
Constraint-Based Model Synthesis

Paul Merrell ∗ Dinesh Manocha
University of North Carolina at Chapel Hill

(a) Example Model (b) Generated Model

Figure 1: (a) From an example model specified by the user, (b) a model of several oil platforms is generated automatically by our algorithm.
The shape of the output resembles the input and fits several dimensional and connectivity constraints. The height of the platform and the
length and width of the beams are constrained to have a particular size. The shapes are constrained to be in four connected groups. Our
algorithm can generate the new model in about half a minute.

Abstract

We present a method for procedurally modeling general complex
3D shapes. Our approach is targeted towards applications in digi-
tal entertainment and gaming and can automatically generate com-
plex models of buildings, man-made structures, or urban datasets
in a few minutes based on user-defined inputs. The algorithm at-
tempts to generate results that resemble a user-defined input model
and that satisfy various dimensional, geometric, and algebraic con-
straints. These constraints are used to capture the intent of the user
and generate shapes that look more natural. We also describe ef-
ficient techniques to handle complex shapes and demonstrate their
performance on many different types of models.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—;

Keywords: model synthesis, procedural modeling

∗http://gamma.cs.unc.edu/synthesis

1 Introduction

Creating 3D digital content for computer games, movies, and vir-
tual environments is an important and challenging problem. It is
challenging because realistic scenes often require very complex and
widely varying shapes and styles. Consider the problem of generat-
ing a realistic model of outdoor scenes. Different applications may
require many different types of models such as buildings, oil plat-
forms, spacecrafts, roller coasters, and other man-made structures.
To generate such models, current CAD or authoring systems need
a large amount of user input and manipulation and do not provide
intuitive interfaces.

There is extensive literature on procedural modeling techniques
which are designed to automatically or semi-automatically gen-
erate complex models. These include techniques based on shape
grammars, scripting languages, L-systems, fractals, or solid textur-
ing. These approaches have been used to generate many complex
shapes, but each method is mainly limited to a specific class of
models or requires considerable user input or guidance.

In this paper, we address the problem of generating complex mod-
els using model synthesis. Model synthesis is a simple technique
proposed by [Merrell 2007; Merrell and Manocha 2008] to auto-
matically generate complex shapes. The model synthesis algorithm
accepts a simple 3D shape as an input and then generates a larger
and more complex model that resembles the input. An example of
this is shown in Figure 1.

Different procedural modeling techniques require varying degrees
of user input. Using a high degree of user input has both advantages
and disadvantages. Without sufficient user input, the result gener-

ated by the algorithm may be too random and some parts of the re-
sult may turn out to be different from what the user intended. With
too much user input, the time required to adjust it could overwhelm
the user. Ideally, the user could choose to provide any amount of in-
put and the algorithm should be able to adjust accordingly. The user
input can often be specified in the form of a constraint on the out-
put. Any output that satisfies all of the user’s constraint is accept-
able. Prior work in model synthesis [Merrell and Manocha 2008]
uses a minimal amount of user input in the form of a single adja-
cency constraint and may not give the user enough control over the
result.

We present a novel model synthesis algorithm which enables the
user to specify geometric constraints that give the user greater con-
trol over the results. We use dimensional, incident, algebraic, and
connectivity constraints that have been used in CAD/CAM, geo-
metric modeling, and robotics. The constraints are specified be-
tween a set of geometric objects and their features. These include
spatial and logical constraints such as incidence, tangency, perpen-
dicularity, and metric constraints such as distance, angle, etc. We
use these constraints to capture the user’s intent, to prevent objects
from becoming unnaturally large or small, to generate more com-
plex shapes, and to manage the objects’ spatial distribution.

In order to satisfy the constraints, we represent local neighborhoods
of the objects using Boolean expressions. The Boolean expressions
are used to compute how different vertices, edges and faces of the
synthesized model connect together. Furthermore, we present a
scheme to incorporate dimensional and algebraic constraints into
our model synthesis algorithm.

Like most procedural modeling techniques, our algorithm is pri-
marily designed to work on objects that are self-similar. We demon-
strate its ability to generate models of buildings, man-made struc-
tures, city streets, plumbling, etc. In practice, our algorithm works
well on man-made structures rather than organic curved shapes.

The rest of the paper is organized as follows. We give a brief sur-
vey of prior work on procedural modeling and geometric constraint
systems in Section 2. Section 3 gives a brief overview of model
synthesis and the constraints used by our algorithm. The overall
constraint-based algorithm is described in Section 4 and we high-
light its performance in Section 5. We analyze its performance and
discuss some of its limitations in Section 6.

2 Related Work

A wide variety of procedural modeling techniques have been de-
signed to model specific types of objects or environments [Ebert
et al. 2002]. Plants have been generated using L-systems [Mĕch
and Prusinkiewicz 1996; Prusinkiewicz et al. 2001]. Terrain has
been modeled using fractals [Musgrave et al. 1989]. Split gram-
mars have been used to create architectural buildings [Müller et al.
2006; Wonka et al. 2003]. Other techniques have been developed
to create truss structures [Smith et al. 2002], layered solid mod-
els [Cutler et al. 2002], freeform buildings [Pottmann et al. 2007],
and cellular textures of bricks and masonry on building exteriors
[Legakis et al. 2001]. However, each of these methods is designed
to model a specific class of objects and may require the user to spec-
ify many production rules. Shape grammars were derived automat-
ically by Müller et al. [2007] from images of facades. Complex
architecture has also been modeled by reshaping and combining
existing textured models [Cabral et al. 2009].

Model synthesis was initially proposed by Merrell [2007] and later
extended to handle non-axis-aligned objects [Merrell and Manocha
2008]. Model synthesis is inspired by texture synthesis. Both these
methods are designed to take a small sample as an input exam-

ple and generate a larger result that resembles the input example.
Texture synthesis methods have become increasingly sophisticated
[Efros and Leung 1999; Wei and Levoy 2000; Kwatra et al. 2003;
Han et al. 2008; Kopf et al. 2007]. Another example-based tech-
nique is designed specifically for generating urban layouts [Aliaga
et al. 2008].

Model synthesis relies on finding repeated geometric patterns.
Many methods have been developed to find patterns in 3D models
[Mitra et al. 2006].

There is rich literature in solid modeling on designing shapes
that satisfy various geometric, parametric or variational constraints
[Bouma et al. 1995; Ault 1999]. There is also considerable work
on solving geometric constrained systems and some excellent sur-
veys are available [Hoffmann et al. 1998; Kramer and Qh 1992].
Geometric constraints are widely used in computer aided engineer-
ing applications [Hoffmann and Rossignac 1996] and also arise in
many geometric modeling contexts such as virtual reality, robotics,
molecular modeling, computer vision, etc. These constraints are
used to incorporate relationships between geometric entities and
features and thereby capture the intent of the designers. Our formu-
lation of various constraints is similar, though our approach to sat-
isfy these constraints during model synthesis is different. Besides
geometric constraints, silhouette-based constraints are also used
to model freeform objects using sketch-based interfaces [Igarashi
et al. 1999; Nealen et al. 2007].

3 Method

In this section, we give a brief overview of model synthesis and the
constraints used in the algorithm.

3.1 Notation

Points and vectors are written in bold face, x ∈ R3. Lower-case
letters not in bold face are generally used to denote scalar variables,
but there are a few exceptions. The variable h is used to denote the
set of points within a half-space. The upper-case letters, E and M
are used to denote the models. The model E is the input example
model provided by the user. The model M is the new model gen-
erated by the algorithm. Each model is a set of closed polyhedra.
The models E and M and the half-spaces hi are represented in two
different ways. A half-space h1 could be represented as a set of
points h1 or as the characteristic function of that set h1(x) where
h1(x) = 1 if x ∈ h1, otherwise h1(x) = 0. The complement
of the half-space h1 is written as either the set hC

1 or the function
¬h1(x).

3.2 Background

Our algorithm builds upon earlier work in model synthesis. In this
section, we give a brief overview of a previous model synthesis al-
gorithm [Merrell and Manocha 2008]. The user provides an exam-
ple model as the input. The example model is a set of polygons that
form closed polyhedral objects. Model synthesis generates a new
model M that resembles the example model E. In earlier work, it
was assumed that the input was a single object, but we allow mul-
tiple objects in E. Let n be the number of different objects in E.
We consider the example model to be a function E(x) of a point in
space x where E(x) = k if x is inside an object of type k where
1 ≤ k ≤ n. If x is not inside any of the objects, then E(x) = 0.
The function M(x) is similarly defined for the new model M .

In the prior model synthesis algorithm, the output model only
needed to satisfy a single constraint called the adjacency constraint.

The adjacency constraint is defined on neighborhoods. A neigh-
borhood around a point is just a set of points near it. In Figure 2,
the neighborhoods surrounding the points a, b, c, d, and e exactly
match the neighborhoods surrounding the points a′, b′, c′, d′, and
e′. The neighborhoods around a point x matches the neighborhoods
around the point x′ if there exists ε > 0 such that for all vectors δ
where ||δ|| < ε

M(x + δ) = E(x′ + δ). (1)

The adjacency constraint states that for every point x there exists
a point x′ whose neighborhood matches according to equation 1.
This constraint ensures that every neighborhood of ofM is the same
as a neighborhood of E.

Figure 2 gives an overview of our approach. Starting with the input
example shape E(x) shown in Figure 2(a), the algorithm creates
sets of parallel lines (or parallel planes in 3D) as shown in Figure
2(b). The output shape is generated on these sets of parallel lines.
One possible output shape is shown in Figure 2(c). The lines (or
planes in 3D) intersect at vertices.

Each vertex has a set of acceptable neighborhoods that match the
input according to Equation 1. The vertex could be outside M(x),
inside it, or on its boundary which could be an edge, a face, or a ver-
tex of the output shape. Each possible neighborhood is represented
by a different possible state. One state might be a neighborhood
which is on a face. A neighborhood on a face that has a different
normal would be a different state. There are other states for neigh-
borhoods on edges or vertices. Every neighborhood that is different
according to Equation 1 is a different possible state. Several states
are shown in Figures 3 and 4. Two states can be at adjacent vertices
in Figure 2 if they have similar features along the direction in which
they connect. For example, Figure 4 shows three states that could
be beneath a particular state because they all share a vertical mag-
neta edge that can connect the two states. Adjacent states which do
not share common features conflict because they can not connect
together.

After creating the planes, the next part of the algorithm is to assign
states to each vertex without assigning two adjacent states that con-
flict. We keep track of a list of every possible state that could be
assigned to each edge and each vertex. This list is long initially,
but it gets shorter as we assign more states. Each assigned state is
associated with a set of states that could be adjacent to it. Neigh-
boring states outside this set conflict with the assigned state and get
removed from the list. This removal may, in turn, expose other con-
flicting states which are also removed. This process is repeated until
no more states need to be removed. We continue to assign states to
each vertices and then update the list of possible states until every
vertex has been assigned a single state.

3.3 Geometric Constraints

Our approach uses several geometric constraints to capture the
user’s intent and to control the shape of the synthesized model.
To describe different constraints, we borrow terminology from the
solid modeling and CAD literature [Ault 1999].

Dimensional Constraints: Many objects have predetermined di-
mensions. Cars, road lanes, and chairs have a certain width. Stair
steps and building floors have a certain height. Bowling balls and
pool tables have a predetermined size. Without constraining the di-
mensions of the objects, the synthesis algorithm could easily gener-
ate roads too narrow to drive across, steps too tall to walk up, ceil-
ings too close to the ground, and bowling balls too large to bowl.

Dimensional constraints allow the user to fix the dimensions of the
objects so that they are always sized realistically.

Algebraic Constraints: Some objects do not have predetermined
dimensions, but instead must satisfy an algebraic relationship be-
tween their dimensions. An example might be that an object’s
length must be twice its height. These constraints are especially
useful for curved objects.

Incidence Constraints: Prior model synthesis techniques are lim-
ited to shapes which have only trihedral vertices. Trihedral vertices
are vertices which are incident to three faces. As a result, there are
many simple shapes such as a pyramid or an octahedron that previ-
ous model synthesis techniques can not generate. To generate such
shapes, we use additional incidence constraints.

Connectivity Constraint: Many objects look unnatural if they are
not connected to a larger whole. One example is a road network. An
isolated loop of road looks unrealistic when it is disconnected from
the all the other roads. All of the roads in a city are normally con-
nected in some way. This defines a connectivity constraint which
can be used to eliminate the possibility of isolated loops and create
fully connected roads.

Large-Scale Constraints: The user might have a floor plan or a
general idea of what the model should look like on a macroscopic
scale. For example, the user might want to build a city with build-
ings arranged in the shape of a circle or a triangle. The user can
generate such a model by using large-scale constraints. These con-
straints are specified on a large volumetric grid where each voxel
records which objects should appear within it.

4 Constraint-Based Approach

In this section, we present our constraint-based synthesis algorithm.

4.1 Overview

We first discuss incidence constraints that are used to specify that
more than three faces are incident to a vertex to generate a non-
trihedral vertex. To add these incidence constraints, we need a new
way to describe the neighborhoods around non-trihedral vertices.
We uses Boolean expressions as explained in Section 4.2. These
representations are used to determine which neighborhoods can be
adjacent to one another. The vertices of the output are constructed
where several planes intersect. Vertices incident to four or more
faces require that four or more planes intersect there which requires
the planes be spaced more carefully as described in Section 4.4.

The Boolean expressions describing the states can also be used to
apply dimensional constraints to the synthesized model. By disal-
lowing any states that would permit the objects to stretch beyond its
fixed dimensions, dimensional constraints are created as described
in Section 4.5. Connectivity constraints are imposed in Section 4.6
by changing the order in which the states are assigned. Large-scale
constraints are applied by changing the probabilities of the states
that are assigned to each vertex, as described in Section 4.7. An
algebraic constraint is described in Section 4.8.

4.2 Representing Neighborhoods with Boolean Ex-
pressions

In this section, we discuss how to describe states using Boolean ex-
pressions. The terms Boolean expression, neighborhood, and state
can all be used interchangeably. The Boolean expressions are sim-
ply used to describe the neighborhoods. Our ultimate goal is to
assign a neighborhood to each vertex of Figure 2(b). Each vertex

(a) Example Shape E(x) (b) Parallel lines diving up the plane. (c) Acceptable Output Shape M(x)

Figure 2: (a) From the input shape E, (b) sets of lines parallel to E intersect to form edges and vertices. (c) The output shape is formed
within the parallel lines. For each selected point a, b, c, d, and e in M , there are points a′, b′, c′, d′, and e′ in the example model E which
have the same neighborhood. The models E and M contain two different kinds of object interiors shown in blue and brown. The brown
object’s width is constrained to be one line spacing width. The width of the blue object is not constrained. The objects are also constrained
to be fully connected.

Figure 3: One edge and six vertex states are described using
Boolean expressions of three half-spaces. In our algorithm, every
neighborhood is represented by a Boolean expression.

has a set of possible neighborhoods that could be assigned to it and
these are called states.

The incidence and the adjacency constraints are concerned with
the neighborhoods surrounding points. To impose the adjacency
constraint at non-trihedral vertices, we need a way to describe the
neighborhoods there. Neighborhoods are represented using half-
spaces which are related to the faces of the polyhedra. Every face
has a plane that is parallel to it and that intersects the origin. This
plane divides space into two half-spaces. The face’s normal points
into one half-space and away from the other. Let us associate each
face with the half-space that its normal points away from. These
half-spaces can be used to describe every neighborhood of the poly-
hedra using a combination of Boolean operations. A few examples
of these combinations are shown in Figure 3. For every point p in
E, there exists a Boolean expression that will produce a neighbor-
hood identical to p. This set of Boolean operations is found using
the following method:

1. If p is on a face and hi is the half-space associated with the
face, then hi alone produces a neighborhood that is identical
to p. If p is on a face whose normal points in the opposite
direction, then hC

i describes the neighborhood around p.

2. If p is on an edge whose two adjacent faces are associated

with the two half-spaces hi and hj , then the neighborhood
around p is described by hi∪hj if the edge has a reflex angle
and hi ∩ hj if it does not.

3. If p is on a vertex, then the procedure for computing its neigh-
borhood’s Boolean expression is more complex. Every face
that intersects p is on a plane. Let us take all the faces that
intersect p and use all of their planes to divide the space into
cells. An example of this is shown in Figure 5. Each cell is
the intersection of several half-spaces. Since the planes all
intersect p, every cell has points in the neighborhood of p.
For each cell, we determine if the points within the cell and
within the neighborhood of p are inside or outside the poly-
hedron E. We take the union of all cells which have points
inside the polyhedron and this is the Boolean expression that
represents the neighborhood surrounding p. Each cell is the
intersection of several half-spaces and so the neighborhood at
p is represented as a union of intersections. These expressions
can often be simplified using familiar rules of Boolean alge-
bra such as (hi ∩ hj) ∪ (hi ∩ hC

j) = hi. Simplified Boolean
expressions for various states are shown in Figures 3 and 5.

This method gives us a Boolean expression describing how a poly-
hedra intersects a neighborhood at any point p. However, more
than one polyhedra might intersect at the same point. For example,
see the points b and e of Figure 2(c). When multiple objects in-
tersect, we can compute a Boolean expression for each object and
then combine all the expressions into one. Let k1 and k2 be two
object interiors and let b1 and b2 be two Boolean expressions. The
notation k1 · b1 + k2 · b2 will be used to describe a neighborhood
which contains the object k1 at the points b1 and object k2 at b2.
For example, 1 · h1 ∩ hC

2 + 3 · h2 describes a neighborhood where
an edge h1 ∩ hC

2 of object 1 touches a face of h2 of object 3.

4.3 Evaluating Boolean Expressions along Edges

In the previous section, we discuss how to describe every neighbor-
hood or every state as a Boolean expression, but we still need to
determine which states can be next to one another. The Boolean ex-
pressions can be thought about in more than one way. We have been
thinking in terms of union and intersection of sets, but we could re-
place them with OR and AND operations of functions. Each half-
space has a characteristic function h1(x) which evaluates to 1 if x
is inside the half-space and to 0 if x is in the opposite half-space.
However, a third possibility is that x could intersect the plane di-

Figure 4: We can evaluate the states to figure out which states can
be adjacent to them in various directions. This shows the state (h1∧
h2)∨(h1∧h3) evaluated in six directions. In this figure, we assume
that the direction x23 points down and is inside the h1 half-space
so that h1(x23) = 1 and h1(−x23) = 0. In the x23 direction, the
state (h1 ∧h2)∨ (h1 ∧h3) evaluates to h2 ∨h3 which is shown as
the magneta edge. The only states that can be directly beneath the
state (h1∧h2)∨ (h1∧h3) are states which share the same h2∨h3

edge. We test every state to see which ones evaluate to h2 ∨ h3

in the up direction which is −x23. Three examples of acceptable
states are shown: h1 ∨ h2 ∨ h3, h2 ∨ h3, and (¬h1 ∧ h2) ∨ h3.
More than three acceptable states exist.

Figure 5: Even complex vertices can be described using a Boolean
expression of half-spaces. We can take all the faces that intersect
the vertex and use all of the planes the faces are on to divide up the
space into regions that are the intersection of several half-spaces.
The regions labeled in the figure are part of the interior of the poly-
hedron. The vertex state can be described as the union of all the
regions inside the polyhedron. The expression for this vertex when
simplified is (h3 ∧ (h1 ∨ h2)) ∨ (h4 ∧ (h1 ∨ h5)).

viding the two half-spaces. In this case, we do not evaluate h1(x)
as 0 or 1, but leave it as the symbol h1. This symbolic representa-
tion provides a convenient way to determine how the states connect
together.

The symbols are used when a point x is on a plane. To keep track of
which planes an input point is on, we will use subscripts. According
to this notation, the point x12 = n1×n2 is on the planes of h1 and
h2.

The Boolean expressions can describe many different neighbor-
hoods or states, including vertices, edges, and faces. When we
evaluate the expression at a point x, essentially we get a new state
that describes what we would encounter if we travel away from
a neighborhood in the direction of x. If the expression evaluates
to 0, we travel into empty space. If it evaluates to 1, we travel
into an object’s interior. If it evaluates to h1, we travel onto a
face. If it evaluates to something like h1 ∧ h2 or h1 ∨ h2, then
we travel onto an edge. We determine which states can be next
to one another by evaluating two states in opposite directions and
checking if their evaluations are identical. In Figure 4, the state
(h1 ∧ h2) ∨ (h1 ∧ h3) evaluates in the down direction to h2 ∨ h3.
Any state that evaluates to h2 ∨ h3 in the up direction can be be-
neath the state (h1 ∧ h2) ∨ (h1 ∧ h3) and three examples of such
states are shown in Figure 4.

The Boolean expressions may contain more than one object interior.
In this case, we evaluate each object interior separately and combine
the results. For example, the expression 1 · (h1 ∧ ¬h2) + 3 · h2 is
used to describe a neighborhood in which an edge h1 ∧ ¬h2 of
object 1 touches a face h2 of object 3. If we evaluate the expression
at the point x23 and if h1(x23) = 1, then we would compute 1 ·
h1(x23)∧¬h2(x23) + 3 ·h2(x23) = 1 · ¬h2 + 3 ·h2. This means
that if we travel in the direction x23 we will encounter two faces,
one from object 1 and another from object 3, which touch.

4.4 Spacing the Planes

For each vertex of Figure 2(b), we compute a list of possible states.
Each state corresponds to a neighborhood which can be described
by a Boolean expression. We first find all states found in the input
model. Each face, each edge, each vertex, and each object interior
is a different state. However, only a small fraction of these states
are acceptable at each vertex of Figure 2(b). To be acceptable, every

half-space used in the state’s Boolean expression must be associated
with a plane that the vertex intersects. States that use four or more
half-spaces pose a problem, since these states are only allowed at
vertices where four or more planes intersect. States of trihedral
vertices do not have this problem. They only use three half-spaces;
three half-spaces require three planes to intersect; and those three
planes must intersect somewhere. But four planes may not intersect
anywhere. For these cases, we need to choose the plane spacing so
that four planes intersect.

We first discuss how to compute the points where three planes inter-
sect and then discuss how to get a fourth plane to intersect the same
points. Let n1,n2, and n3 be the normals of three sets of planes.
All planes within the each set are parallel and evenly spaced. Let
s1, s2, and s3 be the spacing between the planes within each set.
The first and second sets of planes intersect at a line that points in
the n1 × n2 direction. If p is a point on the line, then p′ is also on
the line if p′ − p = (n1 × n2)t for some scalar t. If p intersects a
plane from the third set, then p′ also does if n3 · (p′ − p) = c3s3
for some integer c3 ∈ Z. Solving for t, we find that t = c3s3

n3·(n1×n2)

and, therefore,

p′ = p + c3s3
n1 × n2

n3 · (n1 × n2)
(2)

for some c3 ∈ Z. This gives us a set of points along the n1 × n2

direction where the three planes intersect. The same argument can
also be applied to the n1×n3 and n2×n3 directions. Three planes
intersect at the points

p′ = p +
c1s1n2 × n3

n1 · (n2 × n3)
+

c2s2n1 × n3

n2 · (n1 × n3)
+

c3s3n1 × n2

n3 · (n1 × n2)
(3)

for any c1, c2, c3 ∈ Z. Each different combination of c1, c2, and c3
gives us a different intersection point and the resulting intersection
points form a 3D lattice. The three planes always intersect regard-
less of how they are spaced, but it is much more difficult to get four
planes to intersect. If p intersects a plane from the fourth set, then
p′ also does if n4 · (p′ − p) = c4s4 for some integer c4 ∈ Z. The
point p′ intersects the fourth set of planes if

s4 = s1
c1n4 · (n2 × n3)

c4n1 · (n2 × n3)
+ s2

c2n4 · (n1 × n3)

c4n2 · (n1 × n3)

+ s3
c3n4 · (n1 × n2)

c4n3 · (n1 × n2)
(4)

for some c4 ∈ Z. This equation needs to be solved to get four
planes to intersect at multiple points. This algebraic relation rep-
resents multiple equations that need to be solved since each com-
bination of c1, c2, and c3 produces another equation. If we solve
this equation for the combinations (c1, c2, c3, c4) = (1, 0, 0, 1) and
(0, 1, 0, 1) and (0, 0, 1, 1), then it will hold for any combination of
c1, c2, and c3. Essentially, we have three equations and four un-
knowns s1, s2, s3, and s4. By solving for these linear equations,
we produce a 3D lattice of points where a non-trihedral vertex state
may appear. However, this only takes care of a single non-trihedral
vertex state. There may be more of these states in the input and
they would each require more equations to be solved. There are
even more difficult vertex states to handle like the vertex shown in
Figure 5 which involve five half-spaces. These require solving more
linear equations.

In the end, we may have an underconstrained or an overconstrained
set of linear equations. An overconstrained set of equations occurs
when the input model does not fit well on within a lattice. One
example of an input shape that produces overconstrained equations
is a five-sided pyrmaid. These overconstrained equations can be
handled in several ways. One approach is to add many more planes,
but this increases the computational cost of the overall algorithm.
Another approach might be to modify the normals just enough that
the shapes better fit on a lattice, but not so much that the normals
significantly change the results. A third option is to leave a few of
the equations unsatisfied. When this happens, non-trihedral vertices
will be generated at fewer locations, but this might be adequate to
produce a good final result.

4.5 Dimensional Constraints

We would like to give the user greater control over the dimensions
of the output. The user should be able to control if an object can
scale in a particular direction. For example, a user might specify
that a road must have a particular width. Along its width, the road
can not scale, but along its length, the road can scale to any length.
The ability to fix the dimensions of some objects is important for
creating realistic models.

Since the objects are created on sets of evenly spaced planes, the
lengths of each object must be an integer multiple of the plane
spacing. Objects with non-integer dimensions like for example 1.5-
plane spaces can pose a problem. To deal with these objects the
planes could be spaced more closely. If they are spaced twice as
close, an object that was 1.5-plane spaces wide would become three
planes wide which is a round number. Often there is an even sim-
pler solution since objects with dimensional constraints are often
next to objects without them and the two objects can be attached
together to produce a round number. For example, it might be pos-
sible to combine an object 1.5 spaces wide with 0.5 spaces of empty
space to produce an object two plane spaces wide which is a round
number.

Even though objects may be two, three or more plane-spaces wide,
we only need to consider the issue of how to force an object to be
exactly one-space wide since we can easily create objects exactly
two or three spaces wide simply by attaching a few one-space wide
objects together.

Figure 6 shows a simple example of how this constraint is imposed.
The objects can never grow wider than one plane-space if every
time they intersect a plane they stop. To stop their growth, we
disallow all vertex states in which the object passes through the
plane. The object is on both sides of the plane if h2 ∧ b 6= 0 and
¬h2 ∧ b 6= 0 where h2 is the half-space parallel to the plane and b
is the Boolean expression describing the vertex state. By removing
all states where h2 ∧ b 6= 0 and ¬h2 ∧ b 6= 0, we guarantee that the
objects do not grow more than one plane-space wide.

4.6 Connectivity Constraints

In many applications, controlling the connections between objects
is important. For example, this is important when creating urban
models with roads. In most cities, one could choose any two points
on a road map and find a path that connects them. However, model
synthesis algorithms could generate isolated loops or cycles of road
networks that are not connect to each other. This problem can be
addressed by changing the order in which the states are assigned.
We begin by choosing a starting location at random and creating an
object (e.g. road) there. Then the roads are all grown out from this
initial seed. This means that we only assign road states to vertices

Figure 6: Dimensional Constraint. To create objects that are only
one plane space wide horizontally, we disallow any states which
pass through the vertical h2 planes such as h1 or ¬h1. In this way,
our algorithm can satisfy dimensional constraints.

that are already next to a road. By growing out from a single seed,
the generated roads are fully connected.

A fully connected object is just one of several options to consider.
One alternative is to not use seeds at all and to assign the states
in any order. This is useful when the user wants to create many
isolated objects. A third option fits in between the other two. The
user might not want everything to be connected, but might not want
many small isolated objects either. The user may want a few large
isolated objects. To accomplish this, everything could be grown out
not from a single seed, but from multiple seeds.

4.7 Large-Scale Constraints

We would also like to give the user more control over the large-
scale structure of the output. The user might have a general idea
of where certain types of objects should appear. Each object has
a particular probability that it will appear at any location in space.
Generally, we choose to give each state an equal probability of be-
ing chosen, but we could easily modify the probabilities so that
they are higher for any particular objects the user wants to appear
within some areas. The user could even set some probabilities to be
zero in some places. If a state’s probability drops to zero, we can
remove it entirely and then propagate the removal as usually done
when assigning states (see Section 3.2). By changing these prob-
abilities, we can create cities and other structures in the shape of
various symbols and other objects. We can also generate multiple
outputs, evaluate how well they match the user’s desired goal, and
select the best output.

4.8 Algebraic Constraints and Bounding Volumes

The model synthesis algorithm creates a set of parallel planes for
every distinct normal of the input. As a result, handling curved
input models with many distinct normals are computationally ex-
pensive because of the large number of planes that would have to
be created. However, the number of distinct normals can be greatly
reduced by using bounding boxes and other bounding volumes in
place of complex objects. The algorithm could be run using the
bounding volumes in place of the input model and complex objects
can be substituted back into the output model M after it is gener-
ated.

Input Size Output Size Time
(polygons) (polygons) (minutes)

Oil Platform 60 1,377 0.5
Domes 21 324 0.1
Buildings 116 2,230 1.4
Spaceships 168 4,164 0.6
Roads 126 6,888 0.2
Plumbing 282 7,422 0.8
Roller Coaster 124 1,376 1.8
GPM 365 7,527 3.5

Table 1: Complexity of the input and output models and compu-
tation time for various results computed on a 2.8 GHz single-core
PC.

There are several alternative ways the user can constrain the dimen-
sions. The object’s dimensions could scale freely in a direction or
be fixed (see Section 4.5). A third option is to let an object scale,
but to require that it must scale uniformly in two or three direc-
tions. For example, the cylinder in Figure 7 only remains cylin-
drical if its x and y coordinates scale uniformly sx = sy . It is
free to stretch along the z-coordinate by any amount. To get its x
and y coordinates to scale equally, we can place a bounding box
around the cylinder and the cut the box into two halves along the
diagonal creating two triangular prisms shown in Figure 7. Since
model synthesis scales triangular objects uniformly in two dimen-
sions, the output will be scaled identically in x and y, sx = sy and
the cylinder can be substituted back in the shape.

The user may want to be even more restrictive and require the scal-
ings be uniform in all directions sx = sy = sz . For example, the
dome in Figure 7 remains spherical only in this case. This can be
accomplished by placing a bounding box around the sphere and cut-
ting off a tetrahedron as shown in Figure 7. Since model synthesis
scales tetrahedra uniformly in all directions, the output will create
a uniformly scaled copy of the bounding box.

5 Results

Figures 1, 7 - 13 show a variety of models that were generated using
our algorithm. The generated models are large and detailed and
it would be quite difficult to model them manually using a CAD
or authoring system. The models each satisfy multiple constraints
which depend on the application. Dimensional constraints are used
in Figure 1 to give the platforms and beams a fixed thickness. They
are also used to constrain the width of the road in Figure 10, the
width of the spacecrafts in Figure 9, the size of the pipes in Figure
11, and the width of the roller coaster track in Figure 12. Incidence
constraints are repeatedly used in Figure 8 to create architecture
with four faces touching at a single vertex. Connectivity constraints
are used in Figures 1, 8, and 9 to grow the objects out from a few
seeds and this controls the distribution of the objects so they are
not all crowded together. The roads in Figure 10 and the pipes in
Figure 11 are fully connected to a single seed. In Figure 9, the
parts of the spaceships are connected by beams and have gaps in
between. Figure 9 demonstrates that model synthesis can generate
shapes which have a high genus. Bounding volumes were used in
Figures 1 and 9 to generate curved objects. Algebraic constraints
were used in Figure 7. A large-scale constraint is used in Figure
13 to generate several different types of objects in the form of the
characters “GPM”.

Each of the models was generated without requiring much effort
from the user. The input models E are composed of only a few
dozen polygons. Each of the constraints can be specified by only
changing a few parameters or in the case of Figure 13 an image of

the letters “GPM” Table 1 shows the computation time for model-
ing each shape and the size of the input and output models. The
size is given in terms of the polygon count of the bounding vol-
umes. All of the displayed images include artistic decorations to
the vertices and edges and some include complex objects that were
generated from bounding volumes. The polygon count does not in-
clude any of these decorations. The computation time depends both
on the output size and on which input model is used. Some models
can be computed much more quickly than others. The road model
(Figure 10) can be computed quickly because it is flat and does not
really use all three spatial dimensions. The ‘GPM’ model takes
the longest time to compute because it uses several different input
models including a spaceship model and several building models.

6 Analysis and Comparison

Other methods are also able to efficiently produce large detailed
models of buildings [Müller et al. 2006; Wonka et al. 2003]. They
are targeted specifically for modeling buildings and are less useful
for modeling other shapes. They also may require more guidance
from the user. These algorithms use shape grammars to construct
the shapes. In order to produce different shapes, the user must spec-
ify and adjust many production rules of the grammar. This requires
more effort from the user.

Previous model synthesis techniques [Merrell and Manocha 2008]
only use the adjacency constraint. Using prior algorithms without
the dimensional and algebraic constraints, most of the results would
appear distorted and unnatural. Without the connectivity constraint,
the resulting models would contain mostly small crowded objects.
Without the incidence constraints, none of the buildings in Figure 8
would be generated. The large-scale constraint is required to gen-
erate the pattern in Figure 13.

Limitations: The amount of time and memory that model synthe-
sis needs depends on the number of vertices. Vertices are generated
wherever three or more planes intersect. The number of planes de-
pends on the number of distinct face normals. If there are n distinct
normals and m parallel planes for each normal, there could be up
to O(n3m3) vertices. The number of distinct normals can be re-
duced by using bounding volumes, but only to a certain extent since
bounding volumes can oversimplify some objects. This makes gen-
erating curved objects using model synthesis especially difficult. A
related problem is that it is difficult to generate both large and small
objects simultaneously. Small objects require closely spaced planes
while large objects require large volumes which together means that
many planes must be created.

Like most procedural modeling techniques, model synthesis is de-
signed to work on objects that are self-similar. Model synthesis
works best on objects with parts that are not only similar to each
other, but that identically match. Objects without parts that exactly
match can be used with model synthesis, but they often produce
results that match the input too closely. Since model synthesis is
intended for applications in digital entertainment or gaming, we as-
sume that objects in the input are free from significant errors in the
vertex positions. Model synthesis works efficiently on man-made
structures that can be represented with a few planar faces, but it is
inefficient when used on organic and curved shapes because of the
large number of distinct normals n that these shapes have.

Another limitation is that the objects often need to have a grid struc-
ture. The grid is a necessary part of some of the constraints. The di-
mensional constraint assumes the dimensions fit on a grid. The inci-
dence constraint assumes that the vertices can be fit onto a grid. The
structure of the grid depends on the plane spacing which can be al-
tered to accommodate some shapes, but not all shapes as explained
in Section 4.4. Some shapes may produce an overconstrained set

of equations when using Equation 4. Several strategies for dealing
with this problem were discussed in Section 4.4, but each of them
has downsides.

7 Conclusion and Future Work

We have presented several major improvements to model synthesis
that allow the user to more effectively control the output. We enable
the user to fix dimensions of objects, to specify a large-scale struc-
ture of the output, to produce connected results, to add bounding
volumes, to have multiple object interiors, and to generate shapes
with complex vertex states. Further work is needed to improve the
efficiency of model synthesis, especially when generating large and
small objects together. More work is needed for handling curved
objects beyond using bounding volumes. One important constraint
that is still missing is one to create symmetrical objects.

Acknowledgements

We would like to thank the reviewers for their comments. This
work was supported in part by W911NF-04-1-0088, NSF award
0636208, DARPA/RDECOM Contracts N61339-04-C-0043 and
WR91CRB-08-C-0137, Intel, and Microsoft.

References

ALIAGA, D. G., VANEGAS, C. A., AND BENEŠ, B. 2008. Interac-
tive example-based urban layout synthesis. ACM Trans. Graph.
27, 5, 1–10.

AULT, H. 1999. Using geometric constraints to capture design
intent. Journal for Geometry and Graphics 3, 1, 39–47.

BOUMA, W., FUDOS, I., HOFFMANN, C., CAI, J., AND PAIGE,
R. 1995. A geometric constraint solver. Computer-Aided Design
27, 6, 487–501.

CABRAL, M., LEFEBVRE, S., DACHSBACHER, C., AND DRET-
TAKIS, G. 2009. Structure preserving reshape for textured ar-
chitectural scenes. Computer Graphics Forum (Proceedings of
the Eurographics conference).

CUTLER, B., DORSEY, J., MCMILLAN, L., MÜLLER, M., AND
JAGNOW, R. 2002. A procedural approach to authoring solid
models. ACM Trans. Graph. 21, 3, 302–311.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K.,
AND WORLEY, S. 2002. Texturing and Modeling. 3rd ed. Aca-
demic Press.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. In IEEE International Conference on
Computer Vision, 1033–1038.

HAN, C., RISSER, E., RAMAMOORTHI, R., AND GRINSPUN, E.
2008. Multiscale texture synthesis. Proceedings of ACM SIG-
GRAPH ’08 27, 3, 51.

HOFFMANN, C. M., AND ROSSIGNAC, J. R. 1996. A road map to
solid modeling. IEEE Transactions on Visualization and Com-
puter Graphics 2, 1, 3–10.

HOFFMANN, C. M., LOMONOSOV, A., AND SITHARAM, M.
1998. Geometric constraint decomposition. In Geometric Con-
straint Solving, B. Bruderlin and D. Roller, Eds. Springer-Verlag,
170–195.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: a
sketching interface for 3d freeform design. In Proc. of ACM SIG-

(a) Input Model (b) Output Model

Figure 8: Many complex buildings (b) are generated from four simple ones (a). The output contains many vertices that have been constrained
to intersect four faces and a few of these vertices are circled. The result also uses the connectivity constraint to space the buildings apart
which gives the buildings more room to develop into more interesting shapes.

Figure 9: A fleet of spaceships (b,c) is automatically generated from a simple spaceship model (a). Without the connectivity constraint several
dozen small unconnected spaceships are generated (b), but they are all packed together. With the connectivity constraint, six large spaceships
are generated (c). Dimensional constraints are extensively used to ensure the rocket engines and other structures do not stretch unnaturally.
The shape of the spaceships have a high genus because there are gaps in between the beams and parts of the spaceships.

(a) Input (b) Output

Figure 10: A large fully connected road network is generated (b) from a few streets using the connectivity constraint. The dimensions of the
roads are also constrained.

(a) Input Model (b) Output Model

Figure 11: A complex network of pipes (b) is generated from a simple one (a). Dimensional constraints are used to keep the pipes a certain
size.

(a) Input Model (b) Output Model

Figure 12: Several long roller coasters (b) are generated from one simple ones (a). Dimensional constraints are used to keep the track a
certain width.

Figure 13: Large-scale constraints are used to build spaceships in the shape of the letter ‘G’, rectangular buildings in the shape of the letter
‘P’, and buildings from Figure 8 in the shape of the letter ‘M’.

(a) Input

(b) Output with Bounding Volumes

(c) Output without Bounding Volumes

Figure 7: Because model synthesis is inefficient on curved mod-
els bounding volumes are used to simplify the geometry (a). The
bounding boxes are cut into two objects, so the dome will scale uni-
formly in all directions and the cylinder will scale uniformly in x
and y. The output is generated and the complex original shapes are
substituted back in (b,c). Some of the corners of the box intersect
five faces.

GRAPH ’99, ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 409–416.

KOPF, J., FU, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHIN-
SKI, D., AND WONG, T.-T. 2007. Solid texture synthesis from
2d exemplars. ACM Trans. Graph. 26, 3, 2.

KRAMER, G. A., AND QH, B. B. 1992. Solving geometric con-
straint systems. MIT Press, 708–714.

KWATRA, V., SCHDL, A., ESSA, I., TURK, G., AND BOBICK, A.
2003. Graphcut textures: Image and video synthesis using graph
cuts. Proc. Of ACM SIGGRAPH ’03, 277–286.

LEGAKIS, J., DORSEY, J., AND GORTLER, S. 2001. Feature-
based cellular texturing for architectural models. In Proc. Of
ACM SIGGRAPH ’01, 309–316.

MERRELL, P., AND MANOCHA, D. 2008. Continuous model syn-
thesis. Proc. of ACM SIGGRAPH ASIA ’08.

MERRELL, P. 2007. Example-based model synthesis. In I3D ’07:
Symposium on Interactive 3D graphics and games, ACM Press,
105–112.

MITRA, N. J., GUIBAS, L., AND PAULY, M. 2006. Partial and ap-
proximate symmetry detection for 3d geometry. In ACM Trans-
actions on Graphics, vol. 25, 560–568.

MĔCH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of
plants interacting with their environment. In Proc. Of ACM SIG-
GRAPH ’96, 397–410.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
GOOL, L. V. 2006. Procedural modeling of buildings. ACM
Trans. Graph. 25, 3, 614–623.

MÜLLER, P., ZENG, G., WONKA, P., AND GOOL, L. V. 2007.
Image-based procedural modeling of facades. ACM Trans.
Graph. 26, 3, 85.

MUSGRAVE, F. K., KOLB, C. E., AND MACE, R. S. 1989. The
synthesis and rendering of eroded fractal terrains. In Proc. Of
ACM SIGGRAPH ’89, 41–50.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M.
2007. Fibermesh: designing freeform surfaces with 3d curves.
Proc. of ACM SIGGRAPH ’07 26, 3, 41.

POTTMANN, H., LIU, Y., WALLNER, J., BOBENKO, A., AND
WANG, W. 2007. Geometry of multi-layer freeform structures
for architecture. Proc. Of ACM SIGGRAPH ’07.

PRUSINKIEWICZ, P., MÜNDERMANN, L., KARWOWSKI, R., AND
LANE, B. 2001. The use of positional information in the mod-
eling of plants. In Proc. Of ACM SIGGRAPH ’01, 289–300.

SMITH, J., HODGINS, J., OPPENHEIM, I., AND WITKIN, A.
2002. Creating models of truss structures with optimization.
ACM Trans. Graph. 21, 3, 295–301.

WATSON, B., MÜLLER, P., VERYOVKA, O., FULLER, A.,
WONKA, P., AND SEXTON, C. 2008. Procedural urban model-
ing in practice. IEEE Computer Graphics and Applications 28,
3, 18–26.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis us-
ing tree-structured vector quantization. In Proc. Of ACM SIG-
GRAPH ’00, 479–488.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W.
2003. Instant architecture. In Proc. Of ACM SIGGRAPH ’03,
669–677.

