
To appear in the ACM SIGGRAPH conference proceedings

Fast Animation of Turbulence Using Energy Transport and Procedural Synthesis

Rahul Narain∗

UNC Chapel Hill
Jason Sewall†

UNC Chapel Hill
Mark Carlson‡

Dreamworks Animation SKG
Ming C. Lin§

UNC Chapel Hill

Figure 1: Smoke swirls around an obstacle (left); and a moving ball creates a turbulent wake behind it (right).

Abstract
We present a novel technique for the animation of turbulent fluids
by coupling a procedural turbulence model with a numerical fluid
solver to introduce subgrid-scale flow detail. From the large-scale
flow simulated by the solver, we model the production and behav-
ior of turbulent energy using a physically motivated energy model.
This energy distribution is used to synthesize an incompressible tur-
bulent velocity field, whose features show plausible temporal be-
havior through a novel Lagrangian approach for advected noise.
The synthesized turbulent flow has a dynamical effect on the large-
scale flow, and produces visually plausible detailed features on both
gaseous and free-surface liquid flows. Our method is an order of
magnitude faster than full numerical simulation of equivalent reso-
lution, and requires no manual direction.
CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling

1 Introduction
Visual simulation of fluids provides a powerful tool for realistic an-
imation of many complex phenomena, such as smoke and water.
However, to obtain visually appealing fine details in the large-scale
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turbulent fluids, a mesh with very high spatial resolution is often re-
quired for capturing the details, thus the associated computational
cost can be prohibitively high. As an alternative, Procedural tech-
niques for animating fluids can represent irregular turbulent flow,
but require careful animator control and are not always applicable
to completely general flow scenarios.

We present a novel method for augmenting numerical fluid simu-
lation with a stochastic procedural model for subgrid-scale details
to achieve fast visual simulation of turbulent fluids. Our turbulence
model automatically estimates the intensity of small-scale details
induced by the large-scale flow, and introduces swirling eddies and
vortices into the fluid using a fast procedural technique inspired by
the Kolmogorov law for turbulent flows [Frisch 1995]. Our ap-
proach has the following characteristics:
• It both compensates for the loss of fine-scale details due to

numerical dissipation and introduces additional subgrid-scale
flow which cannot be captured on the simulation grid at all.

• It accounts for the two-way interaction of the procedurally
synthesized turbulence with the large-scale simulated flow,
enabling the synthesized turbulent flow to affect the dynamics
of the numerical simulation for added realism.

• There is only a loose coupling between the fluid solver and
the procedural turbulence model, which allows the two to run
at different resolutions independently.

• It is general and applicable to a wide spectrum of fluids, in-
cluding swirling gaseous flows and complex river rapids with
free surfaces.

Our approach can yield very small-scale fluid details from proce-
dural synthesis, while requiring only a low-cost fluid solver on a
coarse mesh and achieving an order of magnitude performance gain
over high-resolution fluid simulation that produces comparable de-
tails. Fig. 1 shows an animation sequence of roiling smoke around
an obstacle (left) and the turbulent wake created by a moving ball in
a tank of water (right) synthesized by our method. Furthermore, our
technique also allows for flexibility in the choice of the numerical
fluid solvers.
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2 Previous Work

The study of turbulence has a long history in the fluid dynamics lit-
erature, and remains one of the last open problems in classical me-
chanics. Seminal work was done in this area by Richardson, Kol-
mogorov, and Taylor in the early 20th century. The field has seen an
enormous body of work since then, but many results remain qual-
itative, semi-empirical, or restricted to special cases, and a general
theory of turbulence remains elusive. Due to the stochastic nature
of turbulent fluctuations, a statistical approach has proved useful in
this domain (see [Monin and Yaglom 1971; McComb 1990]). For
nonspecialists, an accessible introduction to this challenging field
of physics can be found in [Davidson 2004].

In computer graphics, physically based animation of fluids such
as smoke and water has received considerable attention in recent
years. Numerous techniques have been proposed using both Eu-
lerian [Foster and Metaxas 1996; Stam 1999; Foster and Fedkiw
2001] and Lagrangian approaches [Müller et al. 2003; Premoze
et al. 2003]. Some approaches work with vorticity rather than ve-
locity [Angelidis and Neyret 2005; Park and Kim 2005; Elcott et al.
2007]. We refer the reader to recent papers [Chentanez et al. 2007;
Adams et al. 2007] for a more thorough review.

One of the prominent difficulties faced in fluid simulation, espe-
cially in the popular Eulerian approach, is loss of small eddies and
vortices due to numerical diffusion. Consquently, much work has
been directed towards avoiding or counteracting this phenomenon
to achieve a more detailed, lively appearance in the fluid. Fedkiw
et al. [2001] proposed vorticity confinement to amplify small-scale
vortices in the fluid. However, if the simulation grid is not fine
enough to capture the desired details, vorticity confinement cannot
recover them. Selle et al. [2005] discuss this limitation and propose
vorticity particles to introduce additional vorticity into the fluid for
highly turbulent flows. Their method requires the artist to specify
where these particles are injected into the flow, and does not repro-
duce the decay of turbulence when the forcing is removed; thus, it
is best suited for scenarios where a constant source of turbulent vor-
ticity is known a priori. Another approach is to use an error correc-
tion scheme such as BFECC [Kim et al. 2007] or a MacCormack
method [Selle et al. 2008], or a less dissipative advection scheme
such as USCIP [Kim et al. 2008a], to reduce the diffusion in the
numerical method directly. All of these above methods work di-
rectly on the simulation grid itself, thus none of them can introduce
subgrid-scale vortices into the fluid. (We note that in the context
of particle-based fluid simulation, the FLIP method [Brackbill and
Ruppel 1986; Zhu and Bridson 2005] shows little to no numerical
dissipation.)

Procedural methods for modeling fluid flow are often used by prac-
titioners since they offer cheap evaluation and controllability. Early
work synthesized flow fields using a superposition of primitives
for laminar flow [Sims 1990; Wejchert and Haumann 1991], while
Fourier synthesis for turbulent flow [Shinya and Fournier 1992;
Stam and Fiume 1993] did not allow for spatial modulation of the
intensity of turbulence. Recently, curl noise [Kniss and Hart 2004;
Bridson et al. 2007] has been introduced, allowing spatially varying
incompressible flow fields that respect rigidly moving boundaries.
While curl noise can be used to synthesize a turbulent flow field
by adding several octaves of noise, it requires the spatial modula-
tion of turbulence to be specified. We fill this gap by automatically
determining the distribution of turbulent energy corresponding to a
complex large-scale flow.

In concurrent work to ours, Kim et al. [2008b] used wavelet
analysis to determine the characteristics of missing turbulent flow
components and synthesize them with band-limited wavelet noise.
While their motivation is similar to ours, the local wavelet-based

approach is a novel technique which is very different from our
idea of tracking the dynamics of turbulent energy over time. Much
closer to our approach is another concurrent work by Schechter and
Bridson [2008], which tracks several bands of turbulent energy us-
ing a simple linear model and generates the turbulent velocity using
flow noise [Perlin and Neyret 2001]. Another novel contribution is
that they analyzed and corrected the additional vorticity dissipation
due to time splitting of the pressure and advection. Their approach
is conceptually easy to implement, but requires an animator to seed
a distribution of turbulent energy. We describe a way of automati-
cally generating a reasonable distribution using the large-scale flow,
reducing the amount of manual labor.

As compared to the concurrent work [Kim et al. 2008b; Schechter
and Bridson 2008], one of the significant differences is that we con-
sider the application of procedural turbulence to animation of liq-
uids with free surfaces, while the concurrent work has mainly been
applied to only smoke simulation. We will discuss some of the
challenges in coupling procedural turbulence with liquids in sec-
tion 5.3. In addition, we keep some overlap between the scales of
synthesized turbulence and those of the large-scale flow, allowing
for the turbulence to introduce fluctuations in the large-scale flow
as well for a more visually pleasing flow. Concurrent works keep
the turbulence independent from the large-scale flow, so that turbu-
lence can then be added as a post-process for ease of editing. Our
method can support this feature if desired simply by running it on
strictly smaller scales than the grid resolution with the backwards
coupling disabled.

3 Statistical Modeling of Turbulence

The behavior of a viscous, incompressible fluid is described by the
Navier-Stokes equations:

∂u

∂t
+ (u · ∇)u = −∇2p + ν∇2u + f (1)

∇ · u = 0 (2)

where u is the fluid velocity, p is pressure, ν is the kine-
matic viscosity of the fluid, f is the external force, and ∇ =
[∂/∂x, ∂/∂y, ∂/∂z]T . The density of the fluid is taken to be unity.

Fluids obeying the Navier-Stokes equations show smooth laminar
flow at low speeds, but as the speed is increased or the viscosity
lowered, turbulence arises and the flow becomes chaotic, with ir-
regular fluctuations at large and small scales. Many fluid phenom-
ena of visual interest exhibit a high degree of turbulence, and the
range of scales of flow features may span several orders of magni-
tude. Inevitably, the smallest scales of flow cannot be captured at
the resolutions used for practical fluid simulations and are lost due
to both low resolution and numerical dissipation.

3.1 Turbulence and the Energy Cascade

Due to the chaotic and stochastic nature of fluid turbulence, a statis-
tical approach is generally adopted both in the theory of turbulence
[Monin and Yaglom 1971; McComb 1990] and in numerical meth-
ods such as Reynolds-averaged Navier-Stokes (RANS) and large
eddy simulation (LES). Typically, the fluid flow is separated into
a spatially or temporally averaged mean flow U and a fluctuating
component u′ where the turbulence resides. While the dynamics of
u′ itself are extremely chaotic, those of its statistics such as energy
are more amenable to modeling.

A popular model for the distribution of energy among different
scales is Kolmogorov’s famous “five-thirds law” [Frisch 1995],
which states that for homogeneous, stationary turbulence, there is
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Figure 2: Our technique runs alongside an existing fluid simula-
tor, and has two components: an energy model for tracking tur-
bulent energy produced and transported by the mean flow, and an
advected curl noise framework for generating the turbulent compo-
nent of flow.

a range of scales in which the distribution of energy E(k) over
wavenumber k follows the spectrum,

E(k) ∝ k−5/3 (3)

This distribution arises due to the energy cascade through which
turbulent energy is introduced at the inertial scale k0, and cascades
to smaller scales until it is dissipated by viscosity. The range of
scales over which the Kolmogorov spectrum holds is called the in-
ertial subrange, and the characteristics of the turbulent eddies in
this range are to a large extent universal and independent of the
specific large-scale flow geometry. While the reverse cascade of
energy flow from small to large scales is also possible, it is in prac-
tice overwhelmingly dominated by the large-to-small cascade, so
we ignore this possibility.

3.2 Overview of Our Approach

Our approach is based on the same idea of decomposing the veloc-
ity field u of the fluid into a large-scale flow U and a small-scale
turbulent component u′. We take U to be the velocity computed
by an existing numerical simulator. We assume that U sufficiently
resolves the interesting large-scale dynamics of the flow and intro-
duce an explicit model for small-scale fluctuations u′. By construc-
tion the sub-grid kinetic energy associated with u′ falls off with de-
creasing scale in a way similar to what is observed in the inertial
subrange of isotropic turbulence.

We characterize the small-scale turbulent flow in terms of the distri-
bution of its kinetic energy over space and over different scales. The
two main parts of our technique, shown in Fig. 2, are (1) tracking
the production, transport and dissipation of this energy over time
due to the large-scale flow U, and (2) synthesizing a small-scale
turbulent flow field u′ which obeys this energy distribution. The
fine-scale flow generated is used to produce highly detailed output
data such as billowing smoke or fine ripples on the free surface of a
liquid, and is also loosely coupled to the large-scale flow U, intro-
ducing vortices and other flow detail at small grid scales.

4 Dynamics of Turbulent Energy

To make the problem approachable, we start with the simplify-
ing assumptions that the turbulence is isotropic, follows the Kol-
mogorov spectrum at each point, and has local eddies which are
uncorrelated with the large-scale flow. We divide the spectrum into
octaves of spatial frequency, and define the following quantities for

(a) The energy cascade (b) Our energy model

Figure 3: The turbulent energy cascade transports energy from the
mean flow through the large scales of turbulence to the smallest
ones. We only track the energy E0 in the largest turbulent band,
and model the rest using the Kolmogorov spectrum.

each octave i = 0, 1, . . .: length scale li = li−1/2, wavenumber
ki = l−1

i , kinetic energy Ei, velocity magnitude ui =
√

Ei, and
eddy turnover time τi = li/

√
ui. Now the kinetic energy E0 in the

lowest octave of turbulent eddies fully defines the energy in the ith
octave simply as

Ei = E0(ki/k0)
−2/3 (4)

The change in exponent from −5/3 to −2/3 from Eq. 3 is because
we are now considering the energy in one octave, which we ob-
tain by integrating the energy per unit wavenumber over an octave
range. We allow E0, and thus Ei, to be spatially varying scalars in
order to represent the distribution of turbulence in complex inho-
mogeneous flow. The magnitude of the eddy velocities at any scale
are then on the order of ui, which we will directly use to generate a
spatially modulated velocity field.

There is no closed solution for describing the behavior of the turbu-
lent kinetic energy; nevertheless, on physical grounds, the impor-
tant physical phenomena involved in the energy dynamics of turbu-
lence are as follows: (1) production of turbulence via forcing from
the mean flow, (2) advection by the mean flow, (3) diffusion of ki-
netic energy due to turbulent mixing, (4) cascade of energy from
larger to smaller scales due to non-linear self-advection, and (5)
viscous dissipation, which removes energy at the smallest scale of
eddies. Thus, in abstract terms, we can express the dynamics of
energy at the inertial scale as

∂E0

∂t
+ U · ∇E0 = G(E0,U)−Π(E0) + D(E0) (5)

where G is the production term through which turbulent energy is
generated, Π is the rate of energy flow through the cascade, and
D describes the spatial diffusion of energy due to turbulent mix-
ing. We ignore dissipation since viscosity is only significant at the
smallest scales. Fig. 3 shows how this approach relates to the theo-
retical energy cascade.

If these terms are estimated reasonably, the behavior of the turbu-
lent eddies will look plausible. We now describe our approxima-
tions for the magnitudes of these quantities to achieve this.

4.1 Energy Transfer

First, the inertial scale k0 must be chosen to define the size of the
largest turbulent eddies modeled. In our experiments, we chose the
eddy size l0 = k−1

0 to be a small multiple of the grid spacing of
the numerical simulator. Overlapping the scales modeled numer-
ically and procedurally in this way has two advantages: it allows
the turbulent flow to compensate for flow details lost to numerical
diffusion, and it makes it possible for the turbulence to affect the
background flow at the overlapping scales.
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The production term Through G, the mean flow acts as a driving
force which creates and intensifies turbulent energy. The simplest
approximation that can be made here is that turbulence acts as a vis-
cous drag on the mean flow, characterized by an eddy viscosity νt

and taking energy at the rate νtS(U)2, where S(U)2 is the squared
norm of the strain rate. The eddy viscosity can further be approx-
imated through mixing-length theory as νt = l0u0 = k−1

0

√
E0

[Davidson 2004]. This gives the net rate of energy production as

G(E0,U) = k−1
0

√
E0S(U)2 (6)

where formally S(U)2 =
∑∑

((∂Ui/∂xj + ∂Uj/∂xi)/2)2.

The cascade term A simple estimate can be obtained using the
conjecture (from Obukhov, via [Davidson 2004]) that turbulent ed-
dies at the inertial scale pass on energy into smaller ones on the
timescale τ0. Since the energy carried by these eddies is E0, the
rate of energy transfer becomes

Π(E0) = E0/τ0 = k0E
3/2
0 (7)

The diffusion term Kinetic energy at a single octave diffuses
over space as turbulent eddies transport fluid, causing momentum
and energy transfer. By analogy with the turbulent mixing of a pas-
sive scalar being advected by the turbulent flow, whose diffusion
rate is roughly α ∝ l0u0 [Davidson 2004], we describe the turbu-
lent diffusion of energy as

D(E0) = ∇ · (α∇E0) = ∇ · (l0
√

E0∇E0) (8)

Viscosity The role of viscosity in turbulent flow is only signif-
icant at the smallest eddy scales, and is limited to dissipating the
cascading energy at the highest wavenumbers. To reproduce this,
we simply cut off the energy spectrum at the scale where the rate
of viscous dissipation equals the cascade rate Π. This Kolmogorov
microscale kν is given by [McComb 1990]

kν =

(
Π(E0)

ν3

)1/4

(9)

After the energy E0 at the largest octave is known, we can define
the energy Ei at any other octave i with reciprocal length scale ki

using a Kolmogorov spectrum cut off at kν , as Fig. 3 illustrates.
If the cutoff falls within an octave, we scale that octave’s energy
by how much of it lies before the cutoff. This approach allows
the model to “turn off” turbulence appropriately when the flow is
calm, as kν will become lower than the first octave k0 itself, and no
energy will be present in the subgrid scales.

Ei =

 E0

(
ki
k0

)−2/3
if 2ki < kν

E0

(
ki
k0

)−2/3 2ki−kν
2ki−ki

if ki <= kν <= 2ki

0 if kν < ki

(10)

4.2 Numerical Issues

The dynamics of turbulent kinetic energy as given in Eq. 5 essen-
tially form an advection-reaction-diffusion PDE. As in [Kim and
Lin 2007], we split the integration into diffusion, advection and re-
action stages, allowing us to maintain stability at each step.

Since the turbulent energy E0 is governed by the large-scale flow U
from the numerical method, we represent it on the same coarse grid.
This allows us to take the same large timesteps as the numerical

simulation. The advection step can be performed using the same
scheme as used in the fluid solver, in our case using BFECC.

For the diffusion step, the nonlinearity in the diffusion rate presents
numerical difficulties at regions where E0 has large changes in
magnitude. In the interest of stability and efficiency, we replace
it with a constant spatially varying term which is filtered to avoid
the degeneracy, as follows:

D̃(E0) = k−1
0 ∇ ·

(√
Ẽt

0∇Et+1
0

)
(11)

where Ẽt
0 is a filtered version of Et

0 obtained by Gaussian filtering
with a radius l0. This spatially varying but linear diffusion equa-
tion can then be integrated efficiently by an alternate dimensions
implicit (ADI) method [Kass et al. 2006]. This provides a fast ap-
proximate solution which is unconditionally stable, and acceptably
accurate as long as u0 < l0/∆t.

The turbulence production and cascade terms require no neighbor
information, and so can be solved as a simple pointwise ODE, with
E′

0 = G(E0,U) − Π(E0) = f(E0). This ODE has a unique
stable equilibrium for positive E0. Large timesteps can be taken
with stability by choosing between forward Euler or backward Eu-
ler timestepping based on the sign of df/dE0.

The initial value of E0 should not be precisely zero since the pro-
duction term G contains a factor with E0 itself. However, in prac-
tice, a very small value such as 10−4 can be chosen; this does not
affect the characteristics of the results, which are dominated by the
interaction of the production and cascade terms.

A note on boundary layers Physically, a solid boundary im-
mersed in fluid imposes a no-slip condition on the flow, producing
a thin boundary layer over which the relative velocity of the fluid
ramps down to zero. It is here that turbulence due to obstacles is
generated. Explicitly accounting for such boundary layers would
add significantly to the implementation complexity of our model,
and the extremely high strain rate and extremely small thickness of
the layer could lead to numerical difficulties. Instead, in the current
work, we have simply accounted for the no-slip condition by using
a ghost velocity past the boundary equal that of the obstacle when
computing S(U).

5 Procedural Synthesis of Turbulent Flow

Having defined the distribution of turbulent energy over space and
on different scales, it remains to actually generate an incompress-
ible, turbulent velocity field u′ which has the prescribed energy
distribution. The eddies and vortices in this velocity field must also
move with the large-scale flow, and fluctuate over time for a realistic
appearance of turbulence. In this section, we describe our method
to generate such a velocity field which has these properties.

Curl noise [Kniss and Hart 2004; Bridson et al. 2007] uses the vec-
tor calculus identity ∇· (∇×ψ) = 0 to provide an efficient means
of generating incompressible flow fields supporting spatial modu-
lation and rigid boundaries. Several octaves of such curl noise can
be added, each modulated by the desired velocity magnitude ui,
to generate an instantaneous velocity field with the desired energy
spectrum. However, the temporal behavior of the velocity field over
time is also important. First, the turbulent velocity field should be
advected by the mean flow U, in order for the turbulent eddies to be
seen as being carried along by the fluid. Second, the turbulent ve-
locities should also fluctuate over time at a rate based on the eddies’
characteristic timescale, given by τi which varies over space.
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Neyret [2003] has presented a method for advecting and regener-
ating textures to avoid distortion; this has been used in concurrent
work [Kim et al. 2008b] for advecting wavelet turbulence. In our
experiments, we had found that textures had to be regenerated too
often in regions of high strain rate, and the use of texture coordi-
nates made looking up τi difficult. We take a simpler Lagrangian
approach, representing the potential function using basis functions
centered on particles which are advected with the flow. Such noise
particles had been used previously by Stam and Fiume [1993] for
advecting smoke, and Zhu and Bridson [2005] for gritty sand ren-
dering. In combination with curl noise, such an approach allows for
efficient, distortion-free transport of incompressible vector noise.

5.1 Noise Particles

To be precise, we represent a vector potential field ψ as the sum
of volumetric noise textures centered at a set of particles pj dis-
tributed uniformly within the fluid, as illustrated in Fig. 4(a). A
smooth radial falloff ρ(r) which goes to zero at r = l0 is used for
blending between particles. For noise at a particular scale i, each
particle carries an animated vector noise function Ni

j(r, ti) of the
appropriate scale. The net potential for one octave, ψi, at a point
x, modulated by a spatially varying amplitude Ai, is then given by
the weighted average of scaled noise functions,

ψi(x) =

∑
j
Ai(pj)ρ(||x− pj ||)Ni

j(x− pj , ti)∑
j
ρ(||x− pj ||)

(12)

We take moving boundaries into account by further modulating ψi

using the approach of Bridson et al. [Bridson et al. 2007]. The de-
rived velocity field is simply u = ∇×ψ = ∇×

∑
i
ψi(x). Some

of the results we show later are from our initial implementation, in
which we had used a weighted sum neglecting the normalization in
the denominator ofψi, but it was pointed out by a reviewer that this
could potentially cause spurious fluctuations.

For the radial falloff ρ(r), we require a kernel which goes smoothly
to zero at r = l0 and has continuous derivatives; the cubic spline
1− 3r2 + 2r3 suffices. For different octaves, the amplitude is cho-
sen as Ai = uili so that the derived velocity field has magnitude
ui. The 3 components of the vector noise functions Ni were taken
as different offsets of animated 3D Perlin noise, which we precom-
puted. Wavelet noise [Cook and DeRose 2005] could be used for
better band-limiting and isotropy characteristics, as suggested by
Kim et al. [2008b]. We found that the use of Perlin noise never-
theless has reasonable spectral behavior as shown in Fig. 4(b), and
does not really harm the visual plausibility of the result.

Initially, the particles are distributed over the volume of the fluid in
a Poisson-disk distribution, with a distance of l0 to allow the RBFs
ρ to overlap. Advection from the mean flow U is taken into account
by simply transporting the particles forward with the flow. This

(a) (b)

Figure 4: (a) Noise particles are distributed uniformly in the fluid
volume and advected by the large-scale flow. (b) The energy spec-
trum of turbulent flow generated by 5 octaves of curl noise shows a
power law with exponent close to the expected value of −1.66.

has the effect of transporting the derived velocity field u along the
flow as well, while also maintaining incompressibility and avoid-
ing anisotropic distortion which would not have been the case had
we advected u directly. A dynamic sampling scheme could also
be used to delete and insert particles to maintain an approximate
Poisson-disk distribution in 3D [Bridson 2007], but we did not find
this necessary.

It remains to make the generated velocity field exhibit temporal
fluctuations on the timescale of the eddy turnover time τi. Recall
that each particle carries an index into an animated noise function,
whose timescale we can choose such that it fluctuates, say, once
every unit t. Then we advance the time coordinate ti of the noise
function by τ−1

i per second, which has the desired effect.

5.2 Coupling to the Large-scale Flow

Finally, we describe the method by which the generated turbulent
flow affects the large-scale fluid flow handled by the fluid simulator.
Unlike [Selle et al. 2005], since we keep the turbulent flow repre-
sented by particles and the large-scale simulated flow separate, we
do not use the vorticity confinement force to drive the simulated
fluid. Instead, we simply use the turbulent velocity field u′ as an
additional velocity when performing the self-advection step in the
simulation. That is, we advect the simulation velocity U not just by
itself but by the sum U + u′, appropriately resampled to the sim-
ulation grid. This simple coupling models the effects of turbulent
advection on the coarse grid which is visually important.

Similarly, for the advection of scalar quantities, such as density for
smoke animations, we use the same net velocity field U + u′. The
scalar quantities and the final turbulent velocity are represented on
finer grids than the simulation, allowing high-resolution detail to be
obtained without increasing the computational cost of the numeri-
cal simulation. The density has to be downsampled at each step to
compute the forcing effects such as buoyancy forces on the simula-
tion, but this is a cheap operation. Since it is such scalar quantities
that are directly visualized and not the fluid velocity field itself, this
approach provides an immediate visual benefit.

5.3 Free Surfaces

A similar approach can be applied to the animation of liquids,
where by representing the free surface at high resolution, fine sur-
face details such as small ripples can be obtained. However, a
fundamental issue is that in the presence of a free surface, the
isotropy and homogeneity assumptions of the Kolmogorov model
break down, and the turbulent surface features show a complex dy-
namical behavior for which “the present state of the art [in fluid
dynamics] is quite controversial” [Magnaudet 2003]. In the ab-
sence of a single well-accepted theory of free-surface turbulence,
we have chosen to extend our Kolmogorov-based model as a rea-
sonable compromise to maintain the coarse simulation grid and syn-
thesize the fine-scale behavior procedurally, although it falls well
outside the model assumptions. We present this as initial work on
the topic of free-surface turbulence for computer animation, in the
hope that it will encourage further exploration.

First of all, since the free surface also defines the simulation domain
for the numerical method, a conservative downsampling is neces-
sary to ensure known values of fluid velocity throughout the fluid.
We mark a simulation cell as fluid if any fluid is present in it in the
high resolution surface. To take into account the free surface fluctu-
ations, it can be modeled as a variable density flow, with the density
equated to the filled volume fraction. For this, the pressure projec-
tion equation is modified to be U = U∗ − (∇p)/ρ, and therefore
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∇ ·U∗ = ∇ · (∇p/ρ) as described in [Kim et al. 2007], where U∗

is the pre-projection velocity field.

Another problem is that the simulation is unaffected by the high-
resolution ripples introduced on the fluid surface. This means that
subgrid-scale surface ripples have no dynamical effect and do not
die out over time, making the fluid appear to be viscoelastic. We
counteract this by introducing two additional effects to make the
high-resolution ripples, if present, continue to move and fluctuate,
and gradually die out over time. They do not exactly correspond to
the equations of wave dynamics, however; attempting to simulate
the wave nature of subgrid-scale ripples would tie the timestep to
the very small grid size of the high-res surface, which is something
we have avoided throughout the paper.

If the surface is represented as the level set of a function φ, we com-
pute a smoothed version φ̃ in an efficient manner by filtering and
downsampling it to the coarse simulation grid, and reinitializing it
by a standard fast marching method, e.g. [Losasso et al. 2005]. φ̃
represents a smooth surface with subgrid-scale features removed.
We model the decay of the small-scale features by timestepping φ

to approach φ̃ over a timescale τ ′.

φn+1 = φn +
∆t

τ ′
(φ̃n − φn) (13)

We define the characteristic timescale τ ′ of subgrid features in
terms of the simulation grid resolution ∆x as τ ′ = ∆x/c, where
c =

√
g∆x/(2π) is the speed of deep water gravity waves of

wavelength ∆x. Surface tension only becomes significant for
waves of wavelength smaller than 1.7 cm [Lamb 1993]; we have
neglected this in the current work.

Secondly, the characteristic “rippling” motion can be obtained by
ensuring that there is always some turbulent energy associated with
the high-resolution features which will cause them to move and
fluctuate. We define the surface turbulent energy associated with
the ripples as

E′ = u′
2

= (δ/τ ′)2 (14)

where δ is the average height of the ripples. δ can be estimated as
the average magnitude of φ−φ̃ in the grid cell. Using max(E0, E

′)
instead of E0 as the turbulent energy distribution at each point, we
achieve plausible motion of ripples in a simple and efficient manner.

6 Results

In our implementation, we used a particle level set (PLS) solver
[Bridson and Müller-Fischer 2007] with BFECC [Kim et al. 2007]
for the numerical simulation of the fluid. In all scenarios, we used
a 4 × 4 × 4 times finer resolution for the turbulence as compared
to the simulation grid resolution for the fluid solver. We found this
4× refinement to be adequate to resolve visually relevant details in
our scenarios; higher values would produce finer detail (as long as
the intensity of turbulence is high enough) but would not otherwise
change the characteristics of the result.

The primary control parameter which defines the behavior of the
fluid is its viscosity ν. This controls the viscous cutoff kν in Eq. 10.
Higher values would delay the onset of turbulence and prevent very
fine eddies from forming, as appropriate for a more viscous fluid.
The other parameter that can be varied is the size of the largest
eddies, l0. This is a more artistic parameter that controls the scale
of the injected turbulent flow. Letting the simulation grid size be
h, we used l0 = 4h in all our examples, except the rocket launch
simulation which used 2h to obtain relatively smaller eddies.

(a) (b) (c) (d)

Figure 5: Smoke rising from a small density source, simulated with
(a) our method, (b) low-resolution simulation only, (c) reference
simulation on a 4× refined grid, and (d) vorticity confinement on
2× refinement.

Figure 6: Water pouring into a tank creates a chaotic, turbulent
surface. These fine surface details are reproduced by our method
(left), while the base simulation can only generate a very smooth
fluid surface (right).

6.1 Benchmarks

Fig. 5 shows smoke rising from a spherical density source due
to buoyancy forces. The smoke column is only a few grid cells
across, and BFECC is not able to recover any detailed vorticity.
Our method produces visually plausible results and reproduces the
transition from laminar to turbulent flow as flow velocity increases,
thanks to the viscous cutoff at kη . This would be difficult to achieve
with a vortex particle method. We also show for comparison the re-
sults of vorticity confinement [Fedkiw et al. 2001]. On the original
low-resolution grid, it had little effect; we show a simulation on a
2× refined grid, which exhibits turbulent behavior but is only bi-
ased towards the finest scale eddies.

We demonstrate our free surface handling approach in Fig. 1(b).
Our method captures very high-resolution features in the wake of
the moving ball, which appropriately die down over time as the
driving mean flow is removed. More free-surface flows are shown
in the water pouring into box (Fig. 6) and rivers rapids flowing over
the bed rocks and tree logs (Fig. 7(a)). In all cases, our results are
rendered with the high-resolution surface while the base simulation
has only the coarse level set.

In Fig. 7(b), we simulate the turbulent exhaust jet during a rocket
launch. The turbulent eddies show plausible motion in both the jet
itself and the billowing smoke on the ground. The rocket launch
simulation used 98,000 noise particles due to the choice of rela-
tively smaller l0. All other simulations used between 6,1000 and
12,300 noise particles.

In the supplemental video, we show comparisons with the basic
BFECC simulation without adding turbulence. For smoke, a fairer
comparison is done by passively advecting high-resolution density
under the coarse-resolution flow field; this reduces diffusion of den-

6



To appear in the ACM SIGGRAPH conference proceedings

(a) River rapids

(b) Rocket launch

Figure 7: (a) River rapids show turbulence due to fast-moving flow
in a complex channel with many obstacles. (b) Simulation of turbu-
lent exhaust jet during a rocket launch. In both figures, our results
are on the left, while the results of fluid simulation without added
turbulence are on the right.

sity, but it cannot improve the dynamics of the flow itself.

6.2 Performance and Comparison

Our method is an order of magnitude faster than a full numerical
simulation at 4x higher resolution. The time for tracking the en-
ergy distribution was negligible. The bottleneck in our approach
turned out to be the evaluation of the potential in advected curl
noise, because this step involves irregular memory accesses on a
very high-resolution grid. Timings were taken on an Intel Xeon
2.8 GHz processor with 8 GB of RAM. Fig. 8 summarizes the per-
formance of our method in comparison with basic low- and high-
resolution simulations. We did not perform liquid simulations with
high-resolution advection alone because of the free-surface issues
discussed in 5.3.

Scene Grid size Ours High-res Gain
Smoke (Fig.1a) 256× 32× 32 56 sec 1192 sec 21x
Wakes (Fig.1b) 128× 32× 32 45 sec 708 sec 16x
Box (Fig. 6) 64× 64× 64 70 sec 360 sec 5x
Rapids (Fig. 7(a)) 150× 30× 50 105 sec 776 sec 7x
Launch (Fig. 7(b)) 64× 64× 64 142 sec 3186 sec 24x

Figure 8: Performance comparison of our method with a full high-
res simulation needed to generate the same visual detail without
added turbulence. All timings are per-frame and include the time
taken by the fluid solver, the turbulence model, and scalar advec-
tion.

6.3 Analysis and Discussion

The results demonstrate the flexibility and generality of our method.
It replaces the computational complexity of high-resolution fluid

simulation with a simple turbulence model, giving a major per-
formance benefit since fluid simulation on a coarser grid can take
much larger timesteps than it could at the full fine-scale resolution.
The turbulence model itself is stable and can take equally large
timesteps as the coarse fluid simulation allows. There is only one
global solve, which appears in the diffusion step and is performed
efficiently through dimensional splitting.

We found the main bottlenecks in the speed of our approach to be
the evaluation of the noise function, and the maintenance of the
free surface. A comparison of our advected noise with Neyret’s al-
gorithm [Neyret 2003] in terms of quality and performance is left
for future work. For the free surface, the level set needs to be reini-
tialized at each step, which causes a performance hit.

Interesting questions remain about how much the scales of procedu-
ral turbulence and the simulated flow should overlap. Less dissipa-
tive numerical simulations as proposed in recent work would likely
not need as much fluctuations to be injected at the grid level, so l0
might be chosen to be as small as the grid size. Further, whether
the combined spectrum of the large-scale and turbulent flow has
an appropriate shape may be worth investigating. We leave these
experiments for further investigation.

Finally, the applicability of the Kolmogorov model depends on the
assumptions of isotropy and homogeneity, and as such, the model
is being extended beyond its strict bounds to model the complex,
directed flows seen in animation. Our surface handling approach
is relatively simplistic and cannot guarantee volume conservation.
However, the complexity of the phenomenon of turbulence is such
that physical accuracy is unachievable without great computational
expense. We have deliberately chosen such an approach to approx-
imate the behavior of turbulent fluids, so that a simple and efficient
technique is possible for generating plausible visual effects. Much
research is still needed in modeling anisotropy, higher-order statis-
tics, detailed free-surface phenomena, and other properties of true
physical turbulence without an exorbitant computational cost.

7 Conclusion

We have presented a fast and effective technique for simulating tur-
bulent fluids through a subgrid turbulence model that can be inte-
grated into existing simulations and tracks the production and evo-
lution of turbulent flow automatically. We show that this approach
is capable of preserving the small-scale eddies and vortices often
lost due to numerical dissipation and maintains a loose coupling
between the large-scale flows and subgrid-resolution turbulence.
We are able to achieve the sub-grid resolution details equivalent
to those of a significantly finer-resolution fluid simulation at only
a small fraction (roughly one order of magnitude less) of computa-
tional cost. This approach is general and applicable to a wide vari-
ety of fluid phenomena as demonstrated, including swirling smoke,
roiling exhaust, rippling water wakes, and rapid turbulent flows.
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