. Pattekar, M. Lin, and D. Manocha. Spherical shell:

A higher order bounding volume for fast proximity queries. In Proc. of

Third International Workshop on Algorithmic Foundations of Robotics,

1998.

[KPP90] G.A. Kriezis, P.V. Prakash, and N.M. Patrikalakis. Method for inter-

secting algebraic surfaces with rational polynomial patches. Computer-

Aided Design, 22(10):645{654, 1990.



18 Collision detection between geometric models: a survey

[KPW90] G.A. Kriezis, N.M. Patrikalakis, and F.E. Wolter. Topological and

di�erential equation methods for surface intersections. Computer-Aided

Design, 24(1):41{55, 1990.

[Lat91] J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,

1991.

[LC91] M.C. Lin and John F. Canny. E�cient algorithms for incremental dis-

tance computation. In IEEE Conference on Robotics and Automation,

pages 1008{1014, 1991.

[Lin93] M.C. Lin. E�cient Collision Detection for Animation and Robotics.

PhD thesis, Department of Electrical Engineering and Computer Science,

University of California, Berkeley, December 1993.

[LM93] M.C. Lin and Dinesh Manocha. Interference detection between curved

objects for computer animation. In Models and Techniques in Computer

Animation, pages 43{57. Springer-Verlag, 1993.

[LM95] M.C. Lin and Dinesh Manocha. Fast interference detection between

geometric models. The Visual Computer, 11(10):542{561, 1995.

[LM97] M.C. Lin and Dinesh Manocha. E�cient contact determination be-

tween geometric models. International Journal of Computational Geom-

etry and Applications, 7(1):123{151, 1997.

[LPW79] T. Lozano-P�erez and M. Wesley. An algorithm for planning collision-

free paths among polyhedral obstacles. Comm. ACM, 22(10):560{570,

1979.

[LR80] J.M. Lane and R.F. Riesenfeld. A theoretical development for the com-

puter generation and display of piecewise polynomial surfaces. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2(1):150{

159, 1980.

[Man88] M. Mantyla. An Introduction to Solid Modeling. Computer Science

Press, Rockville, Maryland, 1988.

[MC91] D. Manocha and J.F. Canny. A new approach for surface intersec-

tion. International Journal of Computational Geometry and Applications,

1(4):491{516, 1991. Special issue on Solid Modeling.

[MC95] B. Mirtich and J. Canny. Impulse-based simulation of rigid bodies. In

Proc. of ACM Interactive 3D Graphics, Monterey, CA, 1995.

[MD94] D. Manocha and J. Demmel. Algorithms for intersecting parametric

and algebraic curves I: simple intersections. ACM Transactions on Graph-

ics, 13(1):73{100, 1994.



Ming C. Lin & Stefan Gottschalk 19

[MD95] D. Manocha and J. Demmel. Algorithms for intersecting parametric

and algebraic curves ii: multiple intersections. Computer Vision, Graphics

and Image Processing: Graphical Models and Image Processing, pages 81{

100, 1995.

[Meg83] N. Megiddo. Linear-time algorithms for linear programming in r
3 and

related problems. SIAM J. Computing, 12:pp. 759{776, 1983.

[MG91] J. Miller and R. Goldman. Combining algebraic rigor with geometric

robustness for the detection and calculation of conic sections in the in-

tersection of two quadric surfaces. Proceedings of ACM Solid Modeling,

pages 221{233, 1991.

[Moo79] R.E. Moore.Methods and applications of interval analysis. SIAM stud-

ies in applied mathematics. Siam, 1979.

[NAT90] B. Naylor, J. Amanatides, and W. Thibault, \Merging bsp trees yield

polyhedral modeling results", in Proc. of ACM Siggraph, 1990, pp. 115{

124.

[Ove92] M. H. Overmars. Point location in fat subdivisions. Inform. Proc. Lett.,

44:261{265, 1992.

[Pat93] N.M. Patrikalakis. Surface-to-surface intersections. IEEE Computer

Graphics and Applications, 13(1):89{95, 1993.

[Pra86] M.J. Pratt. Surface/surface intersection problems. In J.A. Gregory, ed-

itor, The Mathematics of Surfaces II, pages 117{142, Oxford, 1986. Clare-

don Press.

[PW89] Alex Pentland and John Williams. Good vibrations: Modal dynam-

ics for graphics and animation. In Computer Graphics (SIGGRAPH '89

Proceedings), volume 23, pages 215{222, July 1989.

[Qui94] S. Quinlan. E�cient distance computation between non-convex ob-

jects. In Proceedings of International Conference on Robotics and Au-

tomation, pages 3324{3329, 1994.

[RR92] A.A.G. Requicha and J.R. Rossignac. Solid modeling and beyond. IEEE

Computer Graphics and Applications, pages 31{44, September 1992.

[SAG84] T.W. Sederberg, D.C. Anderson, and R.N. Goldman. Implicit repre-

sentation of parametric curves and surfaces. Computer Vision, Graphics

and Image Processing, 28:72{84, 1984.

[Sam89] H. Samet. Spatial Data Structures: Quadtree, Octrees and Other Hi-

erarchical Methods. Addison Wesley, 1989.

[Sar83] R F Sarraga. Algebraic methods for intersection. Computer Vision,

Graphics and Image Processing, 22:222{238, 1983.



20 Collision detection between geometric models: a survey

[Sny93] J. Snyder and et. al. Interval methods for multi-point collisions between

time dependent curved surfaces. In Proceedings of ACM Siggraph, pages

321{334, 1993.

[Sed90] T.W. Sederberg. Techniques for cubic algebraic surfaces. IEEE Com-

puter Graphics and Applications, pages 14{25, July 1990.

[Sei90] R. Seidel. Linear programming and convex hulls made easy. In Proc. 6th

Ann. ACM Conf. on Computational Geometry, pages 211{215, Berkeley,

California, 1990.

[SJ91] C. Shene and J. Johnstone. On the planar intersection of natural

quadrics. Proceedings of ACM Solid Modeling, pages 234{244, 1991.

[Sny92] J. Snyder. Interval arithmetic for computer graphics. In Proceedings of

ACM Siggraph, pages 121{130, 1992.

[SP86] T.W. Sederberg and S.R. Parry. Comparison of three curve intersection

algorithms. Computer-Aided Design, 18(1):58{63, 1986.

[SWZ89] T.W. Sederberg, S. White, and A. Zundel. Fat arcs: A bounding

region with cubic convergence. Computer Aided Geometric Design, 6:205{

218, 1989.

[Tur89] G. Turk. Interactive collision detection for molecular graphics. Master's

thesis, Computer Science Department, University of North Carolina at

Chapel Hill, 1989.

[ZSP93] J. Zhou, E.C. Sherbrooke, and N.M. Patrikalakis. Computation of

stationary points of distance functions. Engineering with Computers,

9(4):231{246, 1993.


