
VolCCD: Fast Continuous Collision Culling between Deforming
Volume Meshes
Min Tang1, Dinesh Manocha2, Sung-eui Yoon3, Peng Du1, Jae-Pil Heo3, Ruo-Feng Tong1

1Zhejiang University, China
2The University of North Carolina at Chapel Hill, USA
3KAIST, South Korea

We present a novel culling algorithm to perform fast and robust contin-
uous collision detection between deforming volume meshes. This includes
a continuous separating axis test that can conservatively check whether two
volume meshes overlap during a given time interval. In addition, we present
efficient methods to eliminate redundant elementary tests between the fea-
tures (e.g., vertices, edges, and faces) of volume elements (e.g., tetrahedra,
hexahedra, triangular prisms, etc.). Our approach is applicable to various
deforming meshes, including those with changing topologies, and efficient-
ly computes the first time of contact. We are able to perform inter-object and
intra-object collision queries in models represented with tens of thousands
of volume elements at interactive rates on a single CPU core. Moreover, we
observe more than an order of magnitude performance improvement over
prior methods.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Physically based modeling

General Terms: Algorithms

Additional Key Words and Phrases: Continuous collision detection, deform-
ing volume meshes, continuous separating axis theorem, assignment culling

1. INTRODUCTION

Many physically-based simulation algorithms use volume meshes
to represent deformable objects. Volume meshes (e.g., tetrahedral
meshes) are a polygonal representation of the interior volume of an
object and correspond to a discrete representation of the internal
structure of the object. Such regular or irregular grids are common-
ly used in finite element analysis and other Lagrangian mesh based
simulation algorithms.

In this paper, we address the problem of fast and reliable colli-
sion detection between volume meshes. As forces are applied, the
objects deform, and the nodes or points inside the object move.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c⃝ YYYY ACM 0730-0301/YYYY/12-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

Our goal is to compute all the contacts between deforming vol-
ume meshes, including self-collisions. In order to perform reliable
collision checking, we focus mainly on continuous collision detec-
tion (CCD) [Provot 1997; Bridson et al. 2002; Redon et al. 2002].
The CCD algorithms typically perform linear interpolation between
discrete vertex positions of the volume meshes and check for colli-
sions among swept volumes by performing elementary tests. These
CCD methods provide accurate and robust collision results by com-
puting the first time of contact, preventing inter-penetrations, and
detecting collisions even between fast moving objects.

Volume meshes and FEM methods are increasingly used in in-
teractive applications such as games and surgical simulators. These
include simulating solid or soft-tissue deformations, fracturing, su-
turing, cutting, etc. In many applications, it is also important to
compute all the contacts among external and internal elements of
volume meshes for a high quality simulation [LS-DYNA 2001;
O’Brien 2000]. However, it is a major challenge to perform interac-
tive and reliable collision queries in these simulations [Irving et al.
2004; Teschner et al. 2005; Parker and O’Brien 2009; Zhu et al.
2010].

Most of the prior work on CCD algorithms, unfortunately, has
been limited to surface meshes represented as triangulated models
and thus check for collisions only at the boundaries of the objects.
Furthermore, these methods do not work well when the simulation
results in topological changes (e.g., fracturing) on the surface mesh-
es [Heo et al. 2010]. Moreover, current techniques for collision
checking between volume meshes mainly perform discrete colli-
sion checking at fixed time steps using spatial subdivisions, dis-
tance fields or image-space techniques. Since these discrete meth-
ods can miss collisions, especially when objects deform drastically
or move fast, many simulation techniques with volume meshes typ-
ically use rather small time steps and thus run very slowly.

Main results: We present novel algorithms for fast CCD compu-
tation between volume meshes. Our approach can handle all regu-
lar or irregular meshes, where each volumetric element is a convex
polytope. Moreover, the approach is general and makes no assump-
tions about motion, deformation, or topology.

We describe two new culling methods, feature-level and element-
level culling techniques, to accelerate the computation. The first
culling technique is based on continuous separating axis tests be-
tween the features (e.g., vertices, edges, and faces) and volumetric
elements (e.g., tetrahedra, hexahedra, triangular prisms, etc.). Our
formulation uses separating axes to conservatively check whether
there is a collision between two volume meshes during a given time
interval (see Section 4). This test is simple and robust, since it re-
duces to performing a small number of dot products. In addition,
we present techniques to eliminate redundant elementary tests be-
tween the features by exploiting mesh connectivity (see Section 5).
In particular, we use a feature-level assignment culling that can also
handle changes in the mesh connectivity.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

2 • Tang et al.

(a) Exterior view

(b) Interior view

Fig. 1. Car Crash: A Ford Explorer with 1.2M shell elements crashes against a rigid wall and deforms. The underlying finite-element simulation is performed
using LS-DYNA package for crash analysis, which performs contact computations between the shell elements. These figures show exterior and interior views
during the crash simulation. Average CCD query time for both inter- and intra-collision detection using VolCCD is 3.3 seconds per frame on a single core of
2.4 GHz Intel Q6600 CPU. We obtain 12 times performance improvement over prior collision detection algorithms for this benchmark.

The overall CCD algorithm uses a k-DOP hierarchy and can per-
form inter-object as well as intra-object collisions. The combina-
tion of separating axis tests and feature-level culling can signifi-
cantly improve the culling efficiency (see Section 6).

We highlight the performance of our CCD algorithm on volume
meshes arising from various engineering, medical, and animation
simulations with a few thousand to hundreds of thousands of tetra-
hedra or triangular prisms. In practice, our algorithm can reliably
check for collisions in tens to hundreds of milliseconds on a single
2.4 GHz core. We observe up to two orders of magnitude reduction
in the number of elementary tests and more than an order of magni-
tude performance improvement over prior methods (see Section 6).
Moreover, we are able to produce realistic simulation results (e.g.,
fracturing) over collision methods that check collisions only at the
boundary at discrete time steps.

Organization: The rest of the paper is organized in the follow-
ing manner. We survey some related work in Section 2 and give
an overview of our approach in Section 3. Section 4 describes our
novel culling scheme based on separating axis test. We present the
feature-level culling method in Section 5 and highlight the perfor-
mance in Section 6. We analyze the approach and compare with
prior methods in Section 7.

2. RELATED WORK

The problem of collision detection between deformable models has
been well studied. We refer the reader to a recent survey on col-
lision detection algorithms [Teschner et al. 2005] and physically-
based deformable models [Nealen et al. 2006]. At a broad level, pri-

or methods for collision queries can be classified as surface-based
and volume-based methods.

2.1 Collision Queries on Polygonal Models

Most prior techniques have been designed for triangulated mod-
els and check for collisions only at the boundary (or surface) of
the objects. The simplest algorithms compute bounding volume hi-
erarchies and update the hierarchies using refitting or rebuilding
algorithms as the objects deform [Teschner et al. 2005].

CCD provides more accurate collision results than discrete colli-
sion detection (DCD). Therefore, CCD has been studied relatively
recently for rigid models [Redon et al. 2002], articulated models
[Zhang et al. 2007], and deformable models [Provot 1997; Bridson
et al. 2002; Govindaraju et al. 2005]. Since CCD require longer
computation time than DCD, different acceleration techniques have
been proposed. Some of them are based on normal cone culling
[Tang et al. 2009], removing redundant elementary tests [Hutter
and Fuhrmann 2007; Curtis et al. 2008], and coplanarity-based
culling [Tang et al. 2010a]. The elementary tests between the prim-
itives (e.g., triangles) are performed using polynomial root solvers
[Provot 1997] or local advancement methods [Tang et al. 2010b].

2.2 Collision Queries for Volume Meshes

Current techniques for collision checking on volume meshes are
mainly limited to discrete collision queries, where they check for
contacts at specific time steps. Teschner et al. [2003] present-
ed a spatial subdivision method to efficiently perform collision
checking for tetrahedral meshes and integrated it with different
FEM based simulation systems [Heidelberger et al. 2004]. Math-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

VolCCD: Fast Continuous Collision Culling between Deforming Volume Meshes • 3

ias and Gu [2007] extended this approach for real-time applica-
tions. O’Brien[2000] and Müller et al. [2001] check for collisions
between the volume elements using bounding volume hierarchies
(BVHs) for fracture simulations. Distance field methods are wide-
ly used to check for contacts and penetrations [Sud et al. 2006] and
have been applied to volume meshes [Fisher and Lin 2001; Heidel-
berger et al. 2004; Teschner et al. 2005; Wojtan et al. 2009] to per-
form queries at a given distance field resolution. Other methods use
the rasterization hardware to perform interactive queries at image-
space resolution between volume meshes [Lombardo et al. 1999;
Heidelberger et al. 2003; Faure et al. 2008; Allard et al. 2010].
However, most of these methods perform discrete collision check-
ing at a specific time instance, as opposed to CCD between volume
meshes. Therefore, simulations that employ these discrete method-
s can miss collisions and thus use small time steps to reduce the
chance of missing collisions.

3. OVERVIEW

In this section, we introduce the notation used in the rest of the
paper and give an overview of our approach.

3.1 Notation and Definitions

Many deformable and FEM simulations use volumetric elements
such as tetrahedra, hexahedra, and triangular prisms to represen-
t the interior volume of objects. We use the symbols of V , E, F ,
and O to represent the vertices, edges, faces, and volumetric ele-
ments of an object, respectively. The lower-cases symbols of v, e,
f , and o denote a specific vertex, edge, face, and volumetric el-
ement, respectively. We define a volumetric element as a simple
polytope consisting of nv vertices, ne edges, and nf triangles. We
also use the term of deforming volume meshes for models defined
by these volumetric elements. The operators ‘∗’, ‘·’, and ‘×’ denote
the product of two scalar values (or a scalar value and a vector), the
dot product of two vectors, and the cross product of two vectors,
respectively.

Our algorithm does not make any assumption about the motion
or the underlying deformation or the topology of the object. The
inputs for our algorithm are the initial and final positions of each
vertex corresponding to two discrete time instances. We denote the
time interval as [0, 1]. Similar to prior surface-based CCD algo-
rithms [Provot 1997; Bridson et al. 2002], we assume that the mo-
tion of each vertex of the volume mesh can be represented by a con-
stant velocity between the two time steps; we also briefly discuss
how our approach can be extended to handle non-constant veloci-
ties. Our goal is to check for collisions between all the deforming
volumetric elements of the same object (i.e. intra-object collision-
s) and different objects (i.e. inter-object collisions) during the time
interval and compute the first time of contact.

3.2 Collision Checking between Volume Meshes

Most prior work in collision detection can be broadly classified as
discrete collision detection (DCD) or CCD methods. In general, C-
CD methods tend to be more expensive, as they check for collisions
along the entire trajectory. However, the CCD methods are more
accurate and can guarantee that no collision is missed between the
discrete time steps. This makes it possible to employ large time
steps during the simulation. On the other hand, simulation algo-
rithms based on DCD tend to choose smaller time steps [Parker and
O’Brien 2009], in order to reduce the chances of missing collisions
and thus maintain the fidelity of the simulation. However, using a
small simulation time step can slow down the overall performance

a

b
c

d

e

(a) (b)

(c) (d) (e)

d

e

Fig. 2. Topological changes: When a high-speed bullet hits a metal plate,
topological changes occur (e.g., elements a and b merge into c, and the
connectivity of the elements d and e changes). These kinds of simulations
with such topological changes can result in a high number of collisions and
penetrations among the interior elements of volume meshes. Our algorithm
can compute the first time-of-contact among the elements in an efficient
manner.

of the simulation. Most of the earlier work in collision detection
was based on DCD algorithms. CCD techniques have been shown
recently to be useful to perform robust collision detection and han-
dling for many applications [Provot 1997; Redon et al. 2002; Brid-
son et al. 2002].

One may consider that identifying collisions among the internal
elements based on the CCD framework may be unnecessary, since
surface-based CCD methods can accurately compute the first time
of contact at the boundary. However, contacts can occur even a-
mong internal elements especially under strong external forces or
high impacts with fast moving objects. Even though the surface-
based CCD methods can identify the first time of contact and the
associated boundary features, current contact resolution methods
may not be able to accurately resolve those contacts and may re-
sult in inter-penetrations during subsequent frames of the simula-
tion [Volino and Magnenat-Thalmann 2006]. In this case, it is im-
portant to identify all the collisions between the internal elements
and resolve them in an appropriate manner.

Many of existing physically-based simulation algorithms check
only for collisions at the surface boundary. However, for many
CAD/CAM and virtual prototyping applications, such as crash sim-
ulation or structure analysis, it is important to check the features of
interior volume elements for collisions [Hallquist 2006; ABAQUS
2003]. Therefore, these FEM systems perform various kind of con-
tact and penetration computations [LS-DYNA 2001], and these
contact computations can take a significant fraction of the overall
simulation time.

In some applications, such as fluid simulation [Fleissner et al.
2007; Plimpton et al. 1998], there are no explicit boundary el-
ements. Such fluid simulations or other complex simulations of-
ten undergo topological changes such as explosions or penetrations
shown in Figure 2, or cracks [Sifakis et al. 2007]. As a result, the
connectivity between the boundary and interior elements changes.
It is required to check for collisions among all those elements for

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

4 • Tang et al.

(b) Simulation with surface-based collision detection

(a) Simulation with volume-based collision detection

Fig. 3. Comparison between surface-based and volume-based collision detection: These two figures show two simulation sequences of a bullet pene-
tration benchmark generated with volume-based collision detection (a) and surface-based collision detection (b). In this simulation, a bullet hits a steel plate.
Since the steel plate is thin, the plate should fracture given the high-speed bullet. The highlighted areas stress the difference between the simulation results.
For this benchmark, checking collisions between the interior features is essential to compute the interior impact forces that result in cracks and fractures, and
thereby generate an accurate simulation. For these simulation results, we use LS-DYNA.

realistic simulation. If there is a severe deformation due to a large
external force in simulations, it can result in complex topological
changes. This is illustrated in Figure 2.

We give a broad overview of finite-element simulation
that checks for collisions between the internal volume ele-
ments(Algorithm 1). The overall simulation framework is similar to
the ones described in [Müller et al. 2001; O’Brien 2000; O’Brien
and Hodgins 1999]. All the volumetric elements in the scene are
organized in a hierarchical manner using a BVH. Volume-based
collision checking is performed by traversing the BVH in top-
down manner and searching all the contacts [O’Brien 2000]. Next,
the impact forces are calculated based on these contacts and the
nodes are updated with the accumulated forces (internal forces,
external forces, etc.). For the nodes undergoing forces that ex-
ceed their failure stresses or the merging thresholds, the topology
structure around them are updated with splitting and gluing opera-
tions [Müller et al. 2001; O’Brien and Hodgins 1999; Wojtan et al.
2009]. Otherwise the nodes are updated based on Newton’s second
law.

In the example shown in Figure 2, we show that at the end of
a specific simulation time step, two volumetric elements a and b
merge into c due to the impact force (Line 28-33 of Algorithm 1).
Also, two adjacent elements d and e break their connectivity and
penetrate with each other (Line 35-38 of Algorithm 1). This kind
of topological change results in collisions between the interior fea-
tures of a mesh. Therefore, we can get deeper inter-penetrations
among internal elements of models.

Figure 3 highlights the benefit of performing collision checking
between volume elements on the bullet penetration benchmark. In
Figure 3(b), we show simulation results achieved by checking for
collisions only at the boundary (i.e. only the boundary features).
In Figure 3(a), we show the result achieved also by taking into ac-
count collision checking between the internal volume elements (i.e.
boundary + interior features). The highlighted areas stress the dif-
ference between the simulation results. For this benchmark, check-
ing collisions between interior features is essential both to reflect

interior impact forces producing fractures and to generate accurate
simulation results.

3.3 Acceleration using Bounding Volume Hierarchies

We use a k-DOP bounding volume hierarchy to accelerate the com-
putation. The hierarchy is used to cull away pairs of volumetric el-
ements that are not in close proximity. A k-DOP (specifically a 16-
DOP in our system) hierarchy B is computed for all the volumetric
elements in the scene and updated as the objects move or deform.
The 16-DOPs are constructed similar to the 18-DOPs as described
in [Klosowski et al. 1998]. The reasons that we use 16-DOPs are
two folds: 1) it provides a higher culling ratio over other simple
bounding volumes such as axis-aligned bounding box and 2) it can
be updated efficiently. For example, the computation can be accel-
erated with SIMD instructions (e.g., SSE instructions on current
CPUs). Furthermore, we use restructuring and refitting algorithms
to update the k-DOP hierarchy for deforming volume meshes in an
efficient manner. In our benchmarks, updating a k-DOP based B-
VH takes a minor portion, about 2.45% to 7.56%, of the total query
time.

Each leaf node of B encloses the volume swept by a single el-
ement o that is deforming during the time interval [0, 1]. Collision
detection is performed by traversing B recursively in a top-down
manner and checking the bounding volumes for overlap. For every
overlapping pair of leaf nodes, exact collision checking between
the volumetric elements is performed by using elementary tests.
In practice, the number of overlapping bounding boxes tend to be
rather high for deforming meshes and may result in a very high
number of false positives (Figure 4).

3.4 CCD between Volumetric Elements

Let us assume that a given pair of volumetric elements does not
overlap at t = 0; we will discuss how our method behaves when
there are overlaps at the initial position. In that case, the first
time of contact between these (internal or external) volumetric el-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

VolCCD: Fast Continuous Collision Culling between Deforming Volume Meshes • 5

Algorithm 1 FEM simulation with volume based collision detec-
tion:

1: // Stage 1: Preprocessing.
2: Build BVH B for the whole scene.
3:
4: // Stage 2: Solving iteratively.
5: t = t0
6: while t <= t1 do
7: for all volumetric elements oi ∈ the set of elements elm do
8: Calculate internal forces f i

j at each nodes ndj .
9: Calculate external forces fe

j at each nodes ndj .
10: // Check volumetric elements for contacts.
11: if Any contact detected then
12: Compute contact information {t′, dj}.
13: // Here t′ ∈ [t, t+∆t] is the first-time-of-contact,
14: // and dj is the penetration depth.
15: // Calculate impact forces fm

j of each nodes ndj
16: // based on the contact information {t′, dj}, i.e.,
17: fm

j = ImpactForce(ndj , {t′, dj})
18: else
19: fm

j = 0
20: end if
21: end for
22:
23: for all nodes ndj ∈ the set of nodes nds do
24: // Update position of each node ndj based on
25: // accumulated forces f i

j + fe
j + fm

j , i.e.,
26: fa

j = f i
j + fe

j + fm
j

27: // Checking for merging threshold.
28: for all nodes ndk in the near proximity of ndj do
29: if fa

j > merging thresholdjk then
30: Merge ndj and ndk into a new node ndl,
31: and adjust position of ndl accordingly.
32: end if
33: end for
34: // Checking for failure stress.
35: if fa

j > failure stressj then
36: Split ndj into two new nodes ndp and ndq ,
37: and adjust the positions of ndp and ndq accordingly.
38: end if
39: if No topology change then
40: post+∆t

j = UpdatePosition(postj , f
a
j)

41: end if
42: end for
43:
44: Update the BVH B.
45: t = t+∆t
46: end while
47:
48: // Stage 3: Output simulation result.
49: Output results.

ements occurs at the boundary features, corresponding to the ver-
tices, edges, or faces. Prior work on CCD computation has been
limited to triangle primitives and performs 15 elementary tests: 9
edge-edge (EE) and 6 vertex-face (VF) tests [Provot 1997; Bridson
et al. 2002]. Each elementary test reduces to finding roots of a cubic
polynomial.

This formulation can be extended to volumetric elements. Sup-
pose that we have two volumetric elements, oi and oj ; oi has ni

v

vertices, ni
e edges, and ni

f triangles, and oj has nj
v vertices, nj

e

Fig. 4. Bounding volumes of
volumetric elements: We use
tight fitting k-DOPs to enclose the
swept volume of each deforming
volumetric element. In practice,
these k-DOPs can result in a high
number of false positives.

edges, and nj
f triangles. In the case that oi and oj are not adjacent,

i.e. do not share any boundary elements between them, computing
the first time of contact reduces to performing (ni

v ∗ n
j
f + nj

v ∗ ni
f)

VF elementary tests and ni
e ∗nj

e EE tests. For example, a primitive
test for two tetrahedra require to perform 32 VF and 36 EE tests.
Similarly, a primitive test for two hexahedra require to performing
192 VF and 144 EE elementary tests.

3.5 Our Approach

The problem of performing CCD tests between volume meshes is
considerably more expensive and complicated than handling sur-
face meshes. This is due to the following reasons:

(1) Bounding volumes of the leaf nodes of a BVH B tend to be
more conservative since those bounding volumes enclose the
swept volumetric elements in the time interval [0, 1]. As a re-
sult, the number of false positives given the CCD using a BVH
is very high (e.g., 90% ∼ 99% in our benchmarks).

(2) The cost of an exact CCD between volume meshes is much
higher, e.g., 4−20 times more expensive as compared to CCD
between triangles, because of the higher number of elementary
tests.

(3) Culling methods based on normal cones or bounds [Volino and
Thalmann 1994; Provot 1997; Tang et al. 2009; Heo et al.
2010] are designed originally for detecting self-collision free
regions of surface meshes. These techniques cannot be applied
to volume meshes, since it is unclear how to compute normals
for internal elements of volume meshes.

In order to accelerate the computation, we present two new culling
techniques to reduce the number of false positives and remove re-
dundant elementary tests. These methods are applied to the volu-
metric elements as elementary-level culling, and to features of each
element as feature-level culling. This includes a continuous sepa-
rating axis theorem (CSAT) that can significantly reduce the num-
ber of false positives between the volumetric elements. Moreover,
we present a feature-level assignment culling scheme that is used
to remove all duplicate or redundant elementary tests between pairs
of volumetric elements.

During each simulation time step, our CCD algorithm proceed-
s in three stages. The overall pipeline of the CCD algorithm is
shown in Figure 5. At the first stage, we perform bounding vol-
ume traversal and cull away non-overlapping pairs. We also apply
CSAT to the leaf node pairs to reduce the false positives. At the
second stage, We perform feature-level culling that handles non-
adjacent and adjacent volumetric elements in separate steps. For
non-adjacent volumetric element pairs, assignment culling is used
to remove redundant elementary tests. Moreover, we present the
notion of O-Set pairs, which refer to the minimal number of ele-
mentary tests between adjacent pairs that are not classified as parts
of the tests between the non-adjacent pairs, and can be easily re-
computed to handle topological changes. At the third, final stage,
exact elementary tests are preformed.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

6 • Tang et al.

0
p

1
p

0
q

1
q

L)(
00

pq

L)(
11

pq

L

(a) (V, V)

0
p

1
p

0
a

0
c

0b

1
a

1
c
1

b

L

(b) (V, F)

0p

1
p

0

1q

0

0q

1

0q

2

0q

1

1
q

2

1
q

L

(c) (V, O)

0
a

0b

0
c

1
c

1
a

1
b

0
d

1
d

L

(d) (E, E) (e) (E, O)

3

0q

3

1
q

0

1
q

0

0q

1

0q

2

0q
3

0q

1

1
q

2

1
q

3

1
q

1
c

0
d1

d

0
c

L

Fig. 6. CSAT culling algorithm: the continuous separating axis theorem (CSAT) culling methods (a) for two moving vertices, (b) for a VF test between a
vertex and a triangle, (c) for VF tests between a vertex and a volumetric element, (d) for a EE test between two edges, and (e) for EE tests between an edge
and a volumetric element. For each case shown in (b) – (e), we can conclude that these deforming feature/element do not overlap with each other during the
time interval based on CSAT tests.

Bounding

volume

culling

CSAT

culling

Element-level

Assignment

culling

O-Set

Elementary

tests

Feature-level

Collision

results

Volume

meshes

Fig. 5. CCD algorithm for deforming volume meshes: By performing
element-level and feature-level culling, we drastically reduce the number
of false positives and achieve interactive CCD performance on complex
volumetric benchmarks.

4. CSAT CULLING ALGORITHM

In this section, we present our culling algorithm based on the con-
tinuous separating axis theorem (CSAT). The objective is to de-
rive sufficient conditions for non-overlap elements during the [0, 1]
time interval. We first present the CSAT formulation for two ver-
tices undergoing continuous motion during the [0, 1] time interval.
Next, we extend it to perform VF and EE tests, and finally to the
volumetric elements.

4.1 Continuous Separating Axis Theorem

Given two convex shapes, the separating axis theorem (SAT) states
that if there exists a line onto which the projections of two objects
do not overlap, then the objects do not intersect. The resulting line
with disjointed projections is called the separating axis. Separating
axis tests are widely used for fast overlap tests between oriented
bounding boxes [Gottschalk et al. 1996] and convex shapes. Eber-
ly [2000] extended the SAT formulation to perform overlap tests
between rigid convex polytopes that are moving with constant lin-
ear velocity and no angular velocity.

We extend SAT designed for rigid convex polytopes to continu-
ous tests between deforming volumetric elements, whose vertices
have a constant velocity. Our formulation is conservative, and pro-
vides sufficient conditions for non-overlapping during the given
time interval. Furthermore, we show that the resulting CSAT be-
tween two volume elements can be performed efficiently by a few
dot products.

Theorem 1: CSAT for two moving vertices: Suppose two mov-
ing vertices p and q, defined by their positions at the time interval
[0, 1] (p0 & p1 and q0 & q1, respectively), and a separating axis
defined by L (̸= 0). If (q0−p0) ·L and (q1−p1) ·L have the same
sign, q will not overlap with p during the time interval.

Due to the page limit, we provide proofs of this theorem and
other corollaries in the appendix.

Overall, this theorem provides a simple, sufficient condition
when two vertices moving along the straight lines have no colli-
sions during the given time interval (as shown in Figure 6(a)). In
Section 4.4, we extend this theorem to perform overlap tests be-
tween two volumetric elements.

4.2 VF Pairs

Based on the CSAT for two moving vertices, we derive the follow-
ing culling test for a VF pair.

Corollary 1: CSAT between a vertex and a triangle: Suppose
a vertex p and a triangle f defined by their positions at the time
interval [0, 1] (p0 & p1 for p, and a0, b0, c0 & a1, b1, c1 for f ,
respectively), and a vector L (̸= 0). If the following 6 expressions
have the same sign:

(a0 − p0) ·L, (a1 − p1) ·L, (b0 − p0) ·L,

(b1 − p1) ·L, (c0 − p0) ·L, (c1 − p1) ·L
(1)

then p and f will not overlap during the time interval.
This culling condition implies if the projection of a vertex p is

above/below all the projections of the three corners of a triangle
f at t = 0 and t = 1, then p and f will not overlap during the
interval (as shown in Figure 6(b)). The choice of L is important in
terms of performance. In practice, we use the initial normal vector
of f , n0, as the projection axis. In such case, (a0 − p0) · n0 =
(b0 − p0) ·n0 = (c0 − p0) ·n0, so we need to perform only 4 dot
products for this culling test.

Corollary 2: CSAT between a vertex and a volumetric ele-
ment: Suppose a vertex p and a volumetric element o (with nv ver-
tices and nf triangles) defined by their positions during the time
interval [0, 1] (p0 & p1 for p, and qi0 & qi1 for o, i ∈ [0, nv − 1]),
and a vector L(̸= 0). If the following 2 ∗ nv algebraic expressions
have the same sign:

(qi0 − p0) ·L, i ∈ [0, nv − 1],

(qi1 − p1) ·L, i ∈ [0, nv − 1]
(2)

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

VolCCD: Fast Continuous Collision Culling between Deforming Volume Meshes • 7

then p and all the nf triangles of o will not overlap during the time
interval.

This culling condition provides a simple non-overlapping con-
dition between the moving vertex and the volume swept by o. We
randomly pick a face from the volumetric element, and use n0 of
the face as L. For a tetrahedron (nv = 4 and nf = 4), we need to
perform only 8 dot products for this test (as shown in Figure 6(c)).

4.3 EE Pairs

Corollary 3: CSAT between two edges: Suppose two edges, e1
and e2, defined by their end positions during t ∈ [0, 1] (a0, b0 &
a1, b1 for e1, and c0, d0 & c1, d1 for e2), and a vector L(̸= 0). If
the following eight expressions have the same sign:

(a0 − c0) ·L, (a1 − c1) ·L, (b0 − c0) ·L, (b1 − c1) ·L,

(a0 − d0) ·L, (a1 − d1) ·L, (b0 − d0) ·L, (b1 − d1) ·L
(3)

then e1 and e2 do not overlap during the time interval.
This implies that if the projections of the two end points of an

edge e1 are above/below the projections of the two end points of
another edge e2 at t = 0 and t = 1, then e1 and e2 will not overlap
during the time interval (as shown in Figure 6(d)). All these tests
can be performed by using 8 dot products. Again, the choice of L
is important in terms of performance. In practice, we use n0 =
(a0 − b0)× (c0 − d0), as the projection axis. In such a case, (a0 −
c0) · n0 = (b0 − c0) · n0 = (a0 − d0) · n0 = (b0 − d0) · n0,
so we only need to perform 5 dot products to perform this culling
method.

Corollary 4: CSAT between an edge and a volumetric ele-
ment: Suppose an edge e and a volumetric element o (with nv ver-
tices and ne edges) defined by their positions at time interval [0, 1]
(c0 & c1 and d0 & d1 for e, and qi0 & qi1 for o, i ∈ [0, nv −1]), and
a vector L(̸= 0). If the following 4 ∗nv expressions have the same
sign:

(qi0 − c0) ·L, i ∈ [0, nv − 1], (qi1 − c1) ·L, i ∈ [0, nv − 1],

(qi0 − d0) ·L, i ∈ [0, nv − 1], (qi1 − d1) ·L, i ∈ [0, nv − 1]
(4)

then e and o do not overlap during the time interval.
We randomly pick an edge from the volumetric element and use

n0 = (a0 − b0)× (c0 − d0) as the choice of L. For a tetrahedron
(nv = 4 and ne = 6), we need to evaluate only 16 dot products by
using this culling method.

4.4 CSAT between Volumetric Elements

Let the two volumetric elements be: oi with ni
v vertices, ni

e edges,
and ni

f triangles, and oj with nj
v vertices, nj

e edges, and nj
f trian-

gles. In the case that oi and oj are not adjacent, i.e. do not share
any boundary elements between them, we can compute the first
time of contact between oi and oj by performing VF tests between
the vertices of one element and the faces of another element, and
by performing EE tests between the edges of those two elements.
Therefore, we have to perform (ni

v ∗ nj
f + nj

v ∗ ni
f) VF tests and

ni
e ∗ nj

e EE tests.
Note that our culling method that uses the CSAT between a

vertex and an element requires 2 ∗ nv dot products, where nv is
the number of vertices of the element. Therefore, all the VF test-
s with our CSAT culling method need to perform 4 ∗ ni

v ∗ nj
v(=

2 ∗ ni
v ∗ nj

v + 2 ∗ nj
v ∗ ni

v) dot products. Also, our culling method
that uses the CSAT between an edge and an element performs 4∗nv

dot products. As a result, all the EE tests between two volumetric
elements can be performed with our CSAT culling method using

1
o

2
o

3
o

2
e

1
e

Fig. 8. Duplicate EE tests be-
tween adjacent volumetric ele-
ments: an EE test {e1, e2} be-
tween an adjacent pair {o2, o3}
is covered by the tests of a non-
adjacent pair {o1, o3} by using
O-Sets.

2
e

1
e

2
o

1
o

2
e

1
e

(a) (b)

2
o

1
o

Fig. 9. Redundant elementary
tests: The edge e1 is shared by
two tetrahedra o1 and o2. The
edge e1 will be tested with an-
other edge e2 twice, if o1 and o2
are tested with e2 independently.

4 ∗ ni
e ∗ nj

v or 4 ∗ nj
e ∗ ni

v dot products. A detailed pseudo-code
description of CSAT culling between two volumetric elements is
given in Algorithm 2 of the appendix.

Separating axis, L: Depending on the chosen L, the perfor-
mance of our culling method varies. In our benchmarks, the cho-
sen L provides a high culling efficiency that reduces the number of
operations. Other alternatives, such as selecting L from predeter-
mined features or predicting L by overall velocities of volumetric
elements, are possible. However, we found that they do not improve
the performance in our experiments.

5. FEATURE LEVEL CULLING

Models represented by volume meshes tend to result in a high
number of intra-object collisions. These include overlap tests be-
tween adjacent volumetric elements and non-adjacent volumetric
elements. After applying CSAT culling, the overall algorithm per-
forms elementary tests between the features of the volumes to com-
pute the first time of contact.

In this section, we present two culling techniques that can elim-
inate any duplicate or redundant elementary tests. We present two
methods: O-Sets for adjacent volumetric elements and assignment
culling for non-adjacent volumetric elements. We have to perform
elementary tests with features of all the volumetric elements that
pass CSAT culling. However, we drastically reduce the number of
tested elementary tests based on the O-Sets and assignment culling.
Furthermore, we show how these techniques can also handle topo-
logical changes in the volume meshes.

5.1 O-Sets

The CCD tests between the volumetric elements are performed
independently. In terms of handling two adjacent volumetric el-
ements, the number of elementary tests turns out to be less than
ni
v +nj

f +nj
v ∗ni

f VF tests and ni
e ∗nj

e EE tests, because some of
the features are shared. Moreover, the algorithm can be proceeded
in a more efficient manner by checking the non-adjacent volumet-
ric pairs for overlap first, followed by adjacent volumetric pairs. We
extend the orphan set idea proposed for surface meshes [Tang et al.
2009] to the O-Sets for volume elements and compute the mini-
mal number of elementary tests that need to be performed between
adjacent volume meshes.

In order to explain the O-Set, consider the example shown in
Figure 8. Some of the EE tests (e.g., {e1, e2}) corresponding to

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

8 • Tang et al.

Fig. 7. Octopi Benchmark: Three deforming octopi with 24 tentacles consist of 17.6K tetrahedra. The simulation has multiple inter-object and intra-object
collisions. The average CCD query time is 75ms per frame.

adjacent elements are same as the EE tests that need to be tested for
collisions among the non-adjacent elements. We define the O-Set
to be the feature pairs between adjacent element pairs that are not
explicitly checked for collisions as part of elementary tests between
the non-adjacent pairs. Therefore, if we first check for collisions
between the non-adjacent element pairs, we only need to perform
elementary tests between the feature pairs that belong to O-Sets,
and not all the feature pairs among adjacent elements.

Given an object, its O-Set is computed as part of a preprocess by
analyzing the connectivity information among the volume mesh-
es. A pseudo-code description of construction algorithm for O-Set
computation is given as Algorithm 3 in the appendix.

Incrementally updating the O-Sets: As the model undergoes
topology changes, the connectivity information changes. In this
case, the O-Sets are incrementally updated to reflect the topology
changes that can occur during splitting, tearing, or object breaking.
For a volume object O′ is generated from O with topology changes,
it can be described as O′ = O + As − At, where As is the set of
volumetric elements that are added to O′, At is the set of deleted
volumetric elements from O that are no longer in O′. The O-Sets
are updated incrementally by removing feature pairs related to At

and adding new feature pairs in the proximity of As.

5.2 Assignment Culling

A large number of features (vertices, edges, and faces) are shared
between volumetric elements. If we perform elementary tests be-
tween the volumetric element pairs independently, many redundant
elementary tests are performed. This is illustrated in Figure 9(a).

These redundant tests can be eliminated using an assignment
mechanism that ensures that a feature is assigned to only one vol-
umetric element that is incident to the feature. As shown in Fig-
ure 9(b), the redundant EE test is removed by assigning e1 only to
o1.

The assignment mechanism has been used for triangle mesh-
es [Curtis et al. 2008]. We extend this idea for volumetric elements
as static feature assignment. The assignment is not unique as long
as it satisfies the condition that a feature is assigned to a single vol-
umetric element. A simple, yet effective solution is to use a greedy
algorithm to ensure that a feature is assigned to only one element
(as shown in Algorithm 4 in the appendix).

The main problem with static feature assignment is that it is not
compatible with O-Sets. By using O-Sets, all the duplicate tests
between adjacent volumetric elements are skipped. When using O-
Sets with static feature assignment, some collisions between feature
pairs may be missed when those feature pairs are assigned to adja-
cent volumetric elements. These feature pairs will be skipped when
adjacent element pairs are skipped.

In order to overcome this problem, a non-adjacent constrain-
t for the feature assignment is taken into account by the assign-
ment scheme. We present this modification as the dynamic feature
assignment method.

Dynamic feature assignment: For a feature pair {elm1, elm2}
that is tested for CCD, we assign them in a dynamic manner. The
pair {elm1, elm2} may be assigned to any volume elements a-
mong {oi, oj}, where oi is incident to elm1 and oj is incident to
elm2. There must be at least one element pair within {oi, oj} that
oi is not adjacent oj . Otherwise {elm1, elm2} correspond to ad-
jacent element pairs and will be proceeded by the O-Set computa-
tion algorithm. So we directly assign the pair {elm1, elm2} to the
first non-adjacent volumetric element pair {oi, oj}. The dynamic
feature assignment algorithm for a VF/EE test between a feature
elm1 from o1 with another feature elm2 from o2 is performed in a
similar manner. Also, we can use our culling method based on O-
Sets without any modification. A detailed pseudo-code description
is given in Algorithm 5 of the appendix.

Another benefit of the dynamic assignment over the static assign-
ment is that it naturally works for volume meshes with topology
changes, since the feature assignment is performed during the run-
time process. As new feature pairs are added or deleted, we change
their assignment in a dynamic manner. This makes it possible to
make our algorithm work well on scenes with topological changes.

6. IMPLEMENTATION AND PERFORMANCE

In this section, we describe our implementation and highlight the
performance of our CCD algorithm on several benchmarks arising
from engineering, medical, and animation simulations that have d-
ifferent characteristics.

6.1 Implementation

We have implemented a CCD system for volume meshes (VolCCD)
based on our algorithm on a standard PC (Windows/XP 32 bits,
Intel Q6600 CPU 2.4GHz, 2GM RAM) by using C++. The timings
are generated using a single thread running on a single core.

We compare the performance of our system (VolCCD), with the
following two approaches:

(1) NavCCD: This algorithm use the k-DOP hierarchy, but per-
forms all the elementary tests between the volumetric elements
with overlapping bounding volumes. This way, we can evalu-
ate the benefit of our culling schemes.

(2) HashCCD: This algorithm is based on optimized spatial hash-
ing [Teschner et al. 2003] as opposed to bounding volume hier-
archies. Instead of discrete collision checks, we perform CCD
between volume meshes using the elementary tests.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

VolCCD: Fast Continuous Collision Culling between Deforming Volume Meshes • 9

Table I. Performance and Speedup: This table shows the
average query time of VolCCD, performance improvements

over NavCCD and HashCCD, and culling ratios (the ratios of
the number of elementary tests of VolCCD over the number of

NavCCD).
Model Avg. Speedup over Speedup over Culling

Query NavCCD HashCCD ratio
Octopi 75ms 12x 18.3x 0.01%

Bullet 48ms 21x 28x 0.69%

Airbag 88ms 10.2x 13x 0.58%

Liver 53ms 10.3x 14.1x 0.72%

Ford 3.3s 12.4x 17.4x 3.54%

Table II. Culling Efficiency on the Octopi Benchmark:
This table shows the number of VF and EE elementary

tests performed for the deforming octopi benchmark
without performing any culling (A), with feature-level
culling only (B), and with element-level culling and

feature-level culling (C). Each of them uses the 16-DOP
BVH.

Culling VF tests EE tests total ratio
A 26M 312M 339M 100%

B 1.1M 6.4M 7.5M 2.23% (B/A)
C 7.9K 24K 32K 0.42% (C/B)

Table III. Culling Efficiency on the Car Crash Benchmark: This
table shows the number of VF and EE elementary tests performed the

benchmark Car Crash without performing any culling (A), with
feature-level culling only (B), and with element-level and

feature-level culling (C). Each of them uses the 16-DOP BVH.
Culling VF tests EE tests total ratio
A 8.24E + 09 1.6E + 10 2.43E + 10 100%

B 9.8E + 07 3.8E + 08 4.76E + 08 1.96% (B/A)
C 2.3E + 07 1.2E + 08 1.41E + 08 29.61% (C/B)

6.2 Benchmarks and Performance

In order to test the performance of our algorithm, we use 5 differ-
ent benchmarks, arising from different simulations with different
characteristics.

(1) Octopi: Three deforming octopi with 24 tentacles contact with
each other and generate a lot of inter-object and intra-object
collisions (Figure 7).

(2) Bullet Penetration: A high speed copper bullet hits a steel
target and achieves penetration (Figure 10). During the pene-
tration, the topology changes result in a high number of inter-
object collisions.

(3) Airbag: The deforming airbag has self-collisions as well as
other collisions with the steering wheel (Figure 12).

(4) Car Crash: A Ford Explorer crashes against a rigid wall and
deforms (Figure 1). This benchmark is designed for car crash
analysis.

(5) Cutting Liver: A liver is cut during operation (Figure 13).
This benchmark comes from surgery simulation.

Table I shows the average query time of VolCCD and the improve-
ment over NavCCD and HashCCD, and culling ratios (the ratios
of the number of elementary tests of VolCCD over the number
of NavCCD), respectively. Overall our method shows more than

Bullet Airbag Ford Octopi

39.55%

5.38%
17.81% 20.55%

4.05%

2.45%

7.56% 4.44%

41.01%

51.25%

40.92%

64.83%

15.38%

40.79%
33.00%

10.18%

Exact elementary tests

BVH traversal & culling

Updating BVH

Computing k DOPs

Fig. 11. Portions of the steps of our CCD algorithm: This figure pro-
vides a breakdown of computational cost of our CCD method (e.g., com-
puting k-DOPs, updating k-DOP based BVH, BVH traversal & culling, and
exact elementary tests.)

one order of magnitude performance improvement over NavCCD
and HashCCD across all the tested benchmarks. This overall per-
formance improvement is mainly caused by the drastic reduction
(about 100:1 reduction) of the tested number of elementary tests.

Tables II and III highlight the efficiency of each culling tech-
nique. The culling ratio for the feature-level culing only is com-
puted as a ratio of the number of elementary tests without any
culling to that with the feature-level culling only. The culling ra-
tio for the element-level culling and feature-culling is computed
as a ratio of the number of elementary tests performed with both
elementary-level and feature-culling to that with the feature-level
culling only. In Table II, only 0.01%(= 2.23% ∗ 0.42%) tests
of those passed culling have to be performed. In Table III, only
0.58%(= 1.96%∗29.61%) tests of those passed culling have to be
performed.

Figure 11 provides a breakdown of computational cost (com-
puting k-DOPs, updating k-DOP based BVH, BVH traversal &
culling, and exact elementary tests) of our CCD method. For al-
l the benchmarks, BVH updating & culling and exact elementary
tests are the two most time-consuming steps (56% ∼ 91%).

6.3 Continuous Trajectory with Topological Changes

In some benchmarks like the Cutting Liver and Bullet Penetra-
tion, the connectivity and topology changes. As a result, the num-
ber of vertices in the model may change and we cannot perform
linear interpolation between the vertices. Instead, we use the pre-
vious position, p′, of a vertex p by subtracting its movement, i.e.
p′ = p − s ∗ vp, where s is the simulation time step and vp is the
average velocity of p that is computed from the simulation. We per-
form linear interpolation between p and p′, and perform the CCD
tests between them to compute the first time of contact.

7. ANALYSIS AND COMPARISON

In this section, we analyze the performance of our algorithm and
compare its features with prior methods.

7.1 Analysis and Discussions

The performance improvement in our CCD algorithm for volume
mesh comes from two factors: 1) significantly reducing the number
of false positives based on CSAT tests and 2) eliminating redundant
elementary tests based on the O-Sets and assignment culling.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

10 • Tang et al.

Fig. 10. Bullet Penetration: A high speed copper bullet (with 11.8− 12K hexahedra) hits a steel target and results in topological changes.

The CSAT algorithm for a VF pair {v, f} only needs to perform
15 addition and 12 multiplication floating-point operations, when
we use the normal vector of f as the separating axis. On the other
hand, an exact elementary test between a VF pair takes roughly 155
addition, 217 multiplication, and 6 division operations, on average.
As a result, the cost of the conservative CSAT culling method is
about 6% to 8% of the total cost of the exact elementary test. Since
the k-DOP hierarchy results in a high number of false positives, the
CSAT culling method can be quite effective. Assignment culling
is also effective in terms of removing redundant elementary tests
between adjacent volumetric elements and non-adjacent volumetric
elements with a very low overhead.

Extension to non-constant velocities: Currently, our approach
has been applied to deforming volumetric elements whose vertices
have a constant velocity between the discrete instances. Note that
the constant velocity assumption is widely used in many prior CCD
algorithms (including surface-based algorithms), as mentioned in
Section 3.1. It leads to a simple formulation to interpolate the mo-
tion between two discrete instances. In the case that the velocities
of the vertices are not constant (e.g. the vertices are moving with
acceleration av), we have to use an appropriate function to model
the trajectory of each vertex, as opposed to the linear trajectories
shown in Figure 6. The CSAT culling method (Section 4) would be
modified accordingly, but is still applicable. Since our approach is
conservative, we expect that the culling efficiency would reduce in
this case. If we model the motion using the constant acceleration,
the resulting trajectory would correspond to quadratic polynomial
functions of time t. The resulting elementary tests would involve
computing the roots of degree 6 polynomials.

Relative performance of surface-based vs. volume-based C-
CD algorithms: Our method performs CCD to check for colli-
sions that may occur on the surface boundary as well as among
the internal volume elements. In some applications, only perform-
ing collision checking between surface-based boundary primitives
may be sufficient. As a result, we compare the performance of a
surface-based and volume-based algorithm. For the two cases (a)
and (b) of the bullet penetration scene in Figure. 3, the perfor-
mance of volume-based collision detection is about 3.2X slower
than the surface-based collision detection when running with a sin-
gle thread. However, with the help of SIMD instructions and multi-
threads (on a Intel Q6600 GPU with 4 cores), we observed that
volume-based method is just about 1.3X slower than the surface-
based method by exploiting the parallelism.

Collisions at the initial simulation time: We have derived our
culling method based on the assumption that there are no overlap-
ping elements at the initial simulation time t = 0. However, our
culling methods work even in this case, since our CCD algorithm
reduces to discrete collision checking at t=0.

7.2 Comparisons

In this section, we compare features of our algorithm with prior
methods.

Optimized spatial hashing: Teschner et al [2003] used opti-
mized spatial hashing to accelerate discrete collision detection a-
mong deforming volume meshes. This method can be easily ex-
tended to perform CCD. We have also extended this method to
HashCCD to perform CCD and tested it against our method. We
can also combine our culling algorithms with it. However, in our
benchmarks, we observed that k-DOP hierarchies offer much high-
er performance over spatial hashing, since some of our tested
benchmarks have very dense geometry in localized regions.

Flip methods: Some researchers have advocated the use of flip
methods to check for self-collisions among volume meshes, and
these have been used for tetrahedral meshes [Erleben et al. 2005].
The flip method only checks whether a specific element of the mesh
undergoes self-collision. It can be used as a sufficient condition to
check for self-collisions, but it is not a necessary condition. In other
words, even if there is no flip, self-collisions can also appear if we
fail to resolve contacts among the surface boundary and thus have
inter-penetrations among the internal elements of the mesh.

Normal cones: Normal cones and continuous normal
cones [Provot 1997; Tang et al. 2009] are used for self-collisions
and work well on the portions of the boundaries that are relatively
flat or have low variation in curvature. That approach is limited
only to surface-based collision checking. In other words, it can
only be applied to the boundary of the objects, and not to the
interior elements. Since each volume mesh is a convex polytope,
it is unclear whether normal cone culling can show meaningful
culling.

Orphan sets & representative triangles: Orphan sets [Tang
et al. 2009] and representative triangles [Curtis et al. 2008] are quite
effective for removing redundant elementary tests between adja-
cent triangles and non-adjacent triangles of meshes. Our feature-
level culling extends these ideas to volume meshes, and integrates
them together with the dynamically assignment scheme.

Image-space algorithms: Many image-space algorithms that
use GPU rasterization methods [Faure et al. 2008; Allard et al.
2010] can be used for interactive collision checking. However, the
use of image-space methods can result in missed collisions, by us-
ing or relying on discrete image-space representations. Moreover,
since different elements are connected to each other, it is unclear
whether we can get a high culling ratio for volume meshes based
on these image-space techniques.

Coplanarity-based culling: Our CSAT tests are complementary
to coplanarity-based culling [Tang et al. 2010a]. Coplanarity-based
culling checks for penetration along the interpolation trajectory
of the deforming features. For example, to test a VF pair {v, f},
coplanarity-based culling computes the deforming normal vector

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

VolCCD: Fast Continuous Collision Culling between Deforming Volume Meshes • 11

Fig. 12. Airbag: This deforming airbag has 9.1K shell elements. VolCCD performs inter-object and intra-object CCD queries at 88ms on average.

nt of a triangle, and tests the relative positions of v and f with
respect to the plane defined by nt. On the other hand, CSAT is
used to check for separate directions and also extends to volumetric
elements. Moreover, CSAT involves fewer arithmetic operations.
In practice, for a single VF pair, the cost of CSAT is about two
times lower than coplanarity-based culling. In terms of performing
four VF pairwise tests between a tetrahedron and a vertex, CSAT is
about six times faster than coplanarity-based culling.

Continuous OBB test: Redon et al. [2002], Levine [2000], and
Eberly [2000] used continuous OBB tests to deal with (moving)
rigid models. OBB trees are computed once for these models, and
checked for overlap among objects undergoing rigid motion based
on a “continuous OBB overlap test”. However, for deformable ob-
jects, OBBs may not be a good choice for bounding volume, as the
updating cost is relative high (15 ∼ 25X slower) over k-DOPs. For
example, the OBB overlap test includes about 180 operations: 15
comparisons, 60 add/sub, 81 mult, and 24 abs operations, which
are much more expensive than our CSAT test. Therefore, we use
k-DOPs because they provide a good balance between the culling
efficiency and the updating cost.

7.3 Limitations

Our culling techniques have several limitations. The culling effi-
ciency of assignment culling depends on the connectivity informa-
tion between volumetric elements. Also, if there are high numbers
of topological changes, then the cost of updating O-Set can be high.
The efficiency and effectiveness of CSAT depends on the choice of
the separating axis. Our current method uses a simple heuristic to
estimate a good separating axis, and it may not work well in all
cases. The CSAT culling algorithm has an additional overhead. If
the number of false positives after the BVH culling are relatively
low, the use of the CSAT culling algorithm can result in reduced
performance, although the slowdown would be minor because of
the small overhead of the CSAT culling method. Also, in some
simulations where we do not have strong external forces, contacts
occurred in constrained geometric configurations, or high impact-
s with fast moving objects, detecting contacts based only on the
surface boundary may be sufficient to generate realistic results.

8. CONCLUSION AND FUTURE WORK

We have presented a novel algorithm for CCD between volume
meshes. Our BVH based approach is applicable to the contact han-
dling of various kinds of volumetric elements that is needed in dif-
ferent FEM applications, physically-based simulation, engineering
analysis, and medical applications. Moreover, our CCD algorithm-
s accurately compute the first time of contact and hereby make

it possible to use a larger simulation time step while providing a
high-quality contact information. We have highlighted its perfor-
mance on many benchmarks and observed more than an order of
magnitude performance improvement. To the best of our knowl-
edge, VolCCD is the first interactive algorithm that can perform
accurate collision checking for FEM or other simulations that use a
few thousands to hundreds of thousands of tetrahedra or triangular
prisms.

There are many avenues for future work. In addition to address-
ing the limitations of our method mentioned before, we would like
to improve the performance of our method by employing multiple
CPU cores or GPUs [Tang et al. 2011]. We expect that all the pro-
posed culling methods map very well with parallel implementation.
Even though we have drastically reduced the number of false posi-
tives, we still perform a high number of elementary tests for com-
plex benchmarks, such as car crash simulation composed of 1.2M
shells. We would like to design exact and less conservative culling
methods to improve the performance of our method. Finally, we
would also like to integrate our algorithm with FEM simulators and
design interactive simulation techniques.

ACKNOWLEDGMENTS
We would like to thank Jeremie Allard and SOFA team for pro-
viding Octopi Benchmark [Allard et al. 2010] and Liver Cutting
Benchmark, and helping us with the rendering. We thank Miguel
Otaduy for useful discussions and thoughtful comments on an ear-
lier draft. The Car Crash Benchmark and Airbag benchmarks from
the Finite Element Model Archive provided by NCAC [National-
Crash-Analysis-Center 2010]. We also want to thank Daniel Heis-
erer from BMW for many useful discussions.

This research is supported in part by National Basic Research
Program of China (No. 2011CB302205), ARO Contract W911NF-
10-1-0506, NSF awards 0917040, 0904990 and 1000579, and In-
tel. Tang is supported in part by Natural Science Foundation of
China (No. 60803054), Natural Science Foundation of Zhejiang,
China (No. Y1100069), Important Science and Technology Spe-
cific Project of Zhejiang, China (2008C01059-4). Yoon is sup-
ported in part by MKE/MCST/IITA [2008-F-033-02], KRF-2008-
313-D00922, KMCC, MSRA, BK, DAPA/ADD (UD080042AD),
MKE/KEIT [KI001810035261], MEST/NRF/WCU (R31-2010-
000-30007-0), and VFX simulation techniques.

REFERENCES

ABAQUS. 2003. ABAQUS 6.4. analysis user’s manual. Hibbitt, Karlsson
& Sorensen, Inc.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

12 • Tang et al.

Fig. 13. Cutting Liver: A liver is cut during a surgical operation. The model has 3874 tetrahedra initially and is deformed to have 4338 tetrahedra because
of the cutting operation. The average CCD query time is 53.2ms per frame. We achieve more than 10 times improvement over prior methods.

ALLARD, J., FAURE, F., COURTECUISSE, H., FALIPOU, F., DURIEZ, C.,
AND KRY, P. G. 2010. Volume contact constraints at arbitrary resolution.
In ACM SIGGRAPH 2010. ACM, 1–10.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust treatmen-
t of collisions, contact and friction for cloth animation. ACM Trans.
Graph. 21, 3, 594–603.

CURTIS, S., TAMSTORF, R., AND MANOCHA, D. 2008. Fast collision
detection for deformable models using representative-triangles. In Symp.
on Interactive 3D graphics and games. 61–69.

EBERLY, D. H. 2000. 3D Game Engine Design: A Practical Approach to
Real-Time Computer Graphics. Morgan Kaufmann.

ERLEBEN, K., DOHLMANN, H., AND SPORRING, J. 2005. The adaptive
thin shell tetrahedral mesh. In WSCG (Journal Papers). 17–24.

FAURE, F., BARBIER, S., ALLARD, J., AND FALIPOU, F. 2008. Image-
based collision detection and response between arbitrary volume objects.
In Symp. on Computer Animation. 155–162.

FISHER, S. AND LIN, M. C. 2001. Deformed distance fields for simulation
of non-penetrating flexible bodies. In Proceedings of the Eurographic
workshop on Computer animation and simulation. Springer-Verlag New
York, Inc., New York, NY, USA, 99–111.

FLEISSNER, F., EBERHARD, P., BISCHOF, C., BCKER, M., GIBBON, P.,
JOUBERT, G. R., MOHR, B., (EDS, F. P., FLEISSNER, F., AND EBER-
HARD, P. 2007. Load balanced parallel simulation of particle-fluid dem-
sph systems with moving boundaries. In Proceedings of Parallel Com-
puting: Architectures, Algorithms and Applications. 37–44.

GOTTSCHALK, S., LIN, M., AND MANOCHA, D. 1996. OBB-Tree: A
hierarchical structure for rapid interference detection. In Proc. of ACM
Siggraph’96. 171–180.

GOVINDARAJU, N., KNOTT, D., JAIN, N., KABUL, I., TAMSTORF, R.,
GAYLE, R., LIN, M., AND MANOCHA, D. 2005. Interactive collision
detection between deformable models using chromatic decomposition.
ACM Trans. on Graphics (Proc. of ACM SIGGRAPH) 24, 3, 991–999.

HALLQUIST, J. 2006. LS-DYNA theory manual. Livermore Software Tech-
nology Corporation.

HEIDELBERGER, B., TESCHNER, M., AND GROSS, M. 2003. Real-time
volumetric intersections of deforming objects. In Proceedings of Vision
Modeling Visualization (VMV’03). 461–468.

HEIDELBERGER, B., TESCHNER, M., KEISER, R., MÜLLER, M., AND

GROSS, M. 2004. Consistent peneration depth estimation for deformable
collision response. In Proceedings of Vision Modeling Visualization
(VMV’04). 330–346.

HEO, J.-P., SEONG, J.-K., KIM, D., OTADUY, M. A., HONG, J.-M.,
TANG, M., AND YOON, S.-E. 2010. FASTCD: Fracturing-aware sta-
ble collision detection. In ACM SIGGRAPH / Eurographics Symposium
on Computer Animation.

HUTTER, M. AND FUHRMANN, A. 2007. Optimized continuous collision
detection for deformable triangle meshes. In Proc. WSCG ’07. 25–32.

IRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible finite elements
for robust simulation of large deformation. In Symp. on Computer ani-
mation. 131–140.

KLOSOWSKI, J., HELD, M., MITCHELL, J., SOWIZRAL, H., AND ZIKAN,
K. 1998. Efficient collision detection using bounding volume hierarchies
of k-dops. IEEE Trans. on Visualization and Computer Graphics 4, 1,
21–37.

LEVINE, R. 2000. Collisions of moving objects. http:

//realtimecollisiondetection.net/files/levine_swept_

sat.txt.

LOMBARDO, J.-C., PAULE CANI, M., AND NEYRET, F. 1999. Real-time
collision detection for virtual surgery. In In Computer Animation. 26–28.

LS-DYNA. 2001. Contact modeling in LS-DYNA. http://www.

dynasupport.com/tutorial/contact-modeling-in-ls-dyna/

contact-types.

MATHIAS, E. AND GU, L. 2007. Hierarchical spatial hashing for real-time
collision detection. In IEEE International Conf. on Shape Modeling and
Applications 2007. 61–70.

MÜLLER, M., MCMILLAN, L., DORSEY, J., AND JAGNOW, R. 2001.
Real-time simulation of deformation and fracture of stiff materials. In
Proceedings of the Eurographic workshop on Computer animation and
simulation. New York, NY, USA, 113–124.

NATIONAL-CRASH-ANALYSIS-CENTER. 2010. Finite element model
archive. Website. http://www.ncac.gwu.edu/vml/models.html.

NEALEN, A., MÜLLER, M., KEISER, R., BOXERMAN, E., AND CARL-
SON, M. 2006. Physically based deformable models in computer graph-
ics. Computer Graphics Forum 25, 4, 809–836.

O’BRIEN, J. F. 2000. Graphical modeling and animation of brittle fracture.
Ph.D. thesis, Georgia Institute of Technology, Atlanta, Georgia.

O’BRIEN, J. F. AND HODGINS, J. K. 1999. Graphical modeling and ani-
mation of brittle fracture. In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques. SIGGRAPH ’99. New
York, NY, USA, 137–146.

PARKER, E. G. AND O’BRIEN, J. F. 2009. Real-time deformation and
fracture in a game environment. In Symp. on Computer Animation. 165–
175.

PLIMPTON, S., ATTAWAY, S., HENDRICKSON, B., SWEGLE, J., VAUGH-
AN, C., AND GARDNER, D. 1998. Parallel transient dynamics simula-
tions: Algorithms for contact detection and smoothed particle hydrody-
namics. Journal of Parallel and Distributed Computing 50, 1-2, 104–122.

PROVOT, X. 1997. Collision and self-collision handling in cloth model
dedicated to design garment. Graphics Interface, 177–189.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

VolCCD: Fast Continuous Collision Culling between Deforming Volume Meshes • 13

REDON, S., KHEDDAR, A., AND COQUILLART, S. 2002. Fast continuous
collision detection between rigid bodies. Proc. of Eurographics (Com-
puter Graphics Forum) 21, 3, 279–288.

SIFAKIS, E., DER, K. G., AND FEDKIW, R. 2007. Arbitrary cutting of
deformable tetrahedralized objects. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation. 73–80.

SUD, A., GOVINDARAJU, N., GAYLE, R., KABUL, I., AND MANOCHA,
D. 2006. Fast proximity computation among deformable models using
discrete voronoi diagrams. Proc. of ACM SIGGRAPH, 1144–1153.

TANG, M., CURTIS, S., YOON, S.-E., AND MANOCHA, D. 2009. ICCD:
Interactive continuous collision detection between deformable models us-
ing connectivity-based culling. IEEE Transactions on Visualization and
Computer Graphics 15, 4, 544–557.

TANG, M., KIM, Y. J., AND MANOCHA, D. 2010b. Continuous collision
detection for non-rigid contact computations using local advancement.
Proceedings of International Conference on Robotics and Automation.

TANG, M., MANOCHA, D., LIN, J., AND TONG, R. 2011. Collision-
streams: Fast GPU-based collision detection for deformable models. In
I3D ’11: Proceedings of the 2011 ACM SIGGRAPH symposium on Inter-
active 3D Graphics and Games. 63–70.

TANG, M., MANOCHA, D., AND TONG, R. 2010a. Fast continuous colli-
sion detection using deforming non-penetration filters. In I3D ’10: Pro-
ceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D
Graphics and Games. ACM, New York, NY, USA, 7–13.

TESCHNER, M., HEIDELBERGER, B., MÜLLER, M., POMERANETS, D.,
AND GROSS, M. 2003. Optimized spatial hashing for collision detection
of deformable objects. In Proceedings of Vision Modeling Visualization
(VMV’03). 47–54.

TESCHNER, M., KIMMERLE, S., HEIDELBERGER, B., ZACHMANN,
G., RAGHUPATHI, L., FUHRMANN, A., CANI, M.-P., FAURE, F.,
MAGNENAT-THALMANN, N., STRASSER, W., AND VOLINO, P. 2005.
Collision detection for deformable objects. Computer Graphics Fo-
rum 19, 1, 61–81.

VOLINO, P. AND MAGNENAT-THALMANN, N. 2006. Resolving sur-
face collisions through intersection contour minimization. ACM Trans.
Graph. 25, 3, 1154–1159.

VOLINO, P. AND THALMANN, N. M. 1994. Efficient self-collision detec-
tion on smoothly discretized surface animations using geometrical shape
regularity. Computer Graphics Forum (Eurographics) 13, 3, 155–166.

WOJTAN, C., THÜREY, N., GROSS, M., AND TURK, G. 2009. Deform-
ing meshes that split and merge. ACM Trans. Graph. (Proceedings of
SIGGRAPH 2009) 28, 76:1–76:10.

ZHANG, X., REDON, S., LEE, M., AND KIM, Y. J. 2007. Continuous col-
lision detection for articulated models using taylor models and temporal
culling. ACM Trans. Graph. (Proceedings of SIGGRAPH 2007) 26, 3,
15.

ZHU, Y., SIFAKIS, E., TERAN, J., AND BRANDT, A. 2010. An efficien-
t multigrid method for the simulation of high-resolution elastic solids.
ACM Trans. Graph. 29, 2, 1–18.

Appendix

Proof of Theorem and Corollaries

Theorem 1: CSAT for two moving vertices: Suppose two moving
vertices p and q, defined by their positions at the time interval [0, 1]
(p0 & p1 and q0 & q1, respectively), and a separating axis defined
by L (̸= 0). If (q0 − p0) ·L and (q1 − p1) ·L have the same sign,
q will not overlap with p during the time interval.

PROOF. We define vq and vp as vq = q1−q0 and vp = p1−p0
respectively. We also let L′ be the normalized vector of the L, i.e.,
L′ = L

||L|| .

Then the projected distance of q and p along L, dqp, is given as:

dqp = (q − p) ·L′

= [(q0 − p0) + t ∗ (vq − vp)] ·L′

=
(q0 − p0) ·L+ t ∗ (vq − vp) ·L

||L||
, (5)

where t is a time parameter and t ∈ [0, 1]. As a result, dpq is within
a bound as follows:

dpq ∈ [
(q0 − p0) ·L

||L||
,
(q0 − p0) ·L+ (vq − vp) ·L

||L||
]. (6)

This is equivalent to:

dpq ∈ [
(q0 − p0) ·L

||L||
,
(q1 − p1) ·L

||L||
] (7)

Since (q0 − p0) ·L and (q1 − p1) ·L have the same sign, dpq will
not be zero. This implies that the projections of q and p on L are
disjoint, and thus q and p do not overlap.

Corollary 1: CSAT between a vertex and a triangle: Suppose
a vertex p and a triangle f defined by their positions at the time
interval [0, 1] (p0 & p1 for p, and a0, b0, c0 & a1, b1, c1 for f ,
respectively), and a vector L (̸= 0). If the following 6 expressions
have the same sign:

(a0 − p0) ·L, (a1 − p1) ·L, (b0 − p0) ·L,

(b1 − p1) ·L, (c0 − p0) ·L, (c1 − p1) ·L
(8)

then p and f will not overlap during the time interval.

PROOF. Let q be a point inside f , and it can be expressed as a
convex combination of a, b, c, i.e., q = u ∗ a+ v ∗ b+w ∗ c. Here,
u, v,w ∈ [0, 1], and u + v + w = 1. The projected distance of p
and q along L is given as:

dqp = (q − p) ·L′ = (u ∗ a+ v ∗ b+ w ∗ c− p) ·L′

= (u ∗ (a− p) + v ∗ (b− p) + w ∗ (c− p)) ·L′

We build on CSAT for two vertices. Since all the scalar values in
Equation (8) have the same sign, (a − p) · L′, (b − p) · L′, and
(c − p) · L′ will have the same sign as well. Therefore, dqp will
not be zero. It means that p and f will not overlap during the time
interval.

Corollary 2: CSAT between a vertex and a volumetric ele-
ment: Suppose a vertex p and a volumetric element o (with nv ver-
tices and nf triangles) defined by their positions during the time
interval [0, 1] (p0 & p1 for p, and qi0 & qi1 for o, i ∈ [0, nv − 1]),
and a vector L(̸= 0). If the following 2 ∗ nv algebraic expressions
have the same sign:

(qi0 − p0) ·L, i ∈ [0, nv − 1],

(qi1 − p1) ·L, i ∈ [0, nv − 1]
(9)

then p and all the nf triangles of o will not overlap during the time
interval.

PROOF. Since all of nf triangles are defined by these nv ver-
tices, all the scalar values in Equation (8) have the same sign for
all the triangles of o. As a result, all the VF tests corresponding to
different triangles of o can be culled away.

Corollary 3: CSAT between two edges: Suppose two edges, e1
and e2, defined by their end positions during t ∈ [0, 1] (a0, b0 &

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

14 • Tang et al.

Algorithm 2 CSAT culling between two volumetric elements oi
and oj .

1: for all vertex v1 ∈ oi do
2: Perform CSAT culling between v1 and oj with Corollary 2
3: end for
4: for all vertex v2 ∈ oj do
5: Perform CSAT culling between v2 and oi with Corollary 2
6: end for
7: for all edge e1 ∈ oj do
8: Perform CSAT culling between e1 and oi with Corollary 4
9: end for

a1, b1 for e1, and c0, d0 & c1, d1 for e2), and a vector L(̸= 0). If
the following eight expressions have the same sign:

(a0 − c0) ·L, (a1 − c1) ·L, (b0 − c0) ·L, (b1 − c1) ·L,

(a0 − d0) ·L, (a1 − d1) ·L, (b0 − d0) ·L, (b1 − d1) ·L
(10)

then e1 and e2 do not overlap during the time interval.

PROOF. Based on CSAT for two vertices, if the first four ex-
pressions have the same sign then the projections of a and b are
below/above the projection of c along L. If the last four expres-
sions have the same sign, then the projections of a and b are be-
low/above the projection of d along L. All the points on e1, e1t , can
be expressed as a convex combination of a and b. Similarly, all the
points on e2, e2t , can be expressed as a convex combination of c
and d. So the projection of e1t is below/above the projection of e2t .
If their projections on the axis do not overlap, we can conclude that
the original edges will not overlap.

Corollary 4: CSAT between an edge and a volumetric ele-
ment: Suppose an edge e and a volumetric element o (with nv ver-
tices and ne edges) defined by their positions at time interval [0, 1]
(c0 & c1 and d0 & d1 for e, and qi0 & qi1 for o, i ∈ [0, nv −1]), and
a vector L(̸= 0). If the following 4 ∗nv expressions have the same
sign:

(qi0 − c0) ·L, i ∈ [0, nv − 1], (qi1 − c1) ·L, i ∈ [0, nv − 1],

(qi0 − d0) ·L, i ∈ [0, nv − 1], (qi1 − d1) ·L, i ∈ [0, nv − 1]
(11)

then e and o do not overlap during the time interval.

PROOF. Since all the ne edges are defined by these nv vertices,
the Equations (10) holds for all these edges. As a result, all the EE
pairs between e and o are culled away.

Algorithms

The pseudo-code for performing CSAT culling between two volu-
metric elements, oi and oj , is shown as Algorithm 2. It is executed
as 3 stages. We first perform CSAT culling between every vertex
v1 ∈ oi with oj , then perform CSAT culling between every vertex
v2 ∈ oj with oi, finally perform CSAT culling between every edge
e1 ∈ oi with oj .

The O-Set is constructed by using Algorithm 3. In this algorithm,
all the adjacent volumetric element pairs are traversed. For each one
of these pair {oi, oj}, we check all the feature pairs {elm1, elm2},
here elm1 ∈ oi & elm2 ∈ oj . If one of the volumetric ele-
ments in the incident set of elm1, ok, is not adjacent to oj , then
the feature pair {elm1, elm2} is checked based on testing a non-
adjacent element pair {ok, oj}. As a result, we do not need to s-
tore {elm1, elm2} in the O-Set. Similarly, if one of the volumet-
ric elements in the incident set of elm2, ol, is not adjacent to oi,

Algorithm 3 O-Set Construction: Compute the O-Set based on
connectivity information.

1: for all adjacent element pair {oi, oj} do
2: for all feature pair {elm1 ∈ oi, elm2 ∈ oj} do
3: for all elements ok ∈ the incident set of elm1 do
4: if ok is not adjacent to oj then
5: return
6: end if
7: end for
8: for all elements ol ∈ the incident set of elm2 do
9: if ol is not adjacent to oi then

10: return
11: end if
12: end for
13: end for
14: add {elm1, elm2} into O-Set
15: end for

Algorithm 4 Static Feature Assignment: Assign each feature to and
only to a volumetric element.

1: for all volumetric elements oi do
2: for all feature elmj ∈ oi do
3: if elmj has not been not assigned then
4: assign elmj to oi
5: end if
6: end for
7: end for

Algorithm 5 Dynamic Feature Assignment: assignment for a test
between a feature elm1 from o1 and another feature elm2 from o2.

1: for all volumetric elements oi ∈ the incident set of elm1 do
2: for all volumetric elements oj ∈ the incident set of elm2 do
3: if oi is not adjacent to oj then
4: if oi = o1 AND oj = o2 then
5: ElementaryTest(elm1, elm2)
6: else
7: return
8: end if
9: end if

10: end for
11: end for

then the feature pair {elm1, elm2} is checked for collision while
handling the non-adjacent element pair {oi, ol}. As a result, we
do not include the pair in the O-Set. Otherwise, the feature pair
{elm1, elm2} is inserted in the O-Set.

Algorithm 4 highlights the details of static feature assignment
computation. A greedy approach is used by traversing all the vol-
umetric elements. For each volumetric element oi, we check its
features. For each feature elmj of oi, if it has not been assigned to
any volume element, then it is assigned to oi.

Algorithm 5 shows the details of the dynamic feature assignment
algorithm. The dynamic feature assignment is performed before we
perform an exact elementary test for a feature pair {elm1, elm2},
where elm1 belongs to o1 and elm2 belongs to o2. We traverse
each element pair {oi, oj}, where oi is incident to elm1, and oj
is incident to elm2. In the case that oi is not adjacent to oj , we
perform the exact test between elm1 and elm2 only if oi = o1 and
oj = o2.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

