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Abstract

We present a hybrid algorithm to compute the convex hull of points in three or higher dimensional spaces. Our
formulation uses a GPU-based interior point filter to cull away many of the points that do not lie on the boundary. The
convex hull of remaining points is computed on a CPU. The GPU-based filter proceeds in an incremental manner and
computes a pseudo-hull that is contained inside the convex hull of the original points. The pseudo-hull computation
involves only localized operations and maps well to GPU architectures. Furthermore, the underlying approach extends
to high dimensional point sets and deforming points. In practice, our culling filter can reduce the number of candidate
points by two orders of magnitude. We have implemented the hybrid algorithm on commodity GPUs, and evaluated
its performance on several large point sets. In practice, the GPU-based filtering algorithm can cull up to 85M interior
points per second on an NVIDIA GeForce GTX 580 and the hybrid algorithm improves the overall performance of
convex hull computation by 10 − 27 times (for static point sets) and 22 − 46 times (for deforming point sets).

1. Introduction

The problem of computing the convex hull of a set
of points is fundamental in computational geometry,
computer graphics and shape modeling. Given a set
of points in d-dimensional space, the convex hull is the
minimal convex set that contains all the points. Convex
hull computation is frequently used for collision detec-
tion, interference computation, shape analysis, pattern
recognition, statistics, GIS, etc.

The problem of computing the convex hull of points
is well studied in geometric computing. Many optimal
theoretical algorithms have been proposed for low-
and high-dimensional point sets. There are also many
known practical methods and robust software imple-
mentations addressing this problem [1, 2, 3].

While many theoretical algorithms have been
proposed for parallel convex hull computation, there is
relatively little work on fast, practical algorithms that
can exploit parallel cores on the GPUs. In this paper,
our goal is to design practical convex hull algorithms
that can exploit GPU parallelism, as most prior practi-
cal and robust algorithms [1, 4, 5, 6] to compute convex
hulls are relatively hard to parallelize.

Main Results: We present a hybrid GPU-CPU based
convex hull algorithm. Given a set of points, we use
a novel GPU-based filter that can cull away most of

the interior points that do not lie on the boundary of
the convex hull. The convex hull of the remaining
points is computed using well-known CPU-based al-
gorithms such as QuickHull [5, 3]. The GPU-based
filter computes a pseudo-hull in an incremental manner
which involves only localized operations and maps well
to GPU architectures. Our approach ensures that the
pseudo-hull lies inside the convex hull of the origi-
nal points and serves as a conservative bounding shape
to cull away interior points. We exploit spatial and
temporal coherence between successive time steps to
incrementally compute the pseudo-hull for deforming
point sets and thereby reduce the runtime computa-
tion. The overall interior point filter, which exploits the
parallel cores of GPUs, can cull up to 85M points on an
NVIDIA GeForce GTX 580, and can reduce the number
of points by almost two orders of magnitude.

Furthermore, the algorithm scales almost linearly
with the number of cores. The overall approach is quite
simple and the GPU-based filter can be used as a prepro-
cess with any other convex hull algorithm or software
package.

The hybrid algorithm makes no assumption about the
order of input points or the underlying deformation, and
easily extends to higher-dimensional point sets. We
have tested its performance on 3D and 4D large point
sets corresponding to static and deforming point sets on
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Figure 1: 2D convex hull construction: For a 2D input point set (a),
an initial simplex is constructed (b). The simplex is expanded in an
iterative manner by finding the furthest point in the exterior set of each
edge and replacing the original edge by two edges that are obtained
based on the furthest point: e.g., AB is replaced with AD and DB (c).
The algorithm terminates when there are no more exterior points (d).

different GPUs (e.g. NVIDIA GeForce GTX 285, GTX
480 and GTX 580). Our preliminary results indicate that
the hybrid algorithm can speed up the computation by
27X (static point sets) and 46X (deforming point sets)
as compared to an optimized CPU-based algorithm.
Organization: The rest of the paper is organized as
follows: Section 2 gives a brief survey of prior work
on convex hull computation. We present our CPU-GPU
based hybrid algorithm and GPU-based interior point
filter in Section 3. We present the implementation de-
tails and highlight the performance in Section 4. We
compare our approach with prior algorithms and point
out its limitations in Section 5.

2. Related Work

The construction of convex hulls essentially consists
of two basic problems: locating extreme points and de-
termining the connectivity between these points [7, 1].
Chan [6] gives a theoretically optimal output sensi-
tive serial algorithm, though no good implementation
is known.

Given n as the number of the point set and h as the
number of extreme points in a point set, Amato et al. [4,
8] proposed randomized and deterministic parallel
methods for constructing a convex hull in parallel and
proved that the convex hull in d-dimensional space can
be constructed in O(nlogn + nd/2) time. Gupta and
Sen [9] designed a parallel algorithm for 3D convex
hull computation for the CRCW PRAM (Concurrent
Read and Concurrent Write Parallel Random Access
Machine). Its complexity is O(log log n ∗ log h). Dehne
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Figure 2: Construction of pseudo-hull for culling points: For a 3D
input point set, an initial simplex is constructed (a). After a single step
of expansion (similar to the 2D algorithm in Figure 1), the resulting
polyhedron (i.e. the pseudo-hull) may no longer be convex (c), but
can be used to cull interior points (b).

et al. [10] also proposed a randomized parallel 3D
convex hull algorithm for multicomputers. While these
algorithms have good theoretical performance, no prac-
tical implementations are known.

Some of the practical algorithms for convex hull al-
gorithms are based on incremental techniques [11, 5].
One of the most widely used algorithms and software
packages is based on QuickHull [5, 3], which computes
the convex hull by adding one point at a time, and per-
forms non-local operations to update the boundary. For
3D and higher-dimensional point sets, these non-local
updates are hard to parallelize, although the 2D version
of QuickHull can be parallelized on current GPUs [12].
Many techniques have been proposed in the literature
to design robust implementations and handle degenerate
cases [13].

Srikanth and Reddy [14] used NVIDIA GPU and
Cell BE hardware to accelerate the construction of
2D convex hulls. Recently, Gao et al. [15] presented
a Voronoi diagram based algorithm to construct 3D
convex hull and demonstrated 3 − 10X speedups over
QuickHull on an NVIDIA GPU. This method seems to
be limited to 3D point sets.

Some other applications, such as halfspace intersec-
tion, Delaunay triangulation [16], Voronoi diagrams,
and power diagrams, are closely related to convex hull
computations. Many algorithms have been proposed
to compute discretized Voronoi diagrams of points and
higher order primitives in 2D and 3D [2, 17, 18, 19], al-
though these methods offer no topology or connectivity
guarantees.

3. Hybrid Convex Hull Computation

In this section, we present our CPU-GPU based
hybrid convex hull computation algorithm for a set of
points.

Convex hull of a finite point set: The convex hull of
a finite point set P ∈ Rd is the smallest convex set that
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Figure 3: Interior point culling filter: For the input points, a tetrahe-
dron is constructed as an initial pseudo-hull. Each facet of the pseudo-
hull is updated by replacing it with three new facets. Each of these
new facets is computed by connecting the edges of the old facet with
the furthest point in the exterior set. All the points inside the expand-
ing pseudo-hull are marked as interior points. After 4 iterations, most
of the interior points are culled away. The pseudo-hull is incremental-
ly updated till there are no exterior points.

contains all the points. A convex set is a set of elements
such that all the points on the straight line between any
two points of the set are also contained in the set. A
point is extreme if it is a vertex of the convex hull, other-
wise it is classified as an interior point with respect to
the convex hull. During the computation of the pseudo-
hull, some points that are outside the pseudo-hull are
labeled as external points.

Our goal is to design a parallel algorithm that maps
well to GPU architectures. In general, most practical al-
gorithms for computing convex hulls perform two com-
putations: locating the extreme points and computing
the connectivity between the extreme points. In prac-
tice, it is possible to parallelize the computation of
extreme points. However, most practical methods to
compute the connectivity (e.g., incremental algorithms)
tend to be sequential and are relatively hard to paral-
lelize on GPU architectures.

In order to exploit the capabilities of current GPUs,
we mainly use the parallel cores to cull away most of
the interior points. This is based on performing fine-
grained sub-tasks that can easily map to parallel cores
on the GPUs. Finally, we use CPU-based algorithms
(e.g. QuickHull) to construct exact convex hulls of the

remaining points.
Our approach is based on some simple algorithms to

compute convex hulls in 2D (Figure 1). The convex
hull is constructed iteratively by expanding the bound-
ary of a 2D polygon. The boundary of the 2D polygon
is refined locally by computing the furthest point for
each edge and replacing the edge by connecting the fur-
thest point to the two vertices of the edge. The idea has
been widely used for many parallel algorithms for 2D
point sets [12], since the refinement of each edge is in-
dependent of the refinement of the other edges. How-
ever, the idea cannot be directly extended to 3D and
higher-dimensional point sets. For example, as shown
by Figure 2, even after a single step of expansion (i.e.,
the replacement of each facet with 3 facets by connect-
ing the vertices of the facet to the furthest point in its
exterior set), the resulting 3D polyhedron may no longer
be convex (Figure 2(c)).

Although the expansion of a simplex cannot be
directly used to generate a convex hull, it provides a
simple mechanism to cull the interior points. We call
the i-th expansion result starting from a d-dimensional
simplex the i-th pseudo-hull, which is generated by
repeatedly replacing each facet with three new facets
by performing local operations. During the expansion
of the pseudo-hull, all the points inside the pseudo-hull
are classified as interior points. The pseudo-hull expan-
sion stops when there are no more exterior points. All
the interior points are culled away, and the points on the
boundary of the pseudo-hull are used as an input to the
exact CPU-based convex hull computation algorithm.

An example of the expansion of a single pseudo-hull
is shown in Figure 3. For the input point set, an initial
tetrahedron is constructed (as the 1st pseudo-hull), and
expanded via each face to generate the 2nd pseudo-hull.
This process terminates when there are no more points
exterior to the pseudo-hull. The total number of iter-
ations may be O(log n) (for average case) or O(n) (the
worst case), where n is the number of the input set.

Correctness: Based on the Grünbaum’s Beneath-
Beyond Theorem [20], all the points that lie inside the
pseudo-hull cannot be the extreme points of the convex
hull.

Benefits: The main benefit of this filter is that the ex-
pansion and refinement for each facet is performed inde-
pendently and uses only local operations. It is straight-
forward to map the refinement of a pseudo-hull into
GPU kernels that can be executed in parallel by GPU
threads.

Robustness: The geometric operations executed on
the GPU include computing the distance between a
point and a facet (to locate the furthest point in
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its exterior set) and preforming beneath-beyond tests
between a point and facet (to cull interior points and
split the exterior sets). This boils down to evaluating
Boolean predicates to perform the inside/outside tests.
When the points are very close to the boundary of the
pseudo-hull, the accuracy of these tests can vary due
to the underlying IEEE floating-point arithmetic. In
order to increase the accuracy of tests performed on
the GPUs, exact arithmetic or floating filters might be
employed, although the robustness of the overall algo-
rithm depends mainly on the CPU-based convex hull
algorithm and its implementation.

3.1. Algorithm Overview

Broadly speaking, our CPU-GPU based hybrid
convex hull computation algorithm consists of two
stages:

1. GPU-based interior point culling: Given a point
set, the interior points are eliminated at each itera-
tion by computing the pseudo-hull in an incremen-
tal manner.

2. CPU-based exact convex hull computation: All
the points that are not culled are used as input to the
exact CPU-based convex hull computation algo-
rithm.

3.2. Interior Point Culling Filter

Algorithm 1 highlights the detailed stages of interior
point culling filter. We first classify all the exterior
points of an initial simplex (consisting of d + 1 vertices)
into the exterior sets of all its facets. Next, each facet is
expanded by connecting its d vertices with the furthest
point of its exterior set. In this manner, a final pseudo-
hull is iteratively computed until there is no point that
is exterior to the pseudo-hull. The points lying on the
boundary of the last pseudo-hull are used as an input to
the exact convex hull algorithm.

In Algorithm 1, a point will only belong to the
exterior set of one facet (i.e., it will not be shared by
several exterior sets). At line 3-5 and 10-12, a point
will be tested with all the d+1 facets, and classified as
belonging to the exterior set of the facet that is closest
to that point. If that point is equi-distant from multiple
facets, we assign it to the first facet in that list. In this
process, our algorithm performs the culling step in a dis-
tributed manner and no synchronization is needed.

3.3. Mapping to GPU Architectures

Algorithm 1 can be directly mapped onto GPU archi-
tectures. We abstract the facets and exterior sets as facet

Available Occupied
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(a) Initial facet stream
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Figure 4: Updating of facet stream: We use a pre-allocated space
in GPU memory to store the facet stream (a). For the 3D convex hull
computation, an initial 3D simplex is stored (b). During each iteration,
the j-th facet is replaced by three new facets, which are stored at the
locations j, K + j ∗ 2 + 1, and K + j ∗ 2 + 2, respectively ((c)&(d)).
Here K is the number of occupied cells at the last iteration.

streams and exterior set streams, respectively . Since all
the facets are expanded independently, the expansion is
mapped to a GPU kernel by taking the facets of the i-
th pseudo-hull and all the exterior sets associated with
the facets as input, and generating the (i + 1)-th pseudo-
hull (represented by update facet streams and exterior
set streams) as output. Algorithm 2 highlights the GPU-
based interior point culling filter.

All input points are stored in GPU memory using
stream data (i.e., a point stream.) For each iteration,
all the points marked as interior points are removed
from the point stream by using stream reduction with
the prefix-sum operator [21]. As shown in Figure 4(a),
we use a pre-allocated space in GPU memory to store
the facet stream. For the 3D convex hull computation,
an initial 3D simplex is stored (Figure 4(b)). For each
iteration, the j-th facet is replaced by three new facets,
which are saved at the locations j, K + j ∗ 2 + 1, and
K + j ∗ 2 + 2, respectively. Here K is the number of
occupied cells at the last iteration. In this way, the facet
stream can be updated in parallel by multiple threads.
Figure 4 (c)&(d) demonstrate the updating of the facet
stream during the 1st and 2nd iterations. For some facets
with empty exterior sets, no new facets will be generat-
ed, and consequently null cells are inserted into the facet
stream. We use a prefix sum operator to remove these
null cells at the end of each iteration.

3.4. Extension to arbitrary dimensional cases

In d-dimensional cases (d > 3), the pseudo-hulls
will correspond to d-dimensional polyhedra. By testing
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Interior pointsVertices of pseudo-hull Exterior points

Figure 5: The deformation of points and their corresponding
simplex (part of pseudo-hull) in deforming point sets: Some of
the filtered points (the gray points) may not belong to the simplex,
while others (the red points) remain inside the simplex.

the interior/exterior relationship between d-dimensional
points and these polyhedra, the interior points are
culled. Our algorithm has been applied to points defined
in a 4-dimensional space (the 4D-Sphere benchmark in
Section 4).

3.5. Deforming Point Sets

Convex hulls of deforming point sets are frequently
computed in deformable simulation and data analysis,
and convex hulls must be computed efficiently. For de-
forming point sets, we exploit the coherence between
the positions of the points between two successive time
steps to accelerate the construction of the convex hull
by reusing the i-th pseudo-hull computed during the last
time step. We do not make any assumptions on the de-
formation or the motion of each point.

Based on the final pseudo-hull computed during the
last time step, all the points are either classified as
vertices of the pseudo-hull or interior points. During
the current time step, we first update the pseudo-hull
with the current position of its vertices, then re-test all
the marked interior points with a scanning pass whose
complexity is O(n), where n is the number of the input
set. The scanning pass can be executed in parallel. If a
point is classified as an interior point of the correspond-
ing simplex, it can be culled. Otherwise, the point may
be a boundary point or an exterior point for subsequent
iterations. After this scanning pass, all the vertices of
the pseudo-hull and these exterior points are used as an
input for the next iteration of the GPU-based interior
point culling filter.

As Figure 5 shows, all the interior points of a simplex
are tested again in their new updated positions. Some of
the filtered points may not lie inside the simplex and are
classified as exterior points, while the others are classi-
fied as interior points.

The scanning pass maps well to GPU architectures,
since all the interior tests can be performed indepen-
dently. For one of the benchmarks in Section 4, the

Algorithm 1 Interior point culling filter
Input: Input point set
Output: Vertices of a pseudo-hull

1: compute a simplex of d + 1 points
2: for all unassigned points p do
3: for all facet F do
4: if p is outside F and the distance {p, F} is min-

imal w.r.t {F} then
5: assign p to F’s exterior set
6: end if
7: end for
8: end for
9: for all facet F with a non-empty exterior set do

10: select the furthest point p of F’s exterior set
11: create d new facets by connecting p and the d

corners of F
12: for all unassigned points q in the exterior set of

F do
13: for all new facet F′ do
14: if q is outside F′ and the distance {q, F′} is

minimal w.r.t {F′} then
15: assign q to F′’s exterior set
16: end if
17: end for
18: end for
19: delete the facet F
20: end for

scanning pass of an 870K deforming model runs in less
than 10ms, which is quite small (< 2%) compared to the
overall cost of convex hull construction.

4. Implementation and Performance

In this section, we describe our implementation and
highlight the performance of our algorithm on several
benchmarks.

4.1. Implementation

We have implemented our algorithm on three
different commodity GPUs: an NVIDIA GeForce GTX
285, an NVIDIA GeForce GTX 480, and an NVIDIA
GeForce GTX 580. Their specs are shown in Figure 6.
We used CUDA toolkit 4.0 as the development envi-
ronment. We use NVIDIA Visual Profiler to compute
the kernel execution time and the data input/output time
between the GPU and the host memory. The CPU ver-
sion runs on a standard PC (AMD PhenomII 3.0Ghz
CPU with 4GB RAM and 4 cores), though we use a
single core for the CPU-based algorithm. The initial
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Algorithm 2 GPU-based interior point culling filter
Input: Input point stream
Output: Filter point stream

1: generate an initial facet stream F
2: compute its corresponding exterior set stream O
3: while any exterior set in O is not empty do
4: for all facet fi in F do
5: if fi’s exterior set oi ∈ O is not empty then
6: replace fi with new facets
7: replace oi by culling interior points and split

exterior points (if any) into new exterior sets
8: end if
9: end for

10: end while

GPU GeForce
GTX 285

GeForce
GTX 480

GeForce
GTX 580

Number of
Cores

320 480 512

Memory
capacity (G)

1.0 1.5 1.5

Memory clock
rate (MHz)

1242 1858 2004

GPU clock
rate (MHz)

648 700 772

Figure 6: GPUs: Three different commodity GPUs, an NVIDIA
GeForce GTX 285, an NVIDIA GeForce GTX 480, and an NVIDIA
GeForce GTX 580, are used to test our algorithm.

d-dimensional simplex is constructed using the Akl-
Toussaint heuristic [22], i.e., the points with lowest and
highest coordinates are selected to compute the initial
simplex. We use the prefix-sum operator [21] to remove
elements marked as deleted.

We use facet streams to represent the pseudo-hull
on GPU memory, and exterior set streams to represent
the exterior sets associated with the facets on the
pseudo-hull. The pseudo-hull is iteratively expanded
by repeatedly updating the facet streams and exterior
streams locally. The expansion is terminated when the
exterior set stream becomes empty.

4.2. Parallel Execution at Two Levels
The GPU’s parallelism is based on blocks of threads.

We divide the input point set into M subsets to gen-
erate many sub-tasks, and run the GPU-based interior
culling filter on each subset in a block during each iter-
ation of pseudo-hull computation. In our implementa-
tion, we choose M to be 64. The filter computation runs
in parallel at two levels:

• Block level: Each block runs the GPU-based
interior culling filter on a subset of input point set,
filters the points, and generates the pseudo-hull for
that subset.

Figure 7: Benchmark 3D-Dragon: A dragon model with 3.6M
points. The input points, filtered points, and the convex hull (with
1.8K extremal points) are displayed from left to right, respectively.

Figure 8: Benchmark 3D-Sphere: 8M points randomly distributed
inside a sphere. The input points, filtered points, and the convex hull
(with 6.8K extremal points) are displayed from left to right, respec-
tively.

Figure 9: Benchmark 3D-Polyhedron: 15M points randomly dis-
tributed inside a polyhedron. The input points, filtered points, and the
convex hull (with 108 extremal points) are displayed from left to right,
respectively.

Figure 10: Benchmark Breaking Lion: In the benchmark, a lion
model with 870K points has been crushed and is breaking into pieces.
We compute the convex hull of the point set during each time step of
this simulation.
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Figure 11: Benchmark Twisting Dragon: In the benchmark, a drag-
on model with 1.1M points is twisting; we compute the convex hull
during each time step of this deforming model.

• Thread level: Because all the facets of a pseudo-
hull can be processed independently, the compu-
tation and refinement of different facets are per-
formed as different threads.

By exploiting the two-level parallelism in current
GPUs, the performance of interior point culling can be
improved. The filtering result may vary with different
numbers of blocks, but the final output of the convex
hull computation is the same. After the initialization
and expansion phase, we merge the remaining points
together. The remaining point set can be filtered again,
or can be directly used as an input for CPU-based exact
convex hull computation.

4.3. Benchmarks

In order to test the performance of our pseudo-
hull filter algorithm, we used six different benchmarks,
arising from different simulations that have varying
characteristics.

• 3D-Dragon: A dragon model with 3.6M points
(Figure 7).

• 3D-Sphere: 8M points randomly distributed
inside a sphere (Figure 8).

• 3D-Polyhedron: 15M points randomly distributed
inside a polyhedron (Figure 9).

• 4D-Sphere: 8M points randomly distributed
inside a 4D-sphere.

• Breaking Lion: The 3D lion model with 870K
points (Figure 10) is broken and separates into
pieces. The entire simulation consists of 27 time
steps and the position of the points changes during
each time step.

• Twisting Dragon: The 3D dragon model with
1.1M points (Figure 11) is twisted, resulting in a
deformation with 30 frames. The points have a new
position during each frame.
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Figure 12: Performance comparison: Compared to the optimized
CPU-based implementation, our hybrid CPU-GPU algorithm achieves
13 − 27X speedups over the CPU-based QuickHull algorithm on an
NVIDIA GeForce GTX580 for all these static benchmarks.
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Figure 13: Performance comparison: By testing on 10M, 30M, and
50M points that are randomly distributed in a spherical 3D space,
the hybrid algorithm demonstrates increasing speedup over the CPU-
based algorithm as the size of the point set increases.

The first 3 benchmarks are used to test the perfor-
mance of our filtering algorithm on static 3D point sets.
The 4D-Sphere benchmark is used to test the perfor-
mance on a 4-dimensional input. The Breaking Lion
and Twisting Dragon benchmarks are used to test the
performance on deforming point sets.

4.4. Performance

After the GPU-based interior point culling, our
hybrid CPU-GPU algorithm uses QuickHull [3] to
compute the exact convex hull from the filtered points
on a CPU with a single thread. We compared QuickHul-
l’s performance in combination with our interior point
culling filter against its performance when used in a
CPU-based serial implementation without the filter.

Figure 12 highlights the performance of our hybrid
algorithm on different benchmarks. These results show
that our algorithm works well on three different GPUs.
Compared to QuickHull [3] used alone as an opti-
mized CPU-based implementation, the hybrid algo-
rithm achieves 13 − 27X speedups on an NVIDIA
GeForce GTX 580 for static point sets.
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Figure 14: Culling efficiency: By running the pseudo-hull filter, less
than 5% of the original input points are are retained, so that the size of
the input to the final CPU-based computation algorithm is relatively
small.
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Figure 15: Running time ratios: the figure shows the breakdown
of each phase of the hybrid algorithm on different benchmarks. Ba-
sically, this breakdown indicates that a majority of the overall time
is spent in the GPU-based interior point filtering algorithm on these
benchmarks. The time spent in data-transfer and CPU-based algo-
rithm is relatively small.
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Figure 16: Culling efficiency for deforming point sets: By utiliz-
ing the spatial and temporal coherence between successive simulation
time steps, a scan pass is performed to reuse pseudo-hulls from last
simulation time step and remove interior points. Another pass is per-
formed for interior point culling. For the Breaking Lion benchmark,
only a small portion (3.45%−12.24%) of points remain after the scan-
ning pass. The number of points are further reduced with interior point
culling, and only 0.78% − 3.01% remaining points are used for exact
convex hull computation.
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Figure 17: Speedups for deforming point sets: With the help of
the light-weighted scan pass, the hybrid algorithm achieves up to 46X
speedup for deforming point sets.

In order to highlight the scalability of the hybrid
algorithm, we ran it on point sets with 10M, 30M,
and 50M points that are randomly distributed within a
spherical 3D space. Figure 13 shows that with the in-
creasing number of points, computational intensity also
increases; the hybrid algorithm results in increasingly
larger speedups as the size of the point set increases.

Figure 14 illustrates the culling efficiency of
the GPU-based interior culling filter on different
benchmarks. The culling rate is computed by dividing
the number of points that passed the filter by the number
of input point set, while the use rate is calculated by
dividing the number of extreme points by the number
of points culled by the filter. As shown in Figure 14
(a), the culling rates are less than 1.4%, which demon-
strates the high culling efficiency of the filter. The use
rates (Figure 14 (b)) depend on the characteristics of the
point sets on the input model. For example, the use rates
are greater than 30% for three benchmarks. It is about
7% for benchmark 3D-Polyhedron since it has fewer ex-
treme points.

Figure 15 highlights the ratios of each phase of the
hybrid algorithm on different benchmarks. The GPU
part corresponds to interior point culling, while the CPU
part represents exact convex hull computation. Because
of the high cull rates, the data transfer time (I/O part)
represents only a small portion of the overall running
time.

Figure 16 shows the culling efficiency of the scanning
pass and interior point culling for a deforming point set.
By utilizing the coherence between successive simula-
tion time steps, most of the interior points can be culled
for deforming point sets. For the Breaking Lion bench-
mark, only a small portion (3.45% − 12.24%) of points
are not culled after the scanning pass. The number of
points are further reduced by interior point culling, and
only 0.78%−3.01% remaining points are used for exact
convex hull computation. Due to the lightweight scan
pass, the hybrid algorithm achieves up to 46X speedup
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for deforming point sets (Figure 17).
We have tested our algorithm on a PC with 4 cores

(Q6600@2.4GHz, 4G RAM) by executing the entire
algorithm on these cores with OpenMP. Specifically,
we run the interior point culling in parallel, and exact
convex hull computation with QuickHull in serial. We
observed up to 3.7X speedup on the 3D-Sphere bench-
mark compared to QuickHull, which runs on a single
CPU core.

5. Comparison and Analysis

In this section, we compare our CPU-GPU hybrid
algorithm with prior algorithms and highlight some of
its benefits.

5.1. Comparison

Most of the prior CPU-based algorithms are sequen-
tial and must perform global operations, such as search-
ing for the furthest points or updating global topolo-
gy structures [5]. Although their implementations [3]
can be quite efficient and robust, they are unable to
exploit the computation capability of multi-core/many-
core processors. Some prior GPU-based algorithms [9,
23, 14, 15] are either limited to lower dimensions (2D
or 3D) or may not offer high speedups.

Recently, Tzeng and Owens [24, 25] presented a
parallel convex hull algorithm based on a generalized
framework for recursive divide-and-conquer on GPUs.
They observe about 10x speedup comparing to a single
core implementation on a CPU for 2D and 3D inputs.

Recently, Stein et al. [25] proposed a hybrid convex
hull construction algorithm, CudaHull, by performing
interior point culling on the GPU and concave edge
swapping on the CPU. The algorithm directly computes
exact convex hulls in an iterative manner and achieves
about 30 − 40X speedups as compared to a single core
CPU implementation. Like CudaHull, our approach
is a hybrid CPU-GPU algorithms. However, there are
many differences between our approach and CudaHull.
CudaHull needs to communicate between the CPU and
the GPU at each iteration. As a result, our approach
offers the following benefits:

• Flexibility: Our GPU-based interior point culling
method can be combined with any exact (serial or
parallel) convex hull computation algorithm.

• Robustness: The exact convex hull computation
is performed on a CPU-based implementation,
QuickHull, which is quite robust. While our GPU-
based culling algorithm is susceptible to floating

point errors that can arise during classification of a
point with respect to the pseudo-hull, it works well
on our benchmarks.

• Generality: Our method works for 3D and higher-
dimensional point sets, while CudaHull only works
for 3D point sets.

• Efficiency: By avoiding intensive data communi-
cation between CPU and GPU, our method can
achieve higher performance.

As compared with all prior GPU-based and CPU-
GPU hybrid convex algorithms, our approach has the
following benefits:

• Works well with robust CPU-based algorithms:
The GPU-based interior point culling filter can be
easily integrated with other convex hull construc-
tion algorithms. Our filter can be used as the first
step to reduce the number of input points for exact
convex hull computation. Furthermore, it extends
to higher dimensional point sets.

• Exploits coherence for deforming points: Our
algorithm works well for deforming point sets by
reusing the pseudo-hull computed during the last
simulation time step.

5.2. Limitations

Our algorithm maps well to the current GPUs and
we have evaluated its performance on several different
GPUs with varying number of cores. Our approach has
a few limitations. Our algorithm is inefficient when
most of the input points are extreme points and the
number of interior points is small. In this case, the extra
overhead of applying our GPU-based filter can result in
a slowdown as compared to a CPU based algorithm. We
observed slower performance (i.e., 10% slowdown) on
a 3D ball with 20M points on the surface. Furthermore,
we assume that the entire point set fits in GPU memory.
However, our approach makes no assumption about the
order of interior points. As a result, it may be possible
to develop an out-of-core GPU-based filter. The GPU-
based filter needs to accurately evaluate the predicates to
classify a given point as interior or not and is suscepti-
ble to floating point errors. In this case, we can possibly
use exact arithmetic or related methods to improve the
accuracy.
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6. Conclusion and Future Work

We present a CPU-GPU hybrid convex hull computa-
tion algorithm that is simple to implement and can offer
significant speedups. A novel GPU-based interior point
culling filter is used to efficiently cull away the interior
points using parallel cores. The filter has been extended
to deforming point sets by using temporal and spatial
coherence between successive simulation time steps. In
practice, our algorithm can improve the performance
of convex hull construction on commodity GPUs. We
observed up to 27X and 46X speedups for static and de-
forming point sets, respectively.

There are many avenues for future work including de-
velopment of out-of-core algorithms for handling very
large data sets, and acceleration of the algorithm using
the stream registration technique [26]. It may also be
useful to integrate with other GPU-based algorithms
that can compute the exact convex hull [15].
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