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Abstract

In this paper, we survey the state of the art in collision detec-

tion between general geometric models. The set of models include

polygonal objects, spline or algebraic surfaces, CSG models, and

deformable bodies. We present a number of techniques and sys-

tems available for contact determination. We also describe several

N-body algorithms to reduce the number of pairwise intersection

tests.

1 Introduction

The goal of collision detection (also known as interference detection or con-

tact determination) is to automatically report a geometric contact when
it is about to occur or has actually occurred. The geometric models may
be polygonal objects, splines, or algebraic surfaces. The problem is en-
countered in computer-aided design and machining (CAD/CAM), robotics

and automation, manufacturing, computer graphics, animation and com-

puter simulated environments. Collision detection enables simulation-
based design, tolerance veri�cation, engineering analysis, assembly and

dis-assembly, motion planning, animated �gure articulation, walkthrough,
etc. All these tasks involve contact analysis and spatial reasoning among

static or moving objects. In many of these application areas, collision

detection is considered a major computational bottleneck.
Collision detection is an essential component of robot motion planning

and control, where it helps to steer the robot away from its surround-

ing obstacles. In virtual prototyping, it is used to re�ne designs without

productions of physical prototypes in the initial design stage. Collision

detection can also be a signi�cant aid in simulation for engineering analy-
sis. Experiments which are impractical to conduct can be simulated, such

as support design for tunnels. Another example is automobile crash test
and ergonomics analysis which can be done systematically at much lower
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cost and under more controlled, varied conditions using collision detection
algorithms in a computer simulated environment.

In this paper, we survey the state of the art in collision detection be-
tween geometric models represented by a collection of polygons smooth
surfaces. The rest of the paper is organized in the following manner. In
Section 2, we present a classi�cation of the the collision detection prob-
lem. We brie
y survey the algorithms available for polygonal models in

Section 3. Then, we describe the state of art in collision detection for
general geometric models and discuss the advantages and shortcomings of
each method in Section 4. Section 5 highlights techniques in reducing the
number of pairwise intersection tests for a computer simulated environ-
ment consisting of multiple static or moving objects. We list a number of

public domain packages for collision detection in Section 6.

2 Problem domain classi�cation

A wide range of techniques, including hierarchical representation, geo-

metric reasoning, algebraic formulations, spatial partitioning, analytical
methods, and optimization methods, have been proposed. Algorithm de-

sign depends on the model representation, the desired query types, and
the simulation environment.

2.1 Model representations

There are many types of model representations used in CAD/CAM and

3D graphics. One possible taxonomy that we adopt (for the ease of orga-
nization) in this paper is shown in Figure 1.
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2.1.1 Polygonal models

Polygonal objects are the most commonly used models in computer graph-

ics and modeling. They have a simple representation. They are versatile.

Hardware-accelerated rendering of polygon is widely available.

The most general class of polygonal model is the \polygon soup,"which

is a collection of polygons that are not geometrically connected and has

no topology information available. If the polygons form a closed manifold,

then the model has a well-de�ned inside and outside { it is a proper solid.

Some geometric algorithms rely on this structure. If the object de�ned
by the closed manifold is convex, then this additional structure can be

exploited in collision detection algorithms.

2.1.2 Constructive solid geometry

Constructive Solid Geometry or CSG forms objects from primitives such
as blocks, spheres, cylinders, cones, and tori, by combining them with set
theoretic operations such as union, intersection, and set di�erence [RR92,
Hof89]. One strength of the CSG representation is that it enables an in-

tuitive design process of building shapes by means of cutting (intersection
and set di�erence) and joining (union) simple shapes to form more com-
plex ones. It also makes �nding a collision witness easier [Cam91]. The
di�culty with CSG is that certain operations, such as rounding an edge
or �lleting a join, are di�cult to describe with CSG operations. Further-

more, an accurate boundary or surface representation, useful for rendering
or interference computations, can be hard to compute from CSG repre-
sentations [Hof89,KKM97].

2.1.3 Implicit surfaces

Implicit surfaces are de�ned using implicit functions. They are de�ned
with mappings from space to the real numbers, f : R3

7! R, and the

implicit surfaces are the loci of points where f(x; y; z) = 0. Such a function
de�nes unambiguously what is inside the model, f(x; y; z) < 0; and what

is outside, f(x; y; z) > 0. Consequently, implicit surfaces are generically
closed manifolds, a desirable property.

If the function is polynomial in x, y, and z, then it is called alge-

braic, which includes the algebraic surfaces [Sed90], higher-order func-

tions [BW90] and convolution surfaces. Implicits are also often used as

the primitives in CSG systems.
A special case of algebraic surfaces are the quadrics, which are the

second-degree polynomials in x, y, and z. These can represent slabs, cones,

spheres, and cylinders in a uni�ed framework. They are widely used in
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a number of applications and a number of specialized algorithms have

been developed for intersection computations between quadrics [FNO89,

MG91, SJ91].

2.1.4 Parametric surfaces

Parametric surfaces are mappings from some subset of the plane to space,

f : R2
7! R3. Unlike implicit surfaces, parametric surfaces are not gener-

ally closed manifolds. Hence, unlike CSG and implicit surfaces, they do

not represent a complete solid model, but rather a description of surface
boundary.

Parametric surfaces are easier to polygonalize and render as compared
to the implicits, and a special class called the Non-Uniform Rational B-

Spline (NURBS) has gained in popularity in CAD [LR80, Far93]. NURBS
have some very nice properties which make them easier to operate on.
They can also be represented using B�ezier patches. It is worth noting
that rational parametric surfaces (like NURBS and B�ezier patches) are a
proper subset of algebraic surfaces.

2.2 Di�erent types of queries

In the simplest case, we want to know whether two models touch. Some-
times, we must �nd which parts (if any) touch, i.e. �nd their intersection.
Sometimes we want to know their separation: if two objects are disjoint,

what is the minimum Euclidean distance between them? If they pene-
trate, what is the minimum translational distance required to separate
them [CC86]? Finally, if we know the objects' placements and motions,

when will be their next collision? This is ETA computation, borrowing
from the phrase, \estimated time of arrival".

Di�erent applications need di�erent queries. Distance information is
useful for computing interaction forces and penalty functions in robot mo-

tion planning [Lat91] and dynamic simulation [Lin93,MC95]. Intersection
computation is important for physically-based modeling and animation

systems which must know all contacts in order to compute the collision

response. The ETA solution permits us to control the time step in a

simulation [Lin93, LM95].

2.3 Simulation environments

Special characteristics of each simulation are often considered in designing

and choosing the most appropriate algorithm for collision detection. Here
we examine a few common cases.
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2.3.1 Pair processing vs. nbody processing

If the problem involves only a pair of models, we call it \pair processing."

If we have many di�erent parts, we call it \Nbody processing," in reference

to the classic problem in celestial mechanics (many bodies moving under

mutual gravitational in
uence).

2.3.2 Motions: static vs. dynamic

Queries are often executed repeatedly on the same models in the same
environment, as the objects rotate and translate (or possibly subject to
non-rigid transformations [HLMD96]) at successive time steps. In these
dynamic environments, the geometric relationship may only di�er slightly
from that of the previous step, if the motion between steps is relatively

small. Algorithms that can capitalize on this property are said to be
exploit temporal coherence.

In order to exploit temporal coherence, some algorithms require bounds
[Lin93, LM95] on the motion of the objects (e.g. objects' velocities or ac-
celerations). Other algorithms, such as the ones based on interval arith-

metic, need a closed-form expression of the motion as a function of time.
Some algorithms demand no information on the motion, but need only
the placements of the objects at successive time steps.

Sometimes the problem involves objects which are not in motion. For
example, given a model of an entire power-plant, design engineers may be

interested in performing static interference checks among components of
the entire plant for tolerance veri�cation and access clearance.

2.3.3 Rigid bodies vs. deformable models

When the component of time is introduced, there is also the possibil-

ity that the models deform over time. Assuming that the deformations
between time steps are small, some algorithms may be able to exploit

temporal coherence in this case as well.

3 Collision detection for polygonal models

Most of the earlier work in collision detection has focused on algorithms

for convex polytopes. A number of algorithms with good asymptotic
performance have been proposed in the computational geometry litera-

ture. Using hierarchical representations, an O(log2n) algorithm is given
in [DK90] for polytope-polytope overlap problem, where n is the number

of vertices. This elegant approach has not been robustly implemented in
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3D, however. Good theoretical and practical approaches based on lin-

ear complexity of the linear programming problem are known [Meg83,

Sei90]. Minkowski di�erence and convex optimization techniques are used

in [GJK88] to compute the distance between convex polytopes by �nding

the closest points.

In applications involving rigid motion, geometric coherence has been

exploited to design algorithms for convex polyhedra based on local fea-

tures [Bar90, LC91, Lin93]. Local properties have been used in the earlier

motion planning algorithms by [Don84, LPW79] when two objects come
into contact. These algorithms exploit the spatial and temporal coherence
between successive queries and work well in practice.

A number of hierarchies have been used for collision detection between
general polygonal models. Typical examples of bounding volumes include
axis-aligned boxes (cubes are a special case) and spheres, and they are
chosen for their fast overlap tests. Other structures include cone trees,
k-d trees and octrees [Sam89], sphere trees [Hub93,Qui94], trees based on

S-bounds [Cam91] etc. Binary space partitions (BSP) [NAT90] and exten-
sions to multi-space partitions [BV91], and spatial partitionings based on
space-time bounds or four-dimensional testing [AANJ94,Cam90,Can86,
Hub93] have been used. All of these hierarchical methods do very well
in performing \rejection tests" whenever two objects are far apart. How-

ever, when the two objects are in close proximity and can have multiple
contacts, these algorithms either use subdivision techniques or check very
large number of bounding volume pairs for potential contacts. In such
cases, their performance slows down considerably.

More recent work seems to have focused on tighter-�tting bounding

volumes. Gottschalk et al. [GLM96], have presented a fast algorithm

and a system, called RAPID, for interference detection based on oriented
bounding boxes, which approximate geometry better than do axis-aligned
bounding boxes. Barequet et al. [BCG+96] have also used oriented

bounding boxes for computing hierarchical representations of surfaces for

performing collision detection. Klosowski et al. [KHM+96] have used

discrete orientation polytopes (k-DOPs), which also are superior approxi-

mations to bounded geometry. Krishnas et. al. [KPLM98] have proposed
a higher order bounding volume, designed to match curvature of the un-

derlying 3D geometry, especially suited for B�ezier patches and NURBS.

4 Algorithms for non-polygonal models

In geometric and solid modeling, the problem of computing the intersec-
tion of surfaces represented as splines or algebraic surfaces has received

a great deal of attention [Pra86,Hof89]. Given two surfaces, the prob-
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lem corresponds to computing all components of the intersection curve,

robustly and accurately. It includes work on curves and surface inter-

sections [SWZ89, SP86,BHHL88,Hof89,Hof90,MD94,MD95,KM97]. All

these algorithms have focussed on accurate computation of the intersection

set for static models. However, for collision detection we are actually deal-

ing with a restricted version of this problem. That is, given two surfaces

we want to know whether they intersect. Furthermore, we are interested

in dynamic environments composed of moving objects.

In general, given two spline surfaces, there is no good and quick solu-
tion to the problem of whether they intersect or have a common geometric
contact. The simplest solution is based on using subdivision and checking

the control polytopes or convex bounding boxes for collision.

4.1 Constructive solid geometry models

Since CSG objects are de�ned using set operations, the intersection prob-

wev
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4.1.2 Interval arithmetic and CSG combinations of implicit func-

tions

Du� [Duf92] employs interval arithmetic to evaluate implicit functions

over box-like regions of space to determine whether the regions lie entirely

inside, entirely outside, or potentially laying across the boundary of the

implicit surfaces. This is the familiar point classi�cation scheme extended

to regions obtained from adaptive subdivision of space. This technique

is intrinsicaly approximate. It may not be able to determine the contact

status of disjoint models which are almost touching.
Du� applies this approach to a list of two or more CSG models, so it is

an nbody algorithm. He also extends this method to distance computation
and the ETA problem when closed-form solution of the motions of the
objects are known.

This method is adaptive subdivision over the space in which the models
are embedded, and the precision of the results is limited to the �neness of

the subdivision. Allowing for the �nite precision of the method, it is an
extremely robust and concise formulation of the problem, as well as easy
to implement. It is also an expensive method which will not perform real
time collision detection on large models with current computing hardware.

4.2 Parametric surfaces

There are four techniques for �nding the intersection of two paramet-
ric surfaces: subdivision methods, lattice methods, tracing methods, and
analytic methods. Many practitioners actually use some combination of

these. A survey of these techniques is given in [Pra86,Hof89].

4.2.1 Subdivision methods for parametric surfaces

All subdivision methods for parametric surfaces work by recursively sub-
dividing the domain of the two surface patches in tandem, and examining
the spatial relationship between patch subsections. Depending on various

criterion, the subsections are further subdivided and recursively examined,

or the given recursion branch is terminated. In all cases, whether it is the
intersection curve or the distance function, the solution is known only to

�nite precision, according to how �nely the domain has been subdivided
and how it maps into space.

4.2.2 Subdivision of domain with interval arithmetic

Snyder [Sny92] uses interval arithmetic to adaptively subdivide the do-

mains of the surfaces to re�ne an approximation of the intersection curve
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until it is of satisfactory precision. Interval arithmetic is used to obtain

conservative bounding boxes in space for the surface subsections.

The method does not determine with certainty that a contact has oc-

cured { it can only report a conservative upper and lower bounds on the

patches' closest approach in space. Intersection is said to have occured

when the lower bound on distance remains zero. The algorithm can han-

dle distance queries by re�ning the bounds as the patch subdivisions are

directed by a priority queue.

4.2.3 Subdivision of domains of time-varying parametric sur-

faces

A time-varying surface is a time-dependentmapping from a (u; v)-parameter

patch to space: f : (u; v)� t 7! R3. The dependence on time can re
ect
motion as well as deformations with time.

Herzen, Barr, and Zatz [HBZ90] adaptively subdivide the domain (u; v;
and t) of the mappings into subregions and use use Lipschitz Conditions
(bounds on various derivatives of the mappings) to obtain bounds on the
scope of the subregion's range in space. A priority queue is used to direct

the subdivision so as to locate the earliest pair of subregions (ie. containing
the smallest t) which overlap in space.

Hence, they have an ETA algorithm for deformable parametric sur-
faces, which is robust and accurate to any desired precision. It's disad-
vantages are that it is time-consuming, fundamentally approximate, and

requires the motion of the models to be expressed as closed-form functions
of time (such motion functions are not always available or convenient).

4.2.4 Improved interval arithmeticmethods for deformable sur-

faces

In 1993, Snyder et al. [Sny93] improved upon the work of Herzen et al.
by introducing more conditions with which to prune the search space for

collisions. They added a tangency condition, which states that at the
moment of contact, two curved surfaces must have a point in common

but with opposing normals (that is, the surfaces must be tangent). He
also stated that the converging points on the two surfaces must be moving

toward each other.

Consequently, when considering a pair of domain patches for poten-

tial collision, they can be eliminated from consideration not only if they

don't overlap spatially, but also if they don't contain opposing normals, or
if they don't contain converging components in their respective velocity

intervals (the derivatives are also interval-valued functions). This helps

speed convergence to the solution set.
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4.2.5 Lattice methods

The intersection curve of two surfaces in space has a preimage curve on

the domains of both patches. Lattice methods attempt to locate speci�c

points of these preimages by selecting many isoparametric curves (where

a u- or v-parameter is held constant) which criss-cross the surface like a

lattice-work [Pra86]. Selecting a value for u on one of the patches reduces

the dimensionality of the search space to one { the only free variable is v

on that patch.

So, we can express the points of surface intersection as the zeroes of a
function of v. An analysis of the degree of the polynomial and the deriva-

tives allow us to perform root trapping techniques to robustly �nd where
the intersection preimage meets the isoparametric curve. The di�culty
with this method is that the intersection curve can be a very small closed
loop which is missed by the isoparametric curves { this most often occurs
when the surfaces are grazing or barely penetating. In some cases, lattice

methods or subdivision methods are used to �nd starting points for use
by the tracing methods.

4.2.6 Tracing methods

The tracing method begins with a given point known to be on the in-
tersection curve [BFJP87,BHHL88,Hoh91,MC91,KM97]. Then the in-
tersection curve is traced in su�ciently small steps until the edge of the

patch is found, or until the curve returns to itself to close a loop.
While it is easy to check for meetings with a patch boundary, it is

di�cult to know when the tracing point has returned to its starting posi-

tion, as it requires the use of some arbitrarily chosen tolerance. Frequently
this is posed as an initial-value di�erential equations problem [KPW90] or

solving a system of algebraic equations [BHHL88,MC91,KM97]. At the
intersection point on the surfaces, the intersection curve must be mutually

orthogonal to the normals of the surfaces. Consequently, the vector �eld
which the tracing point must follow is given by the cross product of the

normals.

4.2.7 Analytic methods

Analytic methods usually involve implicitizing one of the parametric sur-

faces { obtaining an implicit representation of the model [SAG84]. The

parametric surface is a mapping from (u; v)-space to (x; y; z)-space, and
the implicit surface is a mapping from (x; y; z)-space to the real numbers.

By substituting the parametric functions fx(u; v); fy(u; v); fz(u; v) for

the x; y; z of the implicit function, we obtain a scalar function in u and v.
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The locus of roots of this scalar function map out curves in the (u; v) plane

which are the preimages of the intersection curve [KPP90,MC91,KM97,

Sar83]. Based on its representation as an algebraic plane curve, e�cient

algorithms have been proposed by a number of researchers [KM97].

4.3 Implicit surface

Pentland and Williams, [PW89], proposed using implicit functions to rep-

resent shape and the property of the \inside-outside" functions for colli-

sion detection. Besides its restriction to implicits, this algorithm has a
drawback in terms of robustness as it only uses point samples. Lin and

Manocha have presented e�cient algorithms for curved models composed
of either spline surfaces and algebraic surfaces undergoing rigid motion,
using extension of their earlier algorithm for polyhedra, hierarchical rep-
resentation and equation solving techniques [LM93, LM95, LM97]. These
algorithms work well on mostly low degree primitives.

5 Nbody processing

For environments consisting of n (possibly moving) objects, performing

O(n2) pairwise interference checks becomes a computational bottleneck,
when n is large. In order to eliminate some unnecessary pairwise checks
and to speed up the runtime performance, several techniques have been
proposed. Algorithms of complexity O(nlog2n +m) have been presented
for spheres in [HSS83] and rectangular bounding boxes in [Ede83], where

m corresponds to the actual number of overlaps. Some of the fastest

practical algorithms assume the knowledge of maximum acceleration and
velocity; others exploit the spatial arrangement to reduce the number of

pairwise interference tests without assuming any knowledge of trajectories.

5.1 Scheduling scheme

With bounds on velocities and accelerations we can estimate lower bounds

on potential collision times. Scheduling algorithms [Lin93, LM95] main-
tain a queue of all object pairs that might collide, which is sorted by lower
bounds on time to collision. These lower bounds on the time to collision

are calculated adaptively and updated when a critical event, such as a

collision, occurs. This technique has been successfully incorporated in the

Impulse-Based Dynamics Simulator [MC95], reducing the frequency of the
collision checks and thereby speeding up dynamics simulation.
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5.2 Sorting-based sweep and prune

More recently, Cohen et al. have presented algorithms and a system,

I-COLLIDE, based on spatial and temporal coherence, for large environ-

ments composed of multiple moving objects [CLMP95]. The number of

object pair interactions is reduced to only the pairs within close proximity

by sorting axis-aligned bounding boxes (AABBs) surrounding the objects.

It is output sensitive and its run time is linearly dependent on the number

of objects in the environment instead of quadratic dependence. It uses

dynamically sized AABBs, linear sweep and prune, and geometric coher-
ence to quickly reject the object pairs, that are unlikely to collide within

the next time step.

5.3 Interval tree for 2D intersection tests

We can use the interval tree [Ede83] for static query, as well as for the

rectangle intersection problem. Each query of interval intersection takes
O(logn + k) time where k is the number of reported intersection and n

is the number of intervals. Therefore, reporting intersection among n

rectangles can be done in O(nlogn +K) where K is the total number of
intersecting rectangles.

5.4 Uniform spatial subdivision

We can divide the space into unit cells (or volumes) and place each object
(or bounding box) in some cell(s) [Ove92]. To check for collisions, we

have to examine the cell(s) occupied by each box to verify if the cell(s)
is(are) shared by other objects. But, it is di�cult to set a near-optimal

size for each cell and it requires tremendous amount of allocated memory.

If the size of the cell is not properly chosen, the computation can be
expensive. For an environment where objects are of uniform size [Tur89],
this is a rather ideal algorithm and especially suitable for parallelization.

Overmars has shown that using a hash table to look up an entry and O(n)

storage space we can perform the point location queries in constant time
[Ove92].

6 Public Domain Software Packages

Most of public domain systems are applicable to polygonal models and

some are also applicable to large environments composed of multiple mov-

ing objects. It is nearly impossible to compare di�erent algorithms and

systems fairly, since their performance varies, depending on the simulation
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environments (models, varieties of contacts, query types, motion descrip-

tion, etc.) and other factors. Here we only list them in the chronological

order of their release and brie
y describe their special characteristics.

6.1 I-COLLIDE collision detection system

http://www.cs.unc.edu/~geom/I COLLIDE.html.

I-COLLIDE is an interactive and exact collision-detection library for

environments composed of many convex polyhedra or union of convex
pieces, based on the expected constant time, incremental distance compu-
tation algorithm [LC91, Lin93] and algorithms to check for collision be-

tween multiple moving objects [CLMP95].

6.2 RAPID interference detection system

http://www.cs.unc.edu/~geom/OBB/OBBT.html.

RAPID is a robust and accurate polygon interference detection library
for pairs of unstructured polygonal models. It is applicable to polygon
soups { models which contain no adjacency information and obey no topo-
logical constraints. It is most suitable for close proximity con�gurations

between highly tesselated smooth surfaces. [GLM96].

6.3 V-COLLIDE collision detection system

http://www.cs.unc.edu/~geom/V COLLIDE.

V-COLLIDE is a collision detection library for large dynamic envi-

ronments [HLC+97], and unites the nbody processing algorithm of I-

COLLIDE and the pair processing algorithm of RAPID. It is designed
to operate on large numbers of static or moving polygonal objects to al-
low dynamic addition or deletion of objects between timesteps.

6.4 Distance computation between convex polytopes

http://www.comlab.ox.ac.uk/oucl/users/stephen.cameron/distances.html

This package is an enhanced and dynamic version [Cam97b,Cam97a] of
the distance routine of Gilbert, Johnson and Keerthi (GJK), which allows

the tracking of the distance between a pair of convex polyhedra. It requires

a list of all the edges in each convex polyhedra for best performance. Its
performance is comparable to Lin-Canny convex polytope overlap test.
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6.5 SOLID interference detection system

http://www.win.tue.nl/cs/tt/gino/solid/

SOLID is a library for interference detection of multiple three-dimensional

polygonal objects (including polygon soups) undergoing rigid motion. Its

performance and applicability is comparable to that of V-COLLIDE.

6.6 V-Clip collision detection system

http://www.merl.com/people/mirtich/vclip.html

The Voronoi Clip, or V-Clip, algorithm is a low-level collision detection

algorithm for polyhedral objects { an improvement of the closest-feature
tracking algorithm [LC91, Lin93]. It operates on a pair of convex poly-
hedra, or nonconvex hierarchies of them. In addition to distance compu-
tation, it can also report penetration points and estimated penetration
distance between overlapping models.

7 Future work

Despite abundant wealth of the literature in collision detection, there are
several open research issues. Much remains to be done on detecting con-

tacts between deformable models accurately and e�ciently. In dynamic
simulation, computing collision response requires robust and interactive

computation of the closest features or contact points between general ge-
ometric models, as well as rapid calculation of penetration distance. This

problem is especially di�cult for those models with smooth surfaces and

many concavities. There are also new challenges in applying collision
detection algorithms to massive models, which consist of millions of prim-

itives and are often too large to �t in the main memory. These may include
developing external memory algorithms, dynamic pre-fetching techniques

and parallel computing methods for collision detection.
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