Pipeline and Rasterization

COMP770
Fall 2011
The graphics pipeline

- The standard approach to object-order graphics
- Many versions exist
 - software, e.g. Pixar’s REYES architecture
 - many options for quality and flexibility
 - hardware, e.g. graphics cards in PCs
 - amazing performance: millions of triangles per frame
- We’ll focus on an abstract version of hardware pipeline
- “Pipeline” because of the many stages
 - very parallelizable
 - leads to remarkable performance of graphics cards (many times the flops of the CPU at ~1/5 the clock speed)
Pipeline overview

you are here ➔ APPLICATION

3D transformations; shading ➔ VERTEX PROCESSING

conversion of primitives to pixels ➔ RASTERIZATION

blending, compositing, shading ➔ FRAGMENT PROCESSING

user sees this ➔ FRAMEBUFFER IMAGE ➔ DISPLAY
Primitives

• Points
• Line segments
 – and chains of connected line segments
• Triangles
• And that’s all!
 – Curves? Approximate them with chains of line segments
 – Polygons? Break them up into triangles
 – Curved regions? Approximate them with triangles
• Trend has been toward minimal primitives
 – simple, uniform, repetitive: good for parallelism
Rasterization

• First job: enumerate the pixels covered by a primitive
 – simple, aliased definition: pixels whose centers fall inside

• Second job: interpolate values across the primitive
 – e.g. colors computed at vertices
 – e.g. normals at vertices
 – will see applications later on
Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside
Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels
Point sampling
in action
Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner
Midpoint algorithm in action
Algorithms for drawing lines

• line equation:
 \[y = b + m x \]

• Simple algorithm:
 evaluate line equation per column

• W.l.o.g. \(x_0 < x_1 \);
 \(0 \leq m \leq 1 \)

for \(x = \text{ceil}(x_0) \) to \(\text{floor}(x_1) \)
 \[y = b + m \times x \]
 output(\(x \), round(\(y \)))

\[y = 1.91 + 0.37 \times x \]
Optimizing line drawing

- Multiplying and rounding is slow
- At each pixel the only options are E and NE
- \(d = m(x + 1) + b - y \)
- \(d > 0.5 \) decides between E and NE
Optimizing line drawing

- \[d = m(x + 1) + b - y \]
- Only need to update \(d \) for integer steps in \(x \) and \(y \)
- Do that with addition
- Known as “DDA” (digital differential analyzer)
Midpoint line algorithm

\[x = \text{ceil}(x_0) \]
\[y = \text{round}(m \times x + b) \]
\[d = m \times (x + 1) + b - y \]
\[\text{while } x < \text{floor}(x_1) \]
 \[\text{if } d > 0.5 \]
 \[\quad y += 1 \]
 \[\quad d -= 1 \]
 \[\quad x += 1 \]
\[d += m \]
\[\text{output}(x, y) \]
Linear interpolation

• We often attach attributes to vertices
 – e.g. computed diffuse color of a hair being drawn using lines
 – want color to vary smoothly along a chain of line segments

• Recall basic definition
 – 1D: \(f(x) = (1 - \alpha) y_0 + \alpha y_1 \)
 – where \(\alpha = (x - x_0) / (x_1 - x_0) \)

• In the 2D case of a line segment, alpha is just the fraction of the distance from \((x_0, y_0)\) to \((x_1, y_1)\)
Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use DDA to interpolate
Alternate interpretation

• We are updating d and α as we step from pixel to pixel
 – d tells us how far from the line we are
 α tells us how far along the line we are
• So d and α are coordinates in a coordinate system oriented to the line
Alternate interpretation

- View loop as visiting all pixels the line passes through
 - Interpolate d and α for each pixel
 - Only output frag. if pixel is in band
- This makes linear interpolation the primary operation
Pixel-walk line rasterization

\[x = \text{ceil}(x_0) \]
\[y = \text{round}(m \times x + b) \]
\[d = m \times x + b - y \]
while \(x < \text{floor}(x_1) \)
 if \(d > 0.5 \)
 \[y += 1; d -= 1; \]
 else
 \[x += 1; d += m; \]
 if \(-0.5 < d \leq 0.5\)
 output\((x, y)\)
Rasterizing triangles

- The most common case in most applications
 - with good antialiasing can be the only case
 - some systems render a line as two skinny triangles
- Triangle represented by three vertices
- Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization
 - walk from pixel to pixel over (at least) the polygon’s area
 - evaluate linear functions as you go
 - use those functions to decide which pixels are inside
Rasterizing triangles

• **Input:**
 – three 2D points (the triangle’s vertices in pixel space)
 • \((x_0, y_0); (x_1, y_1); (x_2, y_2)\)
 – parameter values at each vertex
 • \(q_{00}, \ldots, q_{0n}; q_{10}, \ldots, q_{1n}; q_{20}, \ldots, q_{2n}\)

• **Output:** a list of fragments, each with
 – the integer pixel coordinates \((x, y)\)
 – interpolated parameter values \(q_0, \ldots, q_n\)
Rasterizing triangles

• Summary
 1. evaluation of linear functions on pixel grid
 2. functions defined by parameter values at vertices
 3. using extra parameters to determine fragment set
Incremental linear evaluation

- A linear (affine, really) function on the plane is:
 \[q(x, y) = c_x x + c_y y + c_k \]

- Linear functions are efficient to evaluate on a grid:
 \[q(x + 1, y) = c_x (x + 1) + c_y y + c_k = q(x, y) + c_x \]
 \[q(x, y + 1) = c_x x + c_y (y + 1) + c_k = q(x, y) + c_y \]
Incremental linear evaluation

```c
linEval(xl, xh, yl, yh, cx, cy, ck) {

    // setup
    qRow = cx*xl + cy*yl + ck;

    // traversal
    for y = yl to yh {
        qPix = qRow;
        for x = xl to xh {
            output(x, y, qPix);
            qPix += cx;
        }
        qRow += cy;
    }
}
```

\[c_x = .005; c_y = .005; c_k = 0\]

(image size 100x100)
Rasterizing triangles

• Summary
 1. evaluation of linear functions on pixel grid
 2. functions defined by parameter values at vertices
 3. using extra parameters to determine fragment set
Defining parameter functions

- To interpolate parameters across a triangle we need to find the c_x, c_y, and c_k that define the (unique) linear function that matches the given values at all 3 vertices
 - this is 3 constraints on 3 unknown coefficients:
 \[
 \begin{align*}
 c_x x_0 + c_y y_0 + c_k &= q_0 \\
 c_x x_1 + c_y y_1 + c_k &= q_1 \\
 c_x x_2 + c_y y_2 + c_k &= q_2
 \end{align*}
 \]
 (each states that the function agrees with the given value at one vertex)

- leading to a 3x3 matrix equation for the coefficients:
 \[
 \begin{bmatrix}
 x_0 & y_0 & 1 \\
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1
 \end{bmatrix}
 \begin{bmatrix}
 c_x \\
 c_y \\
 c_k
 \end{bmatrix}
 =
 \begin{bmatrix}
 q_0 \\
 q_1 \\
 q_2
 \end{bmatrix}
 \]
 (singular iff triangle is degenerate)
Defining parameter functions

• More efficient version: shift origin to \((x_0, y_0)\)

\[
q(x, y) = c_x(x - x_0) + c_y(y - y_0) + q_0
\]

\[
q(x_1, y_1) = c_x(x_1 - x_0) + c_y(y_1 - y_0) + q_0 = q_1
\]

\[
q(x_2, y_2) = c_x(x_2 - x_0) + c_y(y_2 - y_0) + q_0 = q_2
\]

– now this is a 2x2 linear system (since \(q_0\) falls out):

\[
\begin{bmatrix}
(x_1 - x_0) & (y_1 - y_0) \\
(x_2 - x_0) & (y_2 - y_0)
\end{bmatrix}
\begin{bmatrix}
 c_x \\
 c_y
\end{bmatrix}
=
\begin{bmatrix}
 q_1 - q_0 \\
 q_2 - q_0
\end{bmatrix}
\]

– solve using Cramer’s rule (see Shirley):

\[
c_x = \frac{(\Delta q_1 \Delta y_2 - \Delta q_2 \Delta y_1)}{(\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)}
\]

\[
c_y = \frac{(\Delta q_2 \Delta x_1 - \Delta q_1 \Delta x_2)}{(\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)}
\]
Defining parameter functions

linInterp(xl, xh, yl, yh, x0, y0, q0, x1, y1, q1, x2, y2, q2) {

 // setup
 det = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0);
 cx = ((q1-q0)*(y2-y0) - (q2-q0)*(y1-y0)) / det;
 cy = ((q2-q0)*(x1-x0) - (q1-q0)*(x2-x0)) / det;
 qRow = cx*(xl-x0) + cy*(yl-y0) + q0;

 // traversal (same as before)
 for y = yl to yh {
 qPix = qRow;
 for x = xl to xh {
 output(x, y, qPix);
 qPix += cx;
 }
 qRow += cy;
 }
}
Interpolating several parameters

```c
linInterp(xl, xh, yl, yh, n, x0, y0, q0[],
          x1, y1, q1[], x2, y2, q2[]) {

    // setup
    for k = 0 to n-1
        // compute cx[k], cy[k], qRow[k]
        // from q0[k], q1[k], q2[k]

    // traversal
    for y = yl to yh {
        for k = 1 to n, qPix[k] = qRow[k];
        for x = xl to xh {
            output(x, y, qPix);
            for k = 1 to n, qPix[k] += cx[k];
        }
        for k = 1 to n, qRow[k] += cy[k];
    }
}
```
Rasterizing triangles

- **Summary**
 1. evaluation of linear functions on pixel grid
 2. functions defined by parameter values at vertices
 3. using extra parameters to determine fragment set
Clipping to the triangle

• Interpolate three *barycentric coordinates* across the plane
 – each barycentric coord is 1 at one vert. and 0 at the other two

• Output fragments only when all three are > 0.
Barycentric coordinates

- A coordinate system for triangles
 - algebraic viewpoint:
 \[\mathbf{p} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} \]
 \[\alpha + \beta + \gamma = 1 \]
 - geometric viewpoint (areas):
- Triangle interior test:
 \[\alpha > 0; \quad \beta > 0; \quad \gamma > 0 \]
Barycentric coordinates

- A coordinate system for triangles
 - geometric viewpoint: distances

- linear viewpoint: basis of edges
 \[
 \alpha = 1 - \beta - \gamma \\
 p = a + \beta(b - a) + \gamma(c - a)
 \]
Barycentric coordinates

- Linear viewpoint: basis for the plane

- in this view, the triangle interior test is just
 \[\beta > 0; \quad \gamma > 0; \quad \beta + \gamma < 1 \]
Edge equations

- In plane, triangle is the intersection of 3 half spaces

\[(x - a) \cdot (b - a)^\perp > 0\]
\[(x - b) \cdot (c - b)^\perp > 0\]
\[(x - c) \cdot (a - c)^\perp > 0\]
Walking edge equations

• We need to update values of the three edge equations with single-pixel steps in x and y
• Edge equation already in form of dot product
• components of vector are the increments
Pixel-walk (Pineda) rasterization

- Conservatively visit a superset of the pixels you want
- Interpolate linear functions
- Use those functions to determine when to emit a fragment
Rasterizing triangles

• Exercise caution with rounding and arbitrary decisions
 – need to visit these pixels once
 – but it’s important not to visit them twice!
Clipping

• Rasterizer tends to assume triangles are on screen
 – particularly problematic to have triangles crossing
 the plane $z = 0$

• After projection, before perspective divide
 – clip against the planes $x, y, z = 1, -1$ (6 planes)
 – primitive operation: clip triangle against axis-aligned plane
Clipping a triangle against a plane

- 4 cases, based on sidedness of vertices
 - all in (keep)
 - all out (discard)
 - one in, two out (one clipped triangle)
 - two in, one out (two clipped triangles)