
Interactive Sound Synthesis for Large Scale Environments
Nikunj Raghuvanshi∗ Ming C. Lin†

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract
We present an interactive approach for generating realistic
physically-based sounds from rigid-body dynamic simulations. We
use spring-mass systems to model each object’s local deformation
and vibration, which we demonstrate to be an adequate approxi-
mation for capturing physical effects such as magnitude of impact
forces, location of impact, and rolling sounds. No assumption is
made about the mesh connectivity or topology. Surface meshes
used for rigid-body dynamic simulation are utilized for sound simu-
lation without any modifications. We use results in auditory percep-
tion and a novel priority-based quality scaling scheme to enable the
system to meet variable, stringent time constraints in a real-time ap-
plication, while ensuring minimal reduction in the perceived sound
quality. With this approach, we have observed up to an order of
magnitude speed-up compared to an implementation without the
acceleration. As a result, we are able to simulate moderately com-
plex simulations with upto hundreds of sounding objects at over
100 frames per second (FPS), making this technique well suited
for interactive applications like games and virtual environments.
Furthermore, we utilize OpenAL and EAXTM on Creative Sound
Blaster Audigy 2TM cards for fast hardware-accelerated propaga-
tion modeling of the synthesized sound.

CR Categories: H.5.5 [Information Interfaces and Presenta-
tion]: Sound and Music Computing—Modeling, Methodologies
and techniques; I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

Keywords: Sound Synthesis, Rigid-Body Simulation, OpenAL

1 Introduction
Most interactive applications today employ recorded sound clips for
providing sounds corresponding to object interactions in a scene.
Although this approach has the advantage that the sounds are real-
istic and the sound-generation process is quite fast, there are many
physical effects which cannot be captured by such a technique. For
instance, in a typical collision between two objects, the loudness
and timbre of the sound is determined by the magnitude and lo-
cation of the impact forces – a plate sounds very differently when
struck on the edge compared to when it is struck in the middle. Con-
sequently, if the collision scenario changes slightly, the sound ex-
hibits a corresponding change. Such subtle effects can add substan-
tial realism to a typical scene by avoiding the repetitiveness com-
mon to recorded sound clips. However, developing a system which
produces sound using physically-based principles in real time poses

∗nikunj@cs.unc.edu
†lin@cs.unc.edu

Figure 1: Numerous dice fall on a three-octave xylophone in close
succession, playing out the song “The Entertainer” (see the video).
Our algorithm is able to produce the corresponding musical tones
at more than 500 FPS for this complex scene, with audio generation
taking 10% of the total CPU time, on a 3.4GHz Pentium-4 Laptop
with 1GB RAM.

substantial difficulties. The foremost requirement is the presence
of an efficient dynamics engine which informs the sound system of
object collisions and the forces involved. For this work, we have
developed a fast and robust rigid-body simulator, but many present
day games meet this requirement. Given a dynamics simulator, the
main challenge is to synthesize the sound efficiently enough to play
in real time while taking only a small portion of the total running
time, which is usually dominated by graphics and rigid-body sim-
ulation. Typically the sound system can only afford a few hundred
CPU cycles per object per sound sample for many interactive appli-
cations.

Main Results: In this paper, we present an approach which meets
the interactive performance requirements outlined above, while en-
suring high realism and fidelity of the sound produced. Given an
object’s geometry and a few material parameters, we construct a
spring-mass model approximating the object’s surface. We show
that although a spring-mass system is a coarser approximation than
FEM models used in prior approaches [Chaigne and Doutaut 1997;
O’Brien et al. 2001; O’Brien et al. 2002], it is an adequate model
to capture the small-scale surface vibrations that lead to the gener-
ation of sound in nature. We show how this formulation yields an
analytical solution to the equation of motion for the surface of the
object.

However, a naive implementation of such an approach can han-
dle only a few (less than ten) sounding objects in real time. We
also present several acceleration techniques. The increased com-
putational efficiency is achieved by exploiting auditory perception,
which ensures that the resulting degradation in perceived quality is
minimal. In addition, the sound quality and the associated computa-
tional cost for each object is scaled dynamically in a priority-based
scheme which guarantees that the total sound production meets

stringent time constraints, while preserving the overall aural expe-
rience. Our approach has the following characteristics:

• It is based on a discretized physically-based representation
that offers simplicity of formulation and ease of implemen-
tation;

• It makes no assumptions about the input mesh topology – sur-
face meshes used for physics can be used directly for sound
synthesis;

• It is capable of yielding both impact and rolling sounds natu-
rally, without any special-case treatment;

• It enables rich environments consisting of numerous sound-
ing objects, with insignificant difference in the overall audio
quality.

We also use OpenAL and EAXTM to provide hardware-
accelerated propagation modeling of the synthesized sounds on
Creative Sound Blaster Audigy 2TM audio cards which easily pro-
duce spatial and environmental sound effects such as distance atten-
uation and room acoustics. To the best of our knowledge, with the
possible exception of methods that rely on physical measurements,
no prior work has been demonstrated to handle complex scenarios
(e.g. see Figs. 1 and 7) in real time.

Organization: The rest of the paper is organized as follows. We
review related work in Section 2. We present the mathematical
formulation developed to model the surface vibrations for sound
synthesis in Section 3 and describe various acceleration techniques
to enable real-time sound generation for a large-scale environment
consisting of hundreds of sounding objects in Section 4. In Sec-
tion 5, we discuss implementation issues and demonstrate the re-
sults of our system on complex scenes. Finally, we conclude with
possible future research directions.

2 Previous Work
The concept of modeling the surface vibrations of objects using
discretized physical models in real time was first proposed by Flo-
rens and Cadoz [1991], who used a system of masses and damped
springs to model 3D shapes and developed the CORDIS-ANIMA
system for physically-based sound synthesis. More recently, nu-
merical integration with a finite element approach was proposed as
a more accurate technique for modeling vibrations [Chaigne and
Doutaut 1997; O’Brien et al. 2001]. These methods had the advan-
tage that the simulation parameters corresponded directly to physi-
cally measurable quantities and the results were more accurate. The
main drawback was the complexity of formulation and implemen-
tation and the low speed of the resulting simulation.

To remedy the performance issue of the above methods, van den
Doel and Pai suggested [1996; 1998] using the analytically com-
puted vibrational modes of an object, instead of numerical inte-
gration, leading to considerable speedups and enabling real-time
sound synthesis. But, since the PDEs governing the vibration of
arbitrary shapes are very complicated, the proposed system could
only handle simple systems, such as plates, for which the analytical
solutions were known. To handle more complex systems which do
not admit direct analytical solution, two approaches have been pro-
posed in literature. The first approach, [van den Doel et al. 2001]
uses physical measurements on a given shape to determine its vi-
bration modes and their dependence on the point of impact. Later,
these modes may be appropriately mixed in a real-time application
to generate realistic synthetic sounds. But, arbitrary 3D models
have to be physically procured, in order to find their aural proper-
ties. In [2002], O’Brien et al. address this problem and propose a
method for handling arbitrarily-shaped objects by discretizing them
into tetrahedral volume elements. They show that the correspond-
ing finite element equations can be solved analytically after suitable

approximations. Consequently, they are able to model arbitrarily
shaped objects and simulate realistic sounds for a few objects at
interactive rates.

Our work shares some common themes with [O’Brien et al.
2002]. However, we propose a simpler system of point-masses and
damped springs for modeling the surface vibrations of the object
and it also submits to an analytical solution in a similar fashion,
while offering much greater simplicity of formulation and ease of
implementation. Furthermore, the complexity of scenes demon-
strated in [O’Brien et al. 2002] is low, containing less than 10
sounding objects and the interactions captured are mainly due to
impacts. As we will demonstrate in Section 5, our method extends
to handling hundreds of objects in real time and is also capable of
producing realistic rolling sounds in addition to impact sounds.

Often, immersive environments are both visually and aurally
complex. The problem of scheduling multiple objects for sound
synthesis was first addressed in [Fouad et al. 1997]. They exploited
a model of imprecise computation proposed previously in [Chung
et al. 1987], and proposed a system in which the objects are iter-
atively assigned time quotas depending on the availability of re-
sources and priorities of the objects. As described in Section 4, our
approach to prioritization and time-quota assignment exploits prop-
erties specific to our sound-generation technique, and thus achieves
better results using a much simpler scheme. Recently, van den Doel
et al. [2004] proposed techniques to synthesize sounds in real time
for scenes with a few sounding rigid bodies and numerous particles,
by exploiting frequency masking. At runtime, they find emitted fre-
quencies which are masked out by other neighboring frequencies
with higher amplitude and do not mix the masked frequencies. We
use a different perceptual observation presented in [Sek and Moore
1995], which report that humans are incapable of distinguishing
frequencies that are very close to each other. As we will discuss
in Section 4, this can be used to prune out frequencies from an ob-
ject’s frequency spectrum as a pre-processing step. Our technique
leads to better performance and much lesser memory consumption
at runtime while ensuring minimal loss in auditory quality.

3 Methodology
Sound is produced by surface vibrations of an elastic object un-
der an external impulse. These vibrations disturb the surrounding
medium to result in a pressure wave which travels outwards from
the object. If the frequency of this pressure wave is within the range
20 to 22000 Hz, it is sensed by the ear to give us the subjective per-
ception of sound. The most accurate method for modeling these
surface vibrations is to directly apply classical mechanics to the
problem, while treating the object as a continuous (as opposed to
discrete) entity. This results in PDEs for which analytical solutions
are not known for arbitrary shapes. Thus, the only avenue left is to
make suitable discrete approximations of the problem to reduce the
PDEs to ODEs, which are more amenable to analysis. In this sec-
tion, we show how a spring-mass system corresponding to a physi-
cal object may be constructed to model its surface deformation and
how it may be analyzed to extract the object’s modes of vibration.
For ease of illustration, we assume a homogeneous object; inho-
mogeneous objects may be handled by a simple extension of the
approach presented here. Further, we assume that the input object
is in the form of a thin shell and is hollow inside. This assumption
is motivated by practical concerns since most of the geometry today
is modeled for rendering and is invariably only a surface represen-
tation with no guarantees on surface connectivity. If a volumetric
model is available, the approach outlined in this paper applies with
minor modifications. Figure 2 gives an overview of our approach.

3.1 Input Processing
Given an input mesh consisting of vertices and edges, we construct
an equivalent spring-mass system by replacing the mesh vertices
with point masses and the edges with damped springs. We now

Figure 2: This diagram gives an overview of our approach. In the pre-processing step, each input surface mesh is converted to a spring-mass
system by replacing the mesh vertices with point masses and the edges with springs, and the force matrices are diagonalized to yield its
characteristic mode frequencies and damping parameters. At runtime, the rigid-body simulator reports the force impulses fi on a collision
event. These are transformed into the mode gains, gi with which the corresponding modes are excited. These yield damped sinusoids which
are suitably combined to yield the output sound signal.

discuss how to assign the spring constants and masses based on the
material properties of the object so that the discrete system closely
approximates the physical object. The spring constant, k and the
particle masses, mi are given by:

k = Y t

mi = ρtai (1)

where Y is the Young’s Modulus of elasticity for the material, t is
the thickness of the object surface, ρ is the material density and ai is
the area “covered” by a particle, which is calculated by dividing the
area of each mesh face equally amongst all its constituent vertices
and summing all the face contributions for the vertex corresponding
to the mass in consideration. Note that we did not discuss fixing the
spring damping parameters above, which we will return to shortly.
3.2 Deformation Modeling
Once the particle system has been constructed as above, we need
to solve its equation of motion in order to generate the correspond-
ing sound. Unfortunately, the resulting system of equations is still
mathematically complex because the interaction forces between the
masses are non-linear in their positions. However, by making the
reasonable assumption that the deformation is small and linearizing
about the rest positions, this problem can be cast in the form of a
coupled linear system of ODEs:

M
d2r

dt2
+ (γM + ηK)

dr

dt
+ Kr = f (2)

where M is the mass matrix, K is the elastic force matrix, γ and
η are the fluid and viscoelastic damping constants for the material
respectively. The matrix M is diagonal with entries on the diagonal
corresponding to the particle masses, mi. The elastic force matrix
K is real symmetric, with entries relating two particles if and only
if they are connected by a spring. The variable r is the displacement
vector of the particles with respect to their rest position and f is the
force vector. Intuitively, the terms in the above equation correspond
to inertia, damping, elasticity and external force respectively. The
specific form of damping used above, which expresses the overall
damping matrix as a linear combination of K and M is known as
Raleigh damping and works well in practice. For a system with
N particles in three dimensional space, the dimensions of all the
matrices above is 3N×3N .

This formulation of the problem is well known and is similar to
the one presented in [O’Brien et al. 2002]. The main difference

in our approach is that the force and inertia matrices are assembled
from a spring-mass system which makes the formulation much sim-
pler. The solution to Equation (2) can be obtained by diagonalizing
K so that:

K = GDG−1 (3)

where G is a real matrix consisting of the eigenvectors of K and D
is a diagonal matrix containing the eigenvalues. For reasons we will
explain later, we will henceforth call G the “gain matrix”. Plugging
the above expression for K into Equation (2) and multiplying by
G−1 throughout, we obtain:

G−1M
d2r

dt2
+
`
γG−1M + ηDG−1´ dr

dt
+ DG−1r = f (4)

Observing that since M is diagonal, G−1M = MG−1 and defin-
ing z = G−1r equation(4) may be expressed as:

M
d2z

dt2
+ (γM + ηD)

dz

dt
+ Dz = G−1f (5)

Since both M and D in the above equation are diagonal, Equa-
tion (2) has been decoupled into a set of unrelated differential equa-
tions in the variables zi, which correspond to individual modes of
vibration of the object. The equation for each mode is the standard
equation of a damped oscillator and has the following solution for
the i’th mode:

zi(t) = cie
ω+

i t + cie
ω−i t

ω±i =
− (γλi + η)±

q
(γλi + η)2 − 4λi

2
(6)

where the constant ci, called the gain for the mode, is found by
considering the impulses applied as we will discuss shortly. We use
ci to denote the complex conjugate of ci. The constant λi is the i’th
eigenvalue in the diagonal matrix, D. The real part of ω±i gives the
damping coefficient for the mode, while the imaginary part, if any,
gives the angular frequency of the mode.
3.3 Handling Impulsive Forces
Once an input mesh has been processed as above and the corre-
sponding modes extracted as outlined in Equations (2)-(6), we have
all the information needed regarding the aural properties of the ob-
ject. The sound produced by an object is governed by the mag-
nitude and location of impulsive force on its surface. We model

short-duration impulsive contacts by dirac-delta functions. Given
an impulse vector f containing the impulses applied to each vertex
of an object, we compute the transformed impulse, g = G−1f in
order to evaluate the right-hand side of Equation (5). Once this is
done, the equation for the i’th mode is given by:

mi
d2zi

dt2
+ (γmi + ηλi)

dzi

dt
+ λizi = giδ(t− t0) (7)

where t0 is the time of collision and δ() is the dirac delta function.
Integrating the above equation from a time just before t0 to a time

just after t0 and noting that
R t+0

t−0
δ(t− t0)dt = 1, we obtain:

mi∆

„
dzi

dt

«
+ (γmi + ηλi)∆zi + zi∆t = gi (8)

Assuming that ∆t is very small, and using the fact that the deforma-
tion is small compared to the change in velocities, we can neglect
the last two terms on the left-hand side to obtain:

∆

„
dzi

dt

«
=

gi

mi
(9)

The above gives a very simple rule which relates the change in the
time derivative of the mode to the transformed impulse. Referring
to Equation (6) and requiring that zi should stay the same just be-
fore and after the collision while dzi

dt
should increase as in Equa-

tion (9), the update rule for the mode gain ci can be shown to be:

ci ← ci +
gi

mi

`
ω+

i − ω−i
´
eω+

i t0
. (10)

Initially, ci is set to 0 for all modes.

4 Real-time Sound Synthesis
In this section, we describe how the mathematical formulation pre-
sented in the previous section is utilized to efficiently generate
sound in real time. First, we describe a naive implementation and
then discuss techniques to increase its efficiency.

Assume that there exists a rigid-body simulator which can han-
dle all the dynamics. During a collision event, the sound system
is informed of the object that undergoes the impact and the magni-
tude and location of impact. This impact is processed as described
in Section 3.3 to result in the gains for the different modes of vibra-
tion of the object, where the gain for the i’th mode being ci. The
equation for a mode from the time of collision onwards is given
by (6). The amplitude contribution of a mode at any moment is
proportional1 to its velocity (and not position). This is because the
pressure contribution of a particle is determined by its velocity and
the mode velocities are linearly related to the physical velocities of
the particles. The mode velocity is found by taking a differential of
Equation (6) with respect to time:

vi =
dzi

dt
= ciω

+
i eω+

i t + ciω
−
i eω−i t (11)

For generating each audio sample, we need to evaluate the above
equation for all vibration modes of the object, which is quite inef-
ficient. As mentioned in [O’Brien et al. 2002], the simple observa-
tion that eiω(t+∆t) = eiωteiω∆t offers some gain in performance
since generating a new audio sample just requires a single complex
multiply with the previous value. However, the efficiency is still
not sufficient to handle a large number of objects in real time. We

1The constant of proportionality is determined based on the geometry
of the object and takes the fact into account that vibrations in the direction
of the surface normal contribute more to the resulting pressure wave than
vibrations perpendicular to the normal. We do not describe it in detail here
as it is not critical to the approach being presented.

Figure 3: This plot shows frequency discrimination in humans as
a function of the center frequency. Note that the human capacity
to discriminate between frequencies degrades considerably for fre-
quencies in the range 2-22 KHz, which forms a bulk of the human
audible range. We use this fact to guarantee that no more than 1000
modes need to be mixed for any object in the worst case, irrespec-
tive of its geometric complexity. In most cases the actual number is
much smaller, in the range of a few hundreds. The red curve shows
the piecewise linear approximation of this curve that we use.

may estimate the running time of the system as follows: A sim-
ple spring-mass system with N particles has 3N modes, and the
above operation needs to be repeated for each mode for each au-
dio sample. Assuming a sampling rate of 44100 Hz, the number of
floating-point operations (FLOPS) needed for this calculation for
generating audio samples worth t seconds is:

T = 3N × 4× 44100t FLOPS . (12)

Considering that the typical value of N is about 5000 or higher, pro-
ducing sound worth 1 second would take 2646 MFLOPS. Since to-
day’s fastest processors operate at a few thousand MFLOPS [Don-
garra 2005], the above processing would take about a second. Given
that this estimated amount of time is for just one object and a typical
scene may contain many such objects, such an approach is clearly
not fast enough for interactive applications. Furthermore, for many
real-time environments such as games and virtual environments,
only a very small fraction of the actual time can be allocated for
sound production. Thus, in the rest of this section, we will discuss
techniques to increase the efficiency of the proposed base system to
enhance its capability in handling scenarios with a large number of
sounding objects at interactive rates.

From Equation (12), it is clear that the running time is propor-
tional to the number of modes being mixed and the number of ob-
jects. Next, we present acceleration techniques for sound simula-
tion by reducing the number of modes per object: “Mode Com-
pression” and “Mode Truncation”, and by scaling the audio quality
of different objects dynamically with little degradation in perceived
sound quality.
4.1 Mode Compression
Humans have a limited range of frequency perception, ranging from
20 to 22000 Hz. It immediately follows that modes with frequen-
cies lying outside this range can be clipped out and need not be
mixed. However, there is another important fact which can lead to
large reductions in the number of modes to be mixed. A percep-
tual study described in [Sek and Moore 1995] shows that humans
have a limited capacity to discriminate between nearby frequen-

cies. Note that this is different from frequency masking [Zwicker
and Fastl 1990] in which one of two simultaneously played frequen-
cies masks out the other. Rather, this result reports that even if two
“close enough” frequencies are played in succession, the listener is
unable to tell whether they were two different frequencies or the
same frequency played out twice. The authors call the length of the
interval of frequencies around a center frequency which sound the
same, the “Difference Limens to Change” (DLC). Figure 3 shows
a plot of the DLC against center frequencies ranging from .25 to 8
KHz. Interestingly, the DLC shows a large variation over the audi-
ble frequency range, getting very large as the center frequency goes
beyond 2 KHz. Even at 2 KHz, the DLC is more than 1 Hz. That
is, a human subject cannot tell apart 1999 Hz from 2000 Hz.

We use the above fact to drastically reduce the number of modes
that are mixed for an object. We linearly approximate the DLC
curve with a piecewise linear curve shown as the red line in Figure
3. The approximation has two segments: one from 20 Hz to 2 KHz
and another from 2 KHz to 22 KHz. As we show in the figure we
overestimate the DLC slightly. This increases the performance fur-
ther and we have observed minimal loss in quality in all the cases
we have tested. The main idea behind our compression scheme is
to group together all the modes with perceptually indistinguishable
frequencies. It can be easily shown that if the above mentioned lin-
ear approximation to the DLC curve is used and indistinguishable
modes clustered at the corresponding frequency centers, the maxi-
mum number of modes that need to be mixed is less than 1000. It
is important to note that this is just the worst case scenario and it
happens only when the frequency spectrum of the object consists
of all frequencies from 20 to 22,000 Hz, which is very rare. For
most objects, the frequency spectrum is discrete and consequently,
the number of modes after mode compression is much smaller than
1000, typically in the range of a few hundreds.

We now describe the details of our technique. Recall the gain
matrix from Equation (3), G. The gain matrix has a very simple
physical interpretation: Rows of the matrix correspond to vertices
of the object and columns correspond to the different modes of vi-
bration (with their corresponding frequencies). Each row of G lists
the gains for the various modes of vibration of the object, when
a unit impulse is applied on the corresponding vertex. It is clear
from the above discussion that all the mode gains within a row of G
which correspond to modes with close frequencies need to be clus-
tered together. This is achieved by replacing the gain entries for all
such modes by a single entry with gain equal to the sum of the con-
stituent gains. Since a mode corresponds to a whole column, this
reduces to summing together columns element-wise based on their
frequencies. The complete procedure is as follows:

• Sort the columns of G with the corresponding mode frequen-
cies as the key. 2

• Traverse the modes in increasing order of frequency. Estimate
the DLC, ∆ at the current frequency using the piecewise lin-
ear curve shown in Figure 3. If the current frequency and next
frequency are within ∆ of each other the two mode frequen-
cies are indistinguishable, replace the two columns by their
element-wise sum.

Below, we enumerate the main advantages of this scheme:

1. The running time is constant instead of linear in the number
of vertices in the object. For example, if the input mesh is
complex with 5,000 vertices, the number of modes mixed is
bounded by 1000 instead of the earlier 3N = 15, 000 which
is a substantial performance gain.

2This step is usually not needed as most linear algebra packages output
the eigenvector matrix sorted on the eigenvalues

Figure 4: This graph shows the number of modes mixed vs time, for
a xylophone bar just after it is struck in the middle. τ is the mode
truncation threshold. A higher value of τ leads to more aggressive
truncation of modes with low amplitude, leading to savings in terms
of the number of modes mixed. In this case, τ = 2.0 results in
about 30% gain in efficiency over τ = 0.01 which only truncates
modes with near-zero amplitude. The sound quality for both the
cases is nearly identical.

2. Since this scheme requires just the frequencies of the different
modes, the whole processing can be done as a pre-process
without requiring any extra runtime CPU cycles.

3. From the above mentioned procedure, it is clear that the num-
ber of columns in the matrix G, which is the same as the num-
ber of modes, is now bounded by 1000 instead of the earlier
value of 3N . Since this matrix needs to be present in memory
at runtime for transforming impulses to mode gains, its mem-
ory consumption is an important issue. Using this technique,
for an object with 5000 vertices, the memory requirement has
been reduced from 225 MB to less than 15 MB, by more than
a factor of 15.

4. Most objects have a discrete frequency spectrum with pos-
sibly many degenerate frequencies. Due to numerical inac-
curacies while diagonalizing the elastic force matrix and the
approximations introduced by the spring-mass discretization,
these degenerate frequencies may appear as spurious distinct
modes with near-equal frequencies. Obviously, it is wasteful
to treat these as distinct modes. It is our observation that most
of the times these modes’ frequencies are close enough so that
they are naturally summed together in this scheme.

4.2 Mode Truncation
The sound of a typical object on being struck consists of a transient
response composed of a blend of high frequencies, followed by a
set of lower frequencies with low amplitude. The transient attack
is essential to the quality of sound as it is perceived as the charac-
teristic “timbre” of the object. The idea behind mode truncation is
to stop mixing a mode as soon as its contribution to the total sound
falls below a certain preset threshold, τ . Since mode truncation pre-
serves the initial transient response of the object when τ is suitably
set, the resulting degradation in quality is minimal. Figure 4 shows
a plot of the number of active modes with respect to time for a xy-
lophone bar struck in the middle for two different values of τ : .01
and 2. These values are normalized with respect to the maximum
sample value which is 65536 for 16-bit audio. The first case with

τ = .01 performs essentially no truncation, only deactivating those
modes which have near-zero amplitude. Note that with τ = 2 the
number of modes mixed is reduced by more than 30%. Also, the
number of active modes floors off much earlier (.2 secs compared to
.6 secs). It is important to note that this results in little perceptible
loss in quality.

The details of the technique are as follows: Assume that an ob-
ject has just undergone a collision and the resulting mode gains ci

have been calculated as given by Equation (10). From this time on-
wards until the object undergoes another collision, Equation (11)
gives a closed-form expression for the mode’s contribution to the
sound of the object. This can be used to predict exactly when
the mode’s contribution drops below the threshold τ . The required
“cutoff time”, tc

i is such that for all times t > tc
i :

ciω
+
i eω+

i t + ciω
−
i eω−i t < τ (13)

Using the fact that for any two complex numbers x and y, |x + y| ≤
|x|+ |y| it can be shown that,

tc
i ≤

1

−Re(ω+
i)

ln

2 |ci|

˛̨
ω+

i

˛̨
τ

!
(14)

Using the above inequality, the cutoff times are calculated for all the
modes just after a collision happens. While generating the sound
samples from a mode, only one floating point comparison is needed
to test if the current time exceeds the cutoff time for the mode. In
case it does, the mode’s contribution lies below τ and consequently,
it is not evaluated.
4.3 Quality Scaling
The two techniques discussed above are aimed at increasing the ef-
ficiency of sound synthesis for a single object. However, when the
number of sounding objects in a scene grows beyond a few tens, this
approach is not efficient enough to work in real time and it is not
possible to output the sound for all the objects at the highest quality.
It is critical in most interactive applications that the sound system
have a graceful way of varying quality in response to variable time
constraints. We achieve this flexibility by scaling the sound qual-
ity for the objects. The sound quality of an object is changed by
controlling the number of modes being mixed for synthesizing its
sound. In most cases of scenes with many sounding objects, the
user’s attention is on the objects in the “foreground”, that is, the
objects which contribute the most to the total sound in terms of am-
plitude. Therefore, if it is ensured that the foreground sounds are
mixed at high quality while the background sounds are mixed at a
relatively lower quality, the resulting degradation in perceived aural
quality should be reduced.

We use a simple scheme to ensure higher quality for the fore-
ground sounds. At the end of each video frame, we store the sum
of the vibrational amplitudes of all modes for each object, which
serve to determine the object’s priority. At the next video frame, all
objects are sorted in decreasing order based on their priority and the
total time-quota for sound-generation divided among the objects as
a linearly decreasing ramp with a preset slope, S. After this, all ob-
jects are processed in their priority order. For each object, its quality
is first scaled so that it can finish within its assigned time-quota and
then the required modes are mixed for the given time period. If an
object finishes before its time-quota has expired, the surplus is con-
sumed greedily by the next higher priority object. The slope, S of
the ramp decides the degree to which the foreground sound qual-
ity is favored over a degradation in background sound quality. The
case with S = 0 corresponds to no priority scheduling at all, with
the time-quota being divided equally among all objects. The con-
verse case with S = ∞ corresponds to greedy consumption of the
time-quota. That is, the whole time-quota is assigned to the highest
priority object. After the object is done, the remaining time, if any,
is assigned to the next highest priority object and so on.

4.4 Putting Everything Together
To illustrate how all the techniques described above are integrated,
we present a summary of our approach.
Pre-processing
• Construct a spring-mass system corresponding to the input

mesh. (Section 3.1)

• Process the spring-mass system to extract the gain matrix, G
and the (complex) angular frequencies of the object’s modes
of vibration: ω+

i and ω−i . (Section 3.2, Eqns. (3) and (6))

• Mode Compression:
Aggregate columns of G based on frequencies of the corre-
sponding modes, as described in Section 4.1.

• Store the resulting gain matrix along with the (complex) con-
stants ω+

i and ω−i for modes correspond to the columns of
G after compression. Note that ω−i need not be stored in
case ω+

i has a non-zero imaginary part since in that case
ω−i = ω+

i .

Runtime Processing
• Load the gain matrix and mode data for each object.

• Begin simulation loop:

1. Run rigid-body simulation
2. For each object, O:

– Collision Handling:
If the rigid-body simulator reports that O under-
goes a collision event, update its gain coefficients
as per Equation (10) using the collision impulse
and its location. (Section 3.3)

– Mode Truncation:
Compute cutoff times tc

j for each mode based on
the mode truncation threshold, τ . (Section 4.2,
Equation (14))

3. Quality Scaling:
Sort objects based on amplitude contribution, assign
time-quotas and compute the number of modes to be
mixed for each object. (Section 4.3)

4. Sound Synthesis:
For each timestep at time t and for each object, O:

– Consider all modes permitted by the current qual-
ity setting which satisfy tc

j > t. Sample and sum-
mate all these modes as described at the begin-
ning of this section. This is O’s contribution to
the sound.

– Output the sum of all objects’ sample contribution
as the sound sample for time t.

End simulation loop

5 Implementation and Results
In this section we present results to demonstrate the efficiency and
realism achievable with our approach.
5.1 Rigid Body Simulation
We have implemented the algorithm and acceleration techniques
presented in this paper using C++ and OpenGL. Our rigid-body
simulator extends the technique presented by Guendelman et al.
[2003] to incorporate DEEP [Kim et al. 2002] for fast and more
accurate penetration depth estimation, instead of sample-based es-
timation using distance fields. It also uses a more complex friction
model presented by Mirtich and Canny [Mirtich and Canny 1995],
which results in more robust contact resolution.

Figure 5: A metallic cylinder falls onto a wooden table, in the mid-
dle (left) and on the edge (right) and rolls off. The bottom part
shows the corresponding frequency spectra for the two cases. Note
that for the case on the left, most of the impulse is transferred to the
low frequency fundamental mode while for the case on the right,
the impulse is mostly transferred to higher frequency modes.

5.2 Position Dependent Sounds
As discussed earlier, the main advantage of using physically-based
sounds over recorded audio is the ability to capture effects such
as the magnitude of impacts between objects and more impor-
tantly, the subtle shift in sounds on striking an object at different
points. Figure 5 shows a scene with a metallic cylinder tossed onto
a wooden table. Both the table and cylinder are sounding. The fig-
ure contrasts two cases: the first case, shown on the left, depicts the
cylinder striking the table near the middle and rolling off, while in
the second case it strikes the table near the edge. We discuss the
rolling sound in the next subsection, and will discuss the impact
sound here. Since the table-top is in the form of a plate, we would
expect that striking it on the edge would transfer a larger fraction
of the impulse to higher frequencies, while striking it in the middle
should transfer most part of the impulse to the fundamental mode
of vibration, leading to a deeper sound. To verify this, we plotted
the frequency spectra for the two cases just after the cylinder makes
first impact with the table. The corresponding plots for the two
cases are shown in the lower part of the figure. The case on the left
shows a marked peak near the fundamental mode while the peak
is completely missing in the second case. Conversely, the second
case shows many peaks at higher frequencies which are missing in
the first one. This difference clearly demonstrates that the sound
for the two cases is markedly different, with the same qualitative
characteristics as expected. Another important point to note is that
this technique does not require the meshes to be highly tessellated
to capture these effects. The table consists of just 600 vertices and
the cylinder 128 vertices.

5.3 Rolling Sounds
In addition to handling impact sounds, we are able to simulate re-
alistic rolling sounds without requiring any special-case treatment
for sound synthesis. This is in part made possible because of the
rigid-body simulator we have developed, which is able to handle
contacts in a more graceful manner than most impulse-based sim-
ulators. Figure 6 shows the impulses on the cylinder and the cor-
responding audio for the case shown in the right side of Figure 5.
The cylinder rolls on the table after impact, falls to the ground and
rolls on the floor for sometime. The initial rolling sound, when the
cylinder is on the table, has a much richer quality. The sound of the

Figure 6: A plot of the impulses on a cylinder versus time for the
scene shown on the right in Figure 5 and the corresponding audio
samples. The peaks correspond to impacts while the numerous low-
amplitude impulses correspond to rolling forces.

table as the cylinder rolls over it conveys a sense of the cylinder’s
heaviness, which is only partly conveyed by the sound of the im-
pact. The cylinder, although uniformly tessellated, is very coarse,
with only 32 circumferential subdivisions. Figure 6 shows the im-
pulses applied on the cylinder against time. The peaks correspond
to impacts: when the cylinder falls on the table, and when it falls
to the ground from the table. Note that the audio waveform shows
the corresponding peaks correctly. The period of time stretching
from 6 to 8 seconds consists of the cylinder rolling on the floor and
is characterized by many closely-spaced small-magnitude impulses
on the cylinder as it strikes the floor again and again due to its tes-
sellation. To test how important the periodicity of these impulses
was for the realism of rolling sounds, we found the mean and stan-
dard deviation of the interval between these impulses from the data
presented in Figure 6. The mean time between the impulses was
17 ms with a standard deviation of 10 ms. The fact that the stan-
dard deviation is more than 50% of the mean demonstrates that the
impulses show very little periodicity. This suggests that the period-
icity of collisions is not critical for the perceived realism of rolling
sounds.

5.4 Efficiency
We are able to do audio simulation for complex scenes in real time
using our approach. Figure 7 shows a scene with 100 metallic rings
falling simultaneously onto a wooden table and undergoing elas-
tic collision. All the rings and the table are sounding. Each ring
is treated as a separate object with separate aural properties. The
rings consist of 200 vertices each. Figure 8 shows the audio FPS3

for this simulation against time for the one second interval during
which almost all the collisions take place. The application frame
rate is 100 FPS. Note that this is not the raw data but a moving
average so that the short-range fluctuations are absorbed. The plot
on the bottom is the base timing without using any of the acceler-
ation techniques described in Section 4. The audio in this case is
very choppy since the audio generation is not able to keep up with
the speed of rendering and rigid-body simulation. With mode trun-
cation and mode compression, the performance shows significant
improvement. However, after initially starting at about 200 FPS,
the frame rate drops in the latter part where the maximum number
of collisions happen. With quality scaling in addition to mode com-
pression and truncation (shown by the top-most curve), the frame
rate exhibits no such drop, continuing to be around 200 FPS. This is
because quality scaling gives priority to sound generation for those
rings which just underwent collision, while lowering the quality for
other rings which may have collided earlier and are contributing
less to the overall sound. This illustrates the importance of quality
scaling for scenarios with multiple collisions. It is important to note
that although this example sufficiently demonstrates the capability

3An audio frame is defined as the amount of sound data sufficient to play
for a duration equal to the duration of one video frame.

Figure 7: More than 100 metallic rings fall onto a wooden table.
All the rings and the table are sounding. The audio simulation runs
at more than 200 FPS, the application frame rate being 100 FPS.
Quality Scaling ensures that the perceived sound quality does not
degrade, while ensuring steady frame rates (See Figure 8)
of the system to maintain steady frame rates, it is improbable in a
real application, since there are about 100 collisions within a sec-
ond. This is the reason why the CPU utilization is high (50%). A
more common scenario would be as shown in Figure 1, which has
a much lower CPU utilization (10%).

To illustrate the realistic sounds achievable with our approach,
we designed a three-octave xylophone shown in Figure 1. The im-
age shows many dice falling onto the keys of the xylophone to pro-
duce the corresponding musical notes. The audio simulation for
this scene runs in the range of 500-700 FPS, depending on the fre-
quency of collisions. The dice have been scripted to fall onto the
xylophone keys at precise moments in time to play out any set of
musical notes. Because of the efficiency of the sound generation
process, the overall system is easily able to maintain a steady frame
rate of 100 FPS. Also, there are situations in which many dice fall
on different keys within a few milliseconds of each other, but the
sound quality exhibits no perceptible degradation. Although we
have not tuned the xylophone keys to match the exact frequency
spectrum of a real xylophone, the resulting sound is realistic and
captures the essential timbre of the instrument. The material pa-
rameters for the xylophone were taken from [Chaigne and Doutaut
1997].

6 Conclusion
We have presented a physically-based sound synthesis algorithm
with several acceleration techniques for rendering a large-scale
scene consisting of hundreds of interacting objects in real time,
with little loss in perceived sound quality. This approach requires
no special mesh structure, is simple to implement, and further takes
advantage of existing hardware acceleration. We plan to extend this
framework to auditory display of sliding sounds, explosion noises,
breaking sounds, and other more complex audio effects that are dif-
ficult to simulate at interactive rates.

References
CHAIGNE, A., AND DOUTAUT, V. 1997. Numerical simulations of xylophones. i.

time domain modeling of the vibrating bars. J. Acoust. Soc. Am. 101, 1, 539–557.

CHUNG, J. Y., LIU, J., AND LIN, K. J. 1987. Scheduling real-time, periodic jobs
using imprecise results. In Proc. IEEE RTS.

DONGARRA, J. J. 2005. Performance of various computers using standard linear
equations software (linpack benchmark report). Tech. rep., Knoxville, TN, USA.

FLORENS, J. L., AND CADOZ, C. 1991. The physical model: modeling and simu-
lating the instrumental universe. In Represenations of Musical Signals, G. D. Poli,
A. Piccialli, and C. Roads, Eds. MIT Press, Cambridge, MA, USA, 227–268.

Figure 8: This graph shows the audio simulation FPS for the scene
shown in Figure 7 from time 1s to 2s, during which almost all the
collisions take place. The bottom-most plot shows the FPS for an
implementation using none of the acceleration techniques. The top-
most curve shows the FPS with mode compression, mode trunca-
tion and quality scaling. Note how the FPS stays near 200 even
when the other two curves dip due to numerous collisions during
1.5-2.0s.

FOUAD, H., BALLAS, J., AND HAHN, J. 1997. Perceptually based scheduling algo-
rithms for real-time synthesis of complex sonic environments. In Proc. Int. Conf.
Auditory Display.

GUENDELMAN, E., BRIDSON, R., AND FEDKIW, R. 2003. Nonconvex rigid bodies
with stacking. ACM Trans. on Graphics (Proc. of ACM SIGGRAPH) 22, 871–878.

KIM, Y. J., LIN, M. C., AND MANOCHA, D. 2002. DEEP: an incremental algo-
rithm for penetration depth computation between convex polytopes. Proc. of IEEE
Conference on Robotics and Automation, 921–926.

MIRTICH, B., AND CANNY, J. 1995. Impulse-based simulation of rigid bodies. In
1995 Symposium on Interactive 3D Graphics, P. Hanrahan and J. Winget, Eds.,
ACM SIGGRAPH, 181–188. ISBN 0-89791-736-7.

O’BRIEN, J. F., COOK, P. R., AND ESSL, G. 2001. Synthesizing sounds from
physically based motion. In SIGGRAPH ’01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques, ACM Press, New York,
NY, USA, 529–536.

O’BRIEN, J. F., SHEN, C., AND GATCHALIAN, C. M. 2002. Synthesizing sounds
from rigid-body simulations. In The ACM SIGGRAPH 2002 Symposium on Com-
puter Animation, ACM Press, 175–181.

SEK, A., AND MOORE, B. C. 1995. Frequency discrimination as a function of
frequency, measured in several ways. J. Acoust. Soc. Am. 97, 4 (April), 2479–2486.

VAN DEN DOEL, K., AND PAI, D. K. 1996. Synthesis of shape dependent sounds with
physical modeling. In Proceedings of the International Conference on Auditory
Displays.

VAN DEN DOEL, K., AND PAI, D. K. 1998. The sounds of physical shapes. Presence
7, 4, 382–395.

VAN DEN DOEL, K., KRY, P. G., AND PAI, D. K. 2001. Foleyautomatic: physically-
based sound effects for interactive simulation and animation. In SIGGRAPH ’01:
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, ACM Press, New York, NY, USA, 537–544.

VAN DEN DOEL, K., KNOTT, D., AND PAI, D. K. 2004. Interactive simulation of
complex audiovisual scenes. Presence: Teleoper. Virtual Environ. 13, 1, 99–111.

ZWICKER, E., AND FASTL, H. 1990. In Psychoacoustics. Springer-Verlag, Berlin.

