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Abstract. The simulation of human behaviors in virtual environments has many

applications. In many of these applications, situations arise in which the user has a

face-to-face interaction with a virtual agent. In this work, we present an approach for

multi-agent navigation that facilitates a face-to-face interaction between a real user and a

virtual agent that is part of a virtual crowd. In order to predict whether the real user is

approaching a virtual agent to have a face-to-face interaction or not, we describe a model of

approach behavior for virtual agents . We present a novel interaction velocity prediction

(IVP) algorithm that is combined with human body motion synthesis constraints and facial

actions to improve the behavioral realism of virtual agents. We combine these techniques

with full-body virtual crowd simulation and evaluate their benefits by conducting a user

study using Oculus HMD in an immersive environment. Results of this user study indicate

that the virtual agents using our interaction algorithms appear more responsive and are able

to elicit more reaction from the users. Our techniques thus enable face-to-face interactions

between a real user and a virtual agent and improve the sense of presence observed by the

user.
+ Correspondence concerning this article should be addressed to Tanmay Randhavane, Department of Com-
puter Science, Chapel Hill, NC 27514. E-mail: tanmay@cs.unc.edu
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Figure 1: F2FCrowds: Our algorithm enables the real user (in blue, wearing an HMD) to have face-to-face
interactions with virtual agents. The virtual agents are responsive and exhibit head movements, gazing, and
gesture behaviors.

1. Introduction

In many applications, it is important to simulate the behavior of virtual humans and crowds.

It is well known that adding virtual agents or avatars into simulated worlds can improve the

sense of immersion (Llobera, Spanlang, Ruffini, & Slater, 2010; Musse, Garat, & Thalmann,

1999; Pelechano, Stocker, Allbeck, & Badler, 2008; Slater et al., 2006). The use of virtual

characters and associated environments is widely adopted in training and rehabilitation

environments (Ulicny & Thalmann, 2001). Other applications include treatment of crowd

phobias and social anxiety using VR therapy (Pertaub, Slater, & Barker, 2002), architectural

flow analysis and evacuation planning (Cassol, Oliveira, Musse, & Badler, 2016; Haworth

et al., 2016), learning a foreign language (Ólafsson, Bédi, Helgadóttir, Arnbjörnsdóttir, &

Vilhjálmsson, 2015), etc.

There is considerable work on evaluating the sense of presence and immersion in VR based

on the behaviors, interactions, and movements of virtual agents. Many researchers have
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concluded that the social presence of virtual agents depends on the realism of their behavior

(Blascovich et al., 2002) and the nature of their interactions (Guadagno, Blascovich,

Bailenson, & Mccall, 2007; Kyriakou, Pan, & Chrysanthou, 2015). Recent advances in

artificial intelligence (including natural language processing and computer vision, along with

development of embodied conversational agents) are helping to generate realistic interaction

scenarios. Other work includes the development of techniques to simulate gazing, collision

avoidance movements, head turning, facial expressions, and other gestures (Grillon &

Thalmann, 2009; Nummenmaa, Hyönä, & Hietanen, 2009).

One of the main social interactions is face-to-face (F2F) interaction, which is typically

carried out without the use of any mediating technology (Crowley & Mitchell, 1994). This

broad area has been studied in social sciences for more than a century. There is a recent

interest in integrating virtual reality technology into social media, and F2F communication is

an important component of such a system. Different sensory organs play an important role

in these interactions, which may include eye contact or two agents facing or talking in close

proximity to each other. As a result, there are many challenges in terms of developing such

interaction capabilities between virtual agents.

Previous works have treated F2F conversations as a joint activity involving two or more

participants (Ólafsson et al., 2015). Clark (1996) identifies three stages of participation in a

joint activity. The entry, body, and exit of the conversation constitute these stages on a very

high level. In this work, we try to model these human behaviors for F2F interactions with

virtual agents.

• In order to enter an F2F interaction with a virtual agent, a real user must approach the

virtual agent and the virtual agent should recognize the real user’s intent to interact.

• The virtual agent should respond in a positive way and lead to the next stage, which

corresponds to the body section of the interaction.
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• When the body of the interaction is over or if the real user loses interest in the

conversation, the virtual agent should recognize this event and exit the conversation.

In this work, we propose solutions to the problems of entry and exit of the virtual agents in

an F2F interaction with a real user. The body of the conversation usually contains a verbal

exchange of information. We do not focus on verbal communications between the user and

the agents, though our approach can be combined with such methods.

Main Results: We address the problem of computing the movements or trajectories to

enable F2F interactions between a real user and a virtual agent who is part of a virtual

crowd. This includes automatically computing collision-free trajectories that enable such

agents to come close to each other for F2F communications. Satake et al. (2009) developed a

model of approach behavior for robots having F2F interactions with people who are

walking. Their model was based on the idea that human interactions can be classified based

on social and public distance (Hall, 1966). Motivated by these ideas, we develop a model of

approach behavior for virtual agents that models their movement for F2F communication.

We present a novel navigation algorithm, Interaction Velocity Prediction (IVP), which

predicts whether the avatar of a real user is trying to approach a virtual agent for F2F

interaction. IVP is combined with 2D multi-agent simulation to compute collision-free

trajectories. In order to generate plausible full-body simulations, we also integrate the

velocity computation with human motion synthesis to generate upper body movements such

as gazing and nodding. Overall, our approach (F2FCrowds) can generate smooth and

natural-looking trajectories for each agent. We use our algorithms to simulate the movement

of tens of virtual agents in complex indoor and outdoor environments at interactive rates.

In order to evaluate the benefits of our algorithms, we performed a user evaluation in an

immersive environment where a real user interacted with the virtual agents in four different

scenarios. In particular, we compared our algorithm (with and without upper body
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behaviors) with a baseline crowd simulation algorithm that uses coupled 2D navigation and

full-body motion synthesis (Narang, Best, Randhavane, Shapiro, & Manocha, 2016).

We observe a statistically significant preference for our new algorithm. Our algorithm

increased the sense of presence felt by the users. When using our algorithms, the virtual

agents appeared more responsive and were able to elicit more reaction from the users. Our

results for the sense of presence question show that 40% of the participants preferred our

algorithm (without upper body behaviors) over the baseline, whereas only 3.33%

participants preferred the baseline and the rest remained neutral. Participants felt virtual

agents were more aware when using our algorithm (without upper body behaviors) in 60%

of the responses, whereas only 3.33% felt that way for the baseline. Our methods (without

upper body behaviors) elicited more reaction from the user in 53.33% of the cases, whereas

the baseline elicited more reaction in 10% of the cases. The addition of upper body

behaviors also showed a significant improvement in the performance.

The rest of the paper is organized as follows. We briefly present prior work on crowd

simulation and interactions in Section 2. In Section 3, we provide an overview of our

algorithm. We describe the model of approach behavior for virtual agents and the novel

velocity computation algorithms in Section 4. In Section 5, we provide the implementation

details and highlight our algorithm’s performance on different benchmarks. We describe the

details of our user evaluation in Section 6.

2. Related Work

In this section, we give an overview of prior work on face-to-face interactions, crowd

simulation for VR, and interaction with virtual agents in a virtual environment.
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2.1. Face-to-Face Interactions

Face-to-face interactions have been studied in psychology, sociology, and robotics. Satake

et al. (2009) presented an algorithm to enable a robot to have F2F interactions with people

who are walking. Gonçalves and Perra (2015) studied empirical characteristics of

face-to-face interaction patterns and novel techniques to discover mesoscopic structures in

these patterns. There is work on investigating F2F interactions in terms of capabilities to

understand and generate natural language in combination with non-verbal signals and social

management (Bonaiuto & Thórisson, 2008; Cassell, Vilhjálmsson, & Bickmore, 2001;

Heylen et al., 2011; Jonsdottir, Thorisson, & Nivel, 2008; Kopp, Stocksmeier, & Gibbon,

2007; Pantic et al., 2011; Vinciarelli, Pantic, & Bourlard, 2009). In this paper, we attempt to

provide the users of virtual reality the ability to have F2F interactions with virtual agents in

virtual crowds. Our approach provides a platform to implement the aforementioned models

in the context of F2F interactions in virtual crowds.

2.2. Crowd and Multi-Agent Simulation

A significant amount of research has been done in multi-agent and crowd simulation. In this

paper, we mainly limit ourselves to a class of algorithms that decomposes the trajectory or

behavior computation for each agent into two parts: global planning and local navigation

(Helbing & Molnar, 1995; Kapadia & Badler, 2013; Ondřej, Pettré, Olivier, & Donikian,

2010; Reynolds, 1999; Van Den Berg, Guy, Lin, & Manocha, 2011). The global planner

computes a path for each agent in the environment towards its intermediate goal position.

The local navigation algorithms modify these paths so that the agents can avoid collisions

with dynamic obstacles or other pedestrians in the environment. Some of these methods also

account for a pedestrian’s personality (Guy, Kim, Lin, & Manocha, 2011; Pelechano,

Allbeck, & Badler, 2007) or use cognitive techniques (Funge, Tu, & Terzopoulos, 1999).
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Boulic (2005) presented a mathematical model to approach a dynamic target with a target

orientation but this method does not take into account for proxemic distances to the mobile

entities involved. In the robotics community, algorithms have also been proposed to predict

humans’ intentions and take them into account for robot navigation (Bera, Kim,

Randhavane, Pratapa, & Manocha, 2016; Bera, Randhavane, & Manocha, 2017; Bera,

Randhavane, Prinja, & Manocha, 2017; Brščić, Kidokoro, Suehiro, & Kanda, 2015; Park,

Ondřej, Gilbert, Freeman, & O’Sullivan, 2016).

2.3. Interaction with Virtual Agents

There is extensive literature on simulating realistic behaviors, movements, and interactions

with virtual agents in VR (Magnenat-Thalmann & Thalmann, 2005). In this paper, we

restrict ourselves to modeling some of the interactions between real and virtual agents when

they are in close proximity. Kyriakou et al. (2015) showed that basic interaction increases

the sense of presence, though they did not explicitly model users’ intent to participate.

Bailenson, Blascovich, Beall, and Loomis (2001) concluded that there is an inverse

relationship between gazing and personal space. Pelechano et al. (2008) showed that

pushing-based interaction increases the sense of presence in a virtual environment. Bonsch,

Weyers, Wendt, Freitag, and Kuhlen (2016) described a gaze-based collision avoidance

system and interactions for small-scale virtual environments. Hu, Adeagbo, Interrante, and

Guy (2016) presented a system where virtual agents exhibit head turning behavior but do not

explicitly model face-to-face interaction. There is also considerable work on individualized

avatar-based interactions (Nagendran, Pillat, Kavanaugh, Welch, & Hughes, 2014). Olivier,

Bruneau, Cirio, and Pettré (2014) presented a CAVE-based VR platform aimed at studying

crowd behaviors and generating reliable motion data. This platform can also be used for

studying the interaction between a real user and a virtual human. Our approach to enabling
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F2F interactions between a real user and virtual agents is complimentary to most of these

methods and can be combined with them.

Ólafsson et al. (2015) proposed a communicative function called the “Explicit

Announcement of Presence” to initiate conversations with strangers in a virtual environment.

Their approach assumes that the virtual agent does not have any interest in starting a

conversation and that the user’s intent for initiating conversations is made known by clicking

the mouse. Our approach, on the other hand, enables the virtual agents to learn the user’s

intent based on their trajectories and orientation. Pedica and Vilhjálmsson (2009) proposed a

reactive framework that allows a group of real users’ avatars to have social interactions with

territorial dynamics. This approach focuses mostly on user-controlled avatars, whereas our

approach considers only a single real user and a crowd of virtual agents.

3. Overview

In this section, we introduce our notation and give an overview of our approach for crowd

simulation to enable F2F interactions.

3.1. Notation

Our approach uses a multi-agent simulation algorithm that computes the trajectory of each

agent using a combination of global planning and local navigation. We make following

simplifying assumptions:

• The environment consists of one real user, represented by its avatar, and virtual users or

agents. The real user is walking in or navigating an immersive setting in an

environment with many virtual agents, avoiding collisions, and attempting to interact

with the virtual agents. In this work, we do not consider a case where multiple real

users share the same virtual space.
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Figure 2: Overview: We highlight the various components of our F2F crowd simulation system. The novel
algorithmic contributions are highlighted with red boundaries. Our interactive crowd simulation pipeline
enables a real user to interact with virtual agents. A model of approach behavior is used to predict whether the
avatar of the real user intends to perform F2F interactions. We also simulate upper body movements to increase
the realism.

• At any instant, the real user can have a face-to-face interaction with at most one virtual

agent. When the real user is interacting with a virtual agent, other virtual agents know

that the user is “busy” or not available for such an interaction. This keeps other virtual

agents from intruding on the real user’s conversation and means that they do not use the

IVP algorithm.

One of our goals is to compute collision-free and plausible trajectories for each virtual agent

to enable F2F interactions with the user. We model this using a novel model of approach

behavior based on Hall’s idea of social and public distance (Hall, 1966). This model makes

use of the novel IVP algorithm to predict whether the avatar of the real user is trying to

approach a virtual agent to perform F2F interactions.

We represent each agent using a high-DOF articulated model and compute upper and lower

body motions. The state of an agent i is represented by qi and is the union of the position of

the root joint and the states of all the joints of the high-DOF character. In terms of 2D

multi-agent navigation, we represent an agent i as a circle of radius ri at a position ~pi, which

is the 2D position of the root joint of the agent. At any time, a virtual agent i’s current

velocity is represented by ~vci and its preferred velocity and preferred orientation are
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represented by ~voi and ooi , respectively. The preferred velocity and orientation are based on

the intent of the virtual agent. We useM to denote the set of available upper body behaviors

and mi to denote the current upper body behavior of agent i. The 3D point on the face of the

user avatar at which the virtual agent i is currently gazing is denoted by ~gi (i.e. the gazing

point). We represent the user’s avatar with the subscript u. Let S be the simulator state,

which is the union of the states of all the entities in the scene, including obstacles and

agents.

Figure 2 provides an outline of our interactive crowd simulation pipeline. We use a game

engine to gather the user’s input, which is then used by our multi-agent simulation

system.The 2D multi-agent system uses a layered 2D navigation algorithm. The first layer

corresponds to the model of approach behavior and global planning, which computes the

preferred velocity ~voi and preferred orientation ooi of each virtual agent i. The second layer,

local navigation, computes the collision-free velocities ~vci for each virtual agent i. The

computed velocity ~vci and upper body behavior motions are passed to the motion synthesis

module, which computes the state qi for each virtual agent i.

4. Model of Approach Behavior

Hall (1966) studied human behavior and proposed four distance zones in humans: Intimate

Distance, Personal Distance, Social Distance, and Public Distance. According to Hall, each

of these distance zones facilitates a different type of interaction. At the social distance zone,

humans are close enough to communicate and have face-to-face interactions with each other,

whereas at the public distance zone, humans are close enough to notice each other but far

enough to not be able to have face-to-face interactions with each other. Personal distance

and intimate distance are generally reserved for friends and family. Based on these ideas,

Satake et al. (2009) proposed a model of approach behavior with which a robot can initiate
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Figure 3: Model of Approach Behavior: We define the model of approach behavior for virtual agents as a
sequence of three activities based on the distance between the user and the virtual agent (d) : (1) identifying the
intent of interaction of the user, (2) approaching at public distance (dp), and (3) initiating communication at
social distance (ds).

conversation with people who are walking. In order to have an F2F interaction, a robot

should find a person with whom to talk, start approaching that person at a public distance,

and initiate the conversation at a social distance. Therefore, Satake et al. (2009) defined

“approach behavior” as a sequence of the following activities: (1) selecting a target, (2)

approaching the target at public distance, and (3) initiating conversation at social distance.

We use similar ideas and propose a model of approach behavior for virtual agents (Figure 3)

that models how the virtual agent should approach the user. The model is a sequence of the

following activities: (1) identifying the intent of interaction of the user, (2) approaching at

public distance (dp), and (3) initiating communication at social distance (ds).

4.1. Identifying the Intent of Interaction of the User

A user may wish to interact with a virtual agent that is currently farther than public distance

(dp). In order to have an interaction, the user will attempt to be within the social distance
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Figure 4: Interaction Velocity Prediction: Given the current position (~pci ) and preferred velocity of the virtual
agent (~voi ) and the current position of the user agent (~pcu), our IVP algorithm predicts the velocity (~vivpu ) of the
user agent to intercept the virtual agent in time tmin. If the user’s predicted velocity ~vpredu satisfies the
constraint ~vivpu • ~vpredu ≥ θv , it will result in F2F communication.

(ds) of the virtual agent by moving towards the virtual agent. The virtual agent then must be

able to identify the user’s intent of interaction in order to have an F2F interaction. To

achieve this, we use a novel algorithm, Interaction Velocity Prediction (IVP), that predicts

whether or not a user is trying to interact with a virtual agent.

Given the current position ~pci and preferred velocity ~voi of a virtual agent i and the current

position of the user agent ~pcu, our IVP algorithm IVPi : R2×R2×R2 → R2×R determines

the velocity (~vivpu ) that the real user should follow to intercept the virtual agent in time tmin.

If the public distance is given by dp, then the time of interception t can be given as:

∥∥~ptu − ~pti∥∥ ≤ dp. (1)

Assuming that the user agent has the velocity ~vivpu and the virtual agent has the average

velocity ~voi ,

∥∥(~pcu + ~vivpu t)− (~pci + ~voi t)
∥∥ ≤ dp, (2)∥∥∥∥~vivpu − (~voi −

(~pcu − ~pci)
t

)

∥∥∥∥ ≤ dp
t
. (3)
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We solve the above equation for interaction velocity ~vivpu , i.e. when t is minimized. We also

take into account motion and dynamic constraints of the agent and put a limit on the

maximum speed:

∥∥~vivpu ∥∥ ≤ vmax, (4)

where vmax is the maximum speed of the user agent. Simplifying these two equations leads

to a 4th order polynomial. Therefore, we calculate ~vivpu such that the center of the circular

virtual agent and circular user agent coincide, i.e. :

~vivpu = ~voi −
(~pcu − ~pci)

t
. (5)

Substituting this expression in Equation 4 results in∥∥∥∥~voi − (~pcu − ~pci)
t

∥∥∥∥ ≤ vmax (6)

(~voixt− (~pcux − ~pcix))2 + (~voiyt− (~pcuy − ~pciy))2 ≤ v2maxt
2. (7)

We simplify Equation 7 as at2 + bt+ c ≤ 0, where

a = (~voix)
2 + (~voiy)

2 − v2max, (8)

b = − 2((~pcux − ~pcix)~voix + (~pcuy − ~pciy)~voiy), (9)

c = (~pcux − ~pcix)2 + (~pcuy − ~pciy)2. (10)

We assume that the agent’s speed will be lower than the user’s speed (otherwise the user

agent will never be able to intercept the virtual agent), a ≤ 0. Since c > 0, tmin is the larger

root of the equation at2 + bt+ c = 0 and the interaction velocity is:

~vivpu = ~voi −
(~pcu − ~pci)
tmin

(11)

4.1.1. Computation of Preferred Velocity We use IVP (Figure 3) to compute the interaction

velocity ~vivpu that the user will have in order to have F2F interactions with a virtual agent i at



14

time tmin. Based on the user’s position from the past few frames, we can predict the velocity

of the user based on some motion model and denote it as ~vpredu . In this case, the virtual agent

i will have F2F interaction with the user if:

~vivpu • ~vpredu ≥ θv, (12)

where θv is a pre-determined threshold.

The preferred velocity ~voi for a virtual agent i is then computed as follows:

~voi = vpref ∗
(~pcu − ~pci)
‖(~pcu − ~pci)‖

, (13)

where ~pci and ~pcu are the current positions of the virtual agent i and user agent u, respectively,

and vpref is the preferred natural speed of the virtual agent.

4.2. Approaching at Public Distance

At public distance, the virtual agent and the user can acknowledge each other. The virtual

agent achieves this by slowing down and gazing at the user. We define a boolean function

approachp() to denote the conditions when a virtual agent i decides to approach the real

user at public distance:

approachp() = (ds < ‖~pcu − ~pci‖ < dp) (14)

∧ (~ocu •
~pcu − ~pci
‖~pcu − ~pci‖

> othresh), (15)

where ~ocu is the 2D orientation vector of the user, othresh is a pre-determined threshold, and

ds and dp are the social and public distances, respectively.

When approachp() evaluates to true, the virtual agent slows down to allow a friendly

approach and its preferred velocity is given by:

~voi = k ∗ vpref ∗ (~pcu − ~pci). (16)
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Here, 0 < k < 1 is a pre-determined constant. Notice that the virtual agent’s speed is

directly proportional to the distance between the agent and the user to slow down the virtual

agent as it approaches the user.

4.2.1. Gazing In addition to computing the appropriate velocities, it is also important to

exhibit appropriate upper body movements and behaviors for F2F communications. Gazing

plays an important role in conveying the intent of interaction and it is important for virtual

agents to maintain eye contact with the user while approaching. Therefore, the virtual agents

gaze at the eyes of the user’s 3D avatar (Figure 6) whenever approachp() evaluates to true.

We do this by setting the gazing point gi of the virtual agent i to the position of the eye of

the user’s 3D avatar.

4.3. Initiating Communication at Social Distance

Social distance is the distance at which humans typically have face-to-face interactions in

social scenarios (Hall, 1966). Therefore, when the distance between the real user and the

virtual agent is less than social distance, the virtual agent stops and attempts to have a

communication with the user 5 as denoted by the boolean function approachs():

approachs() = (‖~pcu − ~pci‖ < ds) (17)

∧ (~ocu •
~pcu − ~pci
‖~pcu − ~pci‖

> othresh), (18)

where ~ocu is the 2D orientation vector of the user, othresh is a pre-determined threshold, and

ds is the social distance.

4.3.1. Head Movements Head movements play an important part in F2F interactions

(McClave, 2000). Therefore, our virtual agents exhibit head movements like nodding,

shaking, and tossing their heads to communicate with the user (Figure 6). During the
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Figure 5: F2F Communications: Our approach enables F2F communications between the avatar of the real
user and the virtual agent.

communication, the virtual agent performs head movements at randomized time intervals

ranging from 6− 10 seconds (based on Hadar, Steiner, and Clifford Rose (1985)). The head

movement is chosen at random from the set of motionsM = {nod, toss, shake}. Since nod

implies a positive intent of interaction, the first head movement is always chosen to be a nod.

The virtual agents pursue a conversation only until the user’s attention is on the agent. The

virtual agent concludes that the communication is over when approachs() evaluates to false

and continues its goal-directed navigation in the scene.

4.4. Navigation

The model of approach behavior discussed so far determines whether or not a virtual agent

is a part of an interaction and then calculates its preferred velocity. All the other agents that

are not part of any interaction follow goal-directed behavior. We use algorithms described in

Narang, Randhavane, Best, Shapiro, and Manocha (2016) to plan the movement of these

agents and determine their preferred velocity. We use constraint modeling from Narang,

Randhavane, et al. (2016) to model the collision avoidance constraints and modify the

preferred velocity of each agent i to get the current velocity ~vci .
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Figure 6: Gestures: Our virtual agents exhibit head movements and gazing. Appropriate head movements are
chosen from the set of movements including (a) nod (vertical head movement), (b) shake (horizontal head
movement), and (c) toss (sideways head movement). (d) Virtual agents also gaze at the user agent to establish
eye contact.

5. Results

5.1. Implementation and Performance

We have implemented our system on a Windows 10 desktop PC with Intel Xeon E5-1620 v3

in parallel on 4 cores and 16 GB of memory. We use Menge (Curtis, Best, & Manocha,

2016) as our multi-agent simulation library that computes the 2D trajectory for each agent.

We have modified the global planning and local navigation algorithms based on the

components described by Narang, Randhavane, et al. (2016). A game engine (Unreal Engine

4) serves as an interface to the user and as a rendering framework. We use Smartbody

(Shapiro, 2011) to synthesize motion of virtual agents and to provide the joint angles to

simulate the motions corresponding to various gestures or upper body movements. Though

the proxemic distances vary from person to person, we used a value of ds = 3.6m for social

distance and dp = 7.6m for public distance (Hall, 1966). Other parameters that can be

controlled include the thresholds θv = 1.41, othresh = π
12

, and the multiplier k = 0.1.

We compared our algorithms with a baseline crowd simulation algorithm, PedVR (Narang,

Best, et al., 2016). Table 1 highlights the performance of our system on the following
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Figure 7: Benchmarks: We highlight the performance of our algorithm on three benchmarks. (a) A shopping
mall scene shows virtual agents walking in a mall. (b) The user agent travels in a crossing scenario with
multiple virtual agents who gaze at the user’s avatar. (c) Virtual agents explore a tradeshow scenario and
acknowledge the user avatar’s presence with eye contact. We are able to simulate tens of agents at interactive
rates and evaluate the benefits of F2F interactions.

benchmark scenarios (Figure 7):

• Shibuya Crossing A busy crossing scenario. We initialize the agents at different

positions of the intersection. The goal positions are assigned using a probability

distribution. After reaching the goals, each agent waits for a few seconds and then

moves towards the next goal.

• Shopping Mall Virtual agents walk in a shopping mall. They walk to the shops and

exhibit head movements (nod or shake for approval or disapproval, respectively) and

gazing behaviors at the shops.

• Tradeshow Virtual agents walk up to the booths in a tradeshow and exhibit head

movements.

The average frame update time is almost the same for both PedVR and F2FCrowds

indicating that our IVP algorithm does not add a significant overhead. The addition of head

movements and gazing behaviors adds an overhead of 20% and, overall, our system can

simulate 30+ agents at approximately 40-60 FPS.
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Benchmark Agents Average Frame Update Time (ms)
PedVR F2F F2F+G

Mall 24 19 20 24
Shibuya 32 18 18 20
Tradeshow 30 21 22 26
Circle 8 9 9 11
Bidirectional 8 8 8 10

Table 1: Average frame update time: In the absence of upper body movements, F2FCrowds with IVP does
not have significant overhead over PedVR. F2FCrowds with gesture can simulate 30+ virtual agents at 40-60
FPS.

5.2. User Evaluation

In this section, we describe our user study, which was conducted to evaluate our new

algorithms that enable F2F interactions. We performed a within-users study showing the

advantages of our model of approach behavior and upper body motion generation.

5.2.1. Study Goals and Expectations We designed our study based on the prior work of

Pelechano et al. (2008); Garau, Slater, Pertaub, and Razzaque (2005); and Narang, Best,

et al. (2016), which evaluated the level of presence based on the behavior and interactions of

a user with the virtual agents within a crowd. In these works, Presence has been defined as

the extent to which people respond realistically to virtual events and situations and we use a

similar criterion. Our study was aimed at measuring the advantage of our model of approach

behavior for virtual agents over a baseline interactive system. We expected to find that

participants felt it easier to have F2F interactions with our algorithm and that these

interactions also benefited from the addition of head movements and gazing behaviors. In

particular, we propose the following hypotheses:

• Hypothesis 1: Addition of model of approach behavior and upper body motion

generation increases the sense of presence felt by the user.

• Hypothesis 2: Users do not have to make extra effort to avoid the virtual agents after
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Figure 8: User Interacting with the Virtual Agent: Participants approached virtual agents and attempted to
have an F2F interaction.

the addition of model of approach behavior and upper body motion generation.

• Hypothesis 3: Virtual agents appear more aware of the user after the addition of model

of approach behavior and upper body motion generation.

• Hypothesis 4: Addition of model of approach behavior and upper body motion

generation elicits more response from the users.

• Hypothesis 5: Virtual agents appear more responsive after the addition of model of

approach behavior and upper body motion.

5.2.2. Experimental Design A within-users study was performed in which the participants

(N = 15 - 20) were asked to participate in several scenarios using an Oculus Rift head

mounted display. Participants were standing up and used a joystick for movement in the

virtual world (Figure 8). A training scenario was also presented to familiarize the

participants with the movement. The participants performed three trials of each scenario in

randomized order and answered a questionnaire at the end of each scenario.

Evaluated Methods : In the study, participants compared three different interaction

enabling algorithms:
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Figure 9: Average Responses: Participants experienced a higher amount of social presence for F2FCrowds
compared to PedVR as observed from higher average responses to question 1. Responses to question 2 are
almost similar for the three methods, indicating that participants had to make a similar amount of effort to
avoid collisions across the three methods. Responses to questions 3, 4, and 5 indicate that participants felt that
our model of approach behavior was beneficial in making the characters responsive to participants’ attempts to
interact.

• PedVR : We used the coupled crowd simulation method PedVR as the baseline

(Narang, Best, et al., 2016). Gazing and head movements were not included in this

algorithm.

• F2FCrowds : Our model of approach behavior without gazing and head movements.

• F2FCrowdsHead : In addition to the approach behavior, virtual agents also

communicated using gazing and head movements.

Task: The participants were asked to approach any virtual agent and were informed that

when they felt that it was possible to have an F2F interaction with the virtual agent, they

should press a button and the agent in front of them would be highlighted for two seconds.

Scenarios : The following scenarios were presented to the participants. The participants

performed three trials of each scenario (45 seconds each) corresponding to each method and

answered a questionnaire after each scenario.
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• Circle : This scenario consisted of 8 virtual agents starting on the perimeter of a circle.

Their target positions were selected randomly on the perimeter of the circle and the

simulation resulted in a high-density area at the center of the circle. The participants

started from a position inside the circle.

• Bidirectional : 8 virtual agents started from opposite ends of a hallway, with half the

agents at either end of the hallway, and traveled between the two ends. The participant

(i.e. the real user) started at the middle of the hallway.

• Shopping Mall : 8 virtual agents explored a shopping mall scenario. The background

of the scene visually resembled a shopping mall. The participant started at the center of

the mall.

• Shibuya Crossing : 8 virtual agents walked in the crossing scenario, which looks like

Shibuya crossing in Tokyo. The virtual agents started at the ends of the crosswalks and

the participant started at the center of the scene.

Questionnaire : The aim of the user study was to show the benefits of our model of

approach behavior for virtual agents and upper body movement. We used a modified version

of a well-established questionnaire for social presence (Garau et al., 2005). In particular, we

used a subset of the original questions and asked additional questions regarding the

participant’s interaction with the virtual agents. The questions were of an Agree/Disagree

type and participants noted their preference using a seven-level Likert scale with values

labeled “Strongly disagree”, “Disagree”, “Slightly disagree”, “Neutral”, “Slightly agree”,

“Agree”, and “Strongly agree”. For analysis, we convert the participant responses to a scale

of 1 (Strongly Disagree) - 7 (Strongly Agree). We list the questionnaire in Table 2.

5.2.3. Discussion In this section, we present and analyze the participant responses (Figure

9) to the three interaction simulation algorithms described previously. For each scenario, the
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Question 1: I had a sense of being in the same space as the characters.
Question 2: I had to make an effort to avoid the characters.
Question 3: The characters seemed to be aware of me.
Question 4: I felt that I should talk/nod/respond to the characters.
Question 5: The characters seemed to respond to my attempts of interaction.
Question 6: The characters seemed to respond even if I did not attempt to interact.

Table 2: Questionnaire: Participants were asked to answer the above questions on a seven-level
Agree/Disagree Likert scale.

Circle Bidirectional Shopping Mall Shibuya Crossing
χ2 p χ2 p χ2 p χ2 p

Question 1 10.516 0.005 10.759 0.005 14.731 0.001 12.34 0.002
Question 2 0.167 0.92 0.2 0.905 1.2 0.549 2.311 0.315
Question 3 16.642 0 23.787 0 21.522 0 25.552 0
Question 4 16.51 0 23.231 0 20.338 0 27.193 0
Question 5 16 0 22.37 0 16.794 0 25.618 0
Question 6 13.192 0.001 17.796 0 8.211 0.016 14.389 0.001

Table 3: Results of a Friedman Test: We present the test statistic (χ2) value and the significance level (p) of a
Friedman test performed to test for differences between the responses for the three algorithms.

simulation algorithm is the independent variable and the participant response is the

dependent variable. Since our dependent variable is ordinal, we used the Friedman test to

test for differences between the responses for the three algorithms. Post hoc analysis with

Wilcoxon signed-rank tests was conducted with a Bonferroni correction applied, resulting

in a significance level set at p < 0.017. We tabulate the test statistic (χ2) value and the

significance level (p) in Table 3. We also tabulate the Z statistic and the significance level

(p) for the post hoc test in Tables 4-7. In all questions except Question 2, the Friedman test

revealed a significant difference in the participant responses depending on the algorithm

used. Since the results of the Friedman test for Question 2 were not statistically significant,

we did not run a post hoc test for this question. We discuss the results for each question

below:

• Question 1: Question 1 asked whether participants felt a sense of presence in the

virtual environment. In the Wilcoxon signed-rank test for the PedVR / F2FCrowds
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PedVR vs
F2FCrowds

F2FCrowds vs
F2FCrowdsHead

PedVR vs
F2FCrowdsHead

Z p Z p Z p

Question 1 -1.807 0.071 -2.456 0.014 -2.395 0.017
Question 3 -2.291 0.022 -2.618 0.009 -2.713 0.007
Question 4 -2.62 0.009 -2.424 0.015 -2.726 0.006
Question 5 -2.625 0.009 -2.647 0.008 -3.097 0.002
Question 6 -2.155 0.031 -2.369 0.018 -2.747 0.006

Table 4: Post hoc test for the Circle scene: We present the Z statistic and the significance level (p) of a post
hoc analysis with a Wilcoxon signed-rank test.

PedVR vs
F2FCrowds

F2FCrowds vs
F2FCrowdsHead

PedVR vs
F2FCrowdsHead

Z p Z p Z p

Question 1 -2.46 0.014 -1.549 0.121 -2.388 0.017
Question 3 -2.549 0.011 -3.019 0.003 -3.33 0.001
Question 4 -1.652 0.098 -3.315 0.001 -3.315 0.001
Question 5 -1.839 0.066 -3.191 0.001 -3.453 0.001
Question 6 -0.855 0.393 -3.075 0.002 -2.917 0.004

Table 5: Post hoc test for the Bidirectional scene: We present the Z statistic and the significance level (p) of
a post hoc analysis with a Wilcoxon signed-rank test.

PedVR vs F2FCrowds vs PedVR vs
F2FCrowds F2FCrowdsHead F2FCrowdsHead

Z p Z p Z p
Question 1 -2.537 0.011 -2.14 0.032 -2.782 0.005
Question 3 -2.348 0.019 -2.548 0.011 -3.179 0.001
Question 4 -1.517 0.129 -3.308 0.001 -3.247 0.001
Question 5 -1.687 0.092 -2.913 0.004 -3.098 0.002
Question 6 -1.294 0.196 -1.622 0.105 -2.103 0.035

Table 6: Post hoc test for the Shopping Mall scene: We present the Z statistic and the significance level (p)
of a post hoc analysis with a Wilcoxon signed-rank test.

comparison, there was no significant difference in the Circle and Shibuya Crossing

scenes, but significant difference was observed in the Bidirectional and Shopping Mall

scenes. For the F2FCrowds / F2FCrowdsHead comparison, significant difference was

observed only in the Circle scene. For the PedVR / F2FCrowdsHead comparison,

significant difference was observed in all the scenes. This proves the Hypothesis 1,
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PedVR vs F2FCrowds vs PedVR vs
F2FCrowds F2FCrowdsHead F2FCrowdsHead

Z p Z p Z p
Question 1 -1.608 0.108 -2.033 0.042 -2.436 0.015
Question 3 -2.479 0.013 -3.152 0.002 -3.64 0
Question 4 -2.555 0.011 -3.26 0.001 -3.656 0
Question 5 -3.023 0.003 -3.106 0.002 -3.782 0
Question 6 -1.491 0.136 -2.682 0.007 -2.68 0.007

Table 7: Post hoc test for the Shibuya scene: We present the Z statistic and the significance level (p) of a post
hoc analysis with a Wilcoxon signed-rank test.

which suggests that the users feel a sense of presence in the virtual environment after

the addition of both the model of approach behavior and upper body motion generation.

• Question 2: Question 2 evaluated the effort required to avoid collisions. Participants

reported no difference between the three algorithms for both the scenarios as indicated

by the Friedman test. This proves the hypothesis 2 that when approaching the virtual

agents, the users do not have to make extra effort to avoid collisions with the virtual

agents after the addition of model of approach behavior and upper body motion

generation. To ascertain that the users do not have to make extra effort to avoid

collisions with the virtual agents when performing a goal-directed task, we performed

another user evaluation. Instead of asking the participants to consciously approach the

virtual agents, we asked the participants to follow a goal-directed behavior and answer

Question 2 for the Shopping Mall and Shibuya Crossing scenarios. The Friedman test

revealed no statistically significant difference for both the scenes (Shopping Mall,

χ2(2) = 3.138, p = 0.208; Shibuya Crossing, χ2(2) = 1.922, p = 0.383). This proves

that the users do not have to make an extra effort to avoid collisions with the virtual

agents either while performing a goal-directed task or while consciously approaching

virtual agents.

• Question 3: Question 3 evaluated whether the participants felt that the virtual agents
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were aware of the participant. In the Wilcoxon signed-rank test for the PedVR /

F2FCrowds comparison, there was no significant difference in the Circle and Shopping

Mall scenes, but significant difference was observed in the Bidirectional and Shibuya

Crossing scenes. For the F2FCrowds / F2FCrowdsHead and PedVR / F2FCrowdsHead

comparisons, significant difference was observed in all the scenes proving the

Hypothesis 3, which suggests virtual agents appear more aware of the user after the

addition of model of approach behavior and upper body motion generation.

• Question 4: Question 4 evaluated whether the participants felt that they should

talk/nod/respond to the characters. For the PedVR / F2FCrowds comparison, post hoc

tests did not reveal a significant difference for the Bidirectional and Shopping Mall

scenes, but significant difference was observed for the Circle and Shibuya scenes.

Significant difference was observed for all the scenes for both F2FCrowds /

F2FCrowdsHead and PedVR / F2FCrowdsHead comparisons. Thus, the results prove

the Hypothesis 4, which suggests that a combination of the model of approach

behavior and upper body motion generation is necessary to elicit a response from the

users.

• Question 5: Question 5 evaluated whether the virtual agents seemed responsive. For

the PedVR / F2FCrowds comparison, post hoc tests did not reveal a significant

difference for the Bidirectional and Shopping Mall scenes, but significant difference

was observed for the Circle and Shibuya Crossing scenes. For the F2FCrowds /

F2FCrowdsHead and PedVR / F2FCrowdsHead comparisons, significant difference

was observed in all the scenes. Thus, the results prove the Hypothesis 5, which

suggests the addition of model of approach behavior and upper body motion generation

made the virtual agents appear more responsive.

• Question 6: We also asked the participants to report if they felt that the virtual agents
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responded even if the participant did not attempt to interact. Significant difference was

not observed for the PedVR / F2FCrowds comparison in all the scenarios. Thus, the

addition of the model of approach behavior does not make the virtual agents appear

more responsive when the user does not attempt to interact. For the F2FCrowds /

F2FCrowdsHead comparison, significant difference was observed for the Bidirectional

and Shibuya Crossing scenes, but no significant difference was revealed for the Circle

and Shopping Mall scenes. For the PedVR / F2FCrowdsHead comparison, all the

scenes except the Shopping Mall scene showed significant difference. Thus, in most

cases, the combination of model of approach behavior and upper body motion

generation makes the virtual agents appear more responsive when the user does not

attempt to interact. Some participants reported after the experiment that this made the

virtual agents appear more “friendly” but further investigation is necessary.

Effect of Density The four scenes used in user evaluation also had varying conditions of

pedestrian densities. The Circle scene included an area of high crowd density near the

center. The Bidirectional scene had two groups of virtual agents starting from opposite ends

of a hallway and areas of high density were formed when the agents crossed each other. The

Shopping Mall scene had a smaller walking area than the other scenes and had a high

density, whereas the Shibuya Crossing scene had a low density. Despite the variations in

density, in all the four scenarios, we observed that the addition of the approach algorithm

and the upper body behaviors contributed to the quality of face-to-face interactions.

6. Conclusion, Limitations, and Future Work

In this paper, we have presented techniques to compute the movements and trajectories of

virtual agents to enable face-to-face interactions as part of a crowd. This includes an

automatic approach for interaction velocity prediction, which we use to compute a collision
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free velocity. We further augment the approach by simulating many upper body behaviors

and movements. Our approach can simulate crowds with tens of agents at interactive rates,

with support for F2F communications between the real user and virtual agents. We also

performed a user study and concluded that our new algorithms increase the sense of social

presence in virtual environments. The virtual agents using our algorithms also appeared

more responsive and were able to elicit more reaction from the users.

Our approach has some limitations. In particular, our criteria to trigger F2F interactions do

not take into account the agent’s personality or emotions or the social norms. Furthermore,

we only support a limited number of upper body movements or gestures. It would be useful

to support verbal communication or conversations between the agents to increase the level of

interaction. We would also like to model social signals like turn-taking and backchanneling,

which are an important part of F2F interactions. We would like to evaluate our approaches in

more complex scenarios, and compare with real-world scenarios. We use Oculus Rift to take

user input. Since the walking area of Rift is limited, the users have to use a joystick or a

keyboard, which puts constraints on the realism of face-to-face interactions. We would like

to use a wide area tracker framework to allow the real user to walk large distances in the

physical world. In this work, we do not consider the case where multiple real users share the

same virtual space; ideas from our approach can be combined with work from Pedica and

Vilhjálmsson (2009) to handle this case. At any instant, the real user in our approach can

have a face-to-face interaction with at most one virtual agent. A modified version of our

approach can enable face-to-face interactions with more than one virtual agent and we plan

to implement that as part of a future work. Implementing it would involve implementing

group formation and mathematical modeling of social and psychological ideas about group

behaviors (He, Pan, Wang, & Manocha, 2016; Knowles & Bassett, 1976). We assume that

the real user is not familiar with the virtual agents and treats them as strangers. In
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applications like games, the user may know the virtual character and he/she may approach

them in a different manner (e.g., calling them by their name). For this paper, we do not allow

the real users to express their intention to interact verbally. In many cases, it may be possible

that the system allows for verbal input and the user can just announce their intent to a virtual

agent verbally. Our approach can still be implemented in these systems as a

supporting/complementary mechanism.

Our approach uses gaze as a mechanism to acknowledge the user’s presence and to initiate a

face-to-face interaction. This mechanism may or may not be compatible with other

behaviors that also use gazing (e.g., avoiding another person). In such a case, it might be

better to have verbal communication (e.g., saying “hi” or “hello”) along with gazing

behavior. The virtual agents will pursue an F2F interaction only until the user’s attention (as

denoted by his/her orientation) is on it. If the user’s orientation changes above a certain

threshold, the virtual agent will conclude the face-to-face conversation to be over and

continue its goal-directed navigation in the scene. This is a simplified approach to deduce

the end of a conversation and further literature from psychology/sociology (Alterman &

Garland, 2001; Bangerter, Clark, & Katz, 2004) can be used to design a more advanced

strategy to recognize the end of a conversation.
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Nummenmaa, L., Hyönä, J., & Hietanen, J. K. (2009). I’ll walk this way: Eyes reveal the

direction of locomotion and make passersby look and go the other way. Psychological

Science, 20(12), 1454–1458.
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Olivier, A.-H., Bruneau, J., Cirio, G., & Pettré, J. (2014). A virtual reality platform to study

crowd behaviors. Transportation Research Procedia, 2, 114–122.
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