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Figure 1: Parameter Optimization Applied to Crowd Data (a) motion capture session for recording reference trajectories
for six human agents (b) reference data plot (circles are initial positions) (c) paths taken by simulated agents with default
parameters (d) paths taken by simulated agents with optimized parameters. The stock parameters of a simulation model often
do not match closely with actual paths humans take in the same situation. Using our parameter optimization technique, the
resulting simulation can be made to better match the human trajectories.

Abstract
We present a novel framework to evaluate multi-agent crowd simulation algorithms based on real-world observa-
tions of crowd movements. A key aspect of our approach is to enable fair comparisons by automatically estimating
the parameters that enable the simulation algorithms to best fit the given data. We formulate parameter estimation
as an optimization problem, and propose a general framework to solve the combinatorial optimization problem
for all parameterized crowd simulation algorithms. Our framework supports a variety of metrics to compare ref-
erence data and simulation outputs. The reference data may correspond to recorded trajectories, macroscopic
parameters, or artist-driven sketches. We demonstrate the benefits of our framework for example-based simula-
tion, modeling of cultural variations, artist-driven crowd animation, and relative comparison of some widely-used
multi-agent simulation algorithms.

1. Introduction

Creating simulation models of crowds has recently received
considerable attention in computer animation, pedestrian
dynamics, and virtual reality. Many approaches have been
investigated that suggest different techniques to simulate
crowds, and a variety of simulation algorithms are known
in the literature. These include multi-agent simulation algo-

rithms that are widely used in computer games, virtual real-
ity, animation, and pedestrian dynamics.

A key research issue in this area is to perform a formal
or rigorous evaluation of these algorithms. One widely used
criterion is to perform comparative evaluation of simulation
algorithms against some real-world reference datasets. How-
ever, a major challenge is to estimate the best set of param-
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eters for a given algorithm that would result in the optimal
match with the reference data.

The issue of optimal parameter selection is critical, be-
cause most of existing crowd simulation algorithms depend
on various parameters and the resulting trajectories or behav-
iors can vary noticeably based on the choices of parameters.
There is no standard way to make comparative evaluation
of simulation algorithms. At the same time, data capture of
real-world human crowd motion is becoming increasingly
ubiquitous. Such datasets can in fact help in describing and
analyzing specific crowd phenomena, as well as in calibrat-
ing and evaluating crowd simulation models. Given the in-
crease in the number of crowd simulation algorithms and
real-world datasets, we need rigorous and automatic tech-
niques to evaluate them.

In this paper, we present a novel framework that can
be used to evaluate different crowd simulation algorithms
against reference datasets. In this context, we address the
problem of computing optimal parameters for a crowd sim-
ulation algorithm and present a general scheme that is appli-
cable to a broad class of algorithms and reference datasets.
We formulate the evaluation of a simulation algorithm as an
optimization problem. First, we find a set of parameters that
enables the best match between each simulation algorithm
and the reference data. Second, we compare the objective
function scores (i.e., distance to reference data) for the given
set of algorithms. Our framework is general and capable of
supporting a wide range of comparison metrics and simula-
tion techniques.

We illustrate the benefits of our evaluation framework
over several existing multi-agent crowd simulation algo-
rithms. Moreover, we consider heterogenous types of refer-
ence datasets: recorded individual trajectories, macroscopic
quantities, or even animation sketches. We gather a set of rel-
evant metrics to compare simulated crowds with reference
data. We highlight the benefits of parameter estimation by
demonstrating its application to example-based simulation
and behavior modeling with cultural variation. Our frame-
work is available as an open-source package and can be used
by others to evaluate different simulation algorithms and
metrics. We demonstrate its performance on many widely-
used multi-agent simulations and consider different scenar-
ios with a varying number of agents.

The rest of the paper is organized as follows. In Section 2,
we give an overview on related work in crowd simulation,
parameter calibration, and algorithm evaluation. Section 3
describes our parameter estimation framework and its key
components: algorithms, metrics, reference data, and opti-
mization techniques. Finally, a wide range of concrete ex-
amples and applications are presented in section 4 to demon-
strate the benefits of our solution.

2. Related Work

Crowd simulation has received significant attention in var-
ious disciplines, such as graphics, robotics, and fire safety,
which has led to the emergence of numerous simulation al-
gorithms. Specifically, a large variety of microscopic sim-
ulation models have been proposed, all of which are based
on representing each individual in a crowd (usually as par-
ticles or agents) and modeling the interactions between
them. Reynolds’s seminal Boids model [Rey87] is represen-
tative of microscopic approaches: local interactions, which
match an individual’s speed and orientation to its neigh-
bors’, determine the individual’s motion and result in large
scale emergent behaviors that are visible at the crowd level.
Reynolds [Rey99] later extended this work to various kinds
of interactions, such as herding and path following. Many
physically-inspired models formulate collision-avoidance
interactions as repulsive forces between agents [HM95], and
the models can be combined with rules to improve behav-
ior [LD04, PAB07]. More recently, velocity-based models
have been developed [vPS∗08, POO∗09, KHvBO09], which
reason about an agent’s motion in velocity space to com-
pute collision-free trajectories over a short future time win-
dow. Other related recent approaches are based on cognitive
models [YT07], affordance [KSHF09], and short-term plan-
ning using a discrete approach [SKRF11]. Finally, Ondrej et
al [OPOD10] use perceptual variables (derived from the vir-
tual optic flow of agents) to compute collision-free motions.

This is only a representative sample, for there are
many more algorithms than those listed here, for instance
algorithms that operate at the macroscopic level such
as [TCP06]. One major problem is developing metrics to
compare these dissimilar models; they are based on very dif-
ferent principles, and are qualitatively different as a result.
For example, some, like velocity- or vision-based models,
enable anticipated avoidance, while others, like force-based
models, do not. It is thus very difficult to quantitatively com-
pare these qualitatively different simulation algorithms in or-
der to improve their accuracy.

Another solution is to perform evaluation based on exper-
imental data. In this case, a significant issue is parameter
determination for a given model, which is typically com-
puted independently for each agent in these microscopic
algorithms. For example, Pettre et al. [POO∗09] set pa-
rameters of a collision-avoidance model from experimen-
tal data capturing avoidance motion based on Maximum
Likelihood Estimation. Lerner et al. compare local decision
taken from local context between simulations and real data
in [LCSCO09]. More complex situations were considered
in [LJK∗12]: experimental data that captured both the micro-
scopic and macroscopic features of pedestrian motion was
used to calibrate and compare various approaches.

Learning methods were also used to calibrate models from
computer vision data [PESVG09], or to learn model pa-
rameters from real-world data [CC10, JCP∗10]. Some ap-
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proaches also use real data as a basis to drive agents’ mo-
tion [LCHL07, LCL07, KHHL12]. These techniques are in-
trinsically realistic in a sense, given that they are based on
real data. However, these approaches are limited to rather
specific scenarios. Also, realism of portions of trajecto-
ries does not mean that the composition of data is real-
istic at larger scales. In comparison, we present a tech-
nique to perform parameter estimation in a general, model-
independent manner. We also consider various types of ref-
erence datasets, which take into account measurements of
macroscopic parameters and artist-driven sketches, as well
as recorded trajectories.

The most direct precursors to our work are previous ef-
forts to evaluate crowd simulations or multi-agent steering
methods. Kapadia and colleagues proposed a framework that
evaluates the steering approaches’ ability to perform navi-
gation tasks in various scenarios; the framework evaluates
performance in terms of path smoothness or the number of
collisions [SKFR09, KWS∗11]. Our approach also shares
some resemblance with another set of approaches that tend
to compare generated trajectories with real-world data. The
entropy-based metric proposed by Guy et al. [GvdBL∗12]
enables such comparisons with real-world trajectories and is
robust with respect to the chaotic nature of individual mo-
tion. Such metrics can be used to compare the results of
simulation methods to either reference data or user-defined
goals. However, these methods do not explicitly address the
issue of finding a global optimum solution over all possible
simulation parameters. We propose to unify these tasks by
posing crowd evaluation as a parameter optimization prob-
lem, and we demonstrate its benefits via improved behavior
or performance optimization in crowd simulation tests.

3. Optimization Framework

Our framework brings together three components: crowd
simulation algorithms, reference data, and a set of metrics
for measuring how well the simulation algorithm matches
the data. This section provides the details of our parame-
ter optimization algorithm and gives an overview of differ-
ent simulation models, data sources, and comparison met-
rics used in our evaluations. We also give a brief summary
of the global optimization techniques used in our work. Ad-
ditional information, including a more detailed description
of our metrics and optimization algorithms as well as a com-
parison of these optimization algorithms can be found in the
appendix at gamma.cs.unc.edu/CParameter.

3.1. Overview of Approach

We define a crowd simulator as an algorithm which takes
a collection of agent states (i.e., positions and velocities of
agents in the crowd) and produces a new set of agent states
representing the movement of the crowd over a timestep ∆t.
We introduce the following notation for specifying a crowd

Figure 2: System Overview Our approach optimizes simu-
lation parameters to match target data. Our framework has
3 components: an optimization technique, metrics, and ref-
erence data.

simulation algorithm: let k be a given timestep, then xk will
represent the positions of all agents at timestep k, vk the ve-
locity of all agents, and g the goals of all agents. We can then
formally define a crowd simulation algorithm f as follows:[

xk+1
vk+1

]
= f (xk,vk,g). (1)

In general, a crowd simulation algorithm may have several
tunable parameters that affect the behavior of an agent com-
puted by the simulator. Common examples of parameters
include an agent’s preferred speed or some notion of per-
sonal space. While the exact nature of the agent parameters
are specific to each algorithm, our framework assumes that
these parameters can be defined separately for each agent.
Given an agent i, we use pi to denote the current parameter
set for that agent, and p = {p1 · · ·pn} to denote the vector of
parameters over all n agents.

We can now introduce the notion of a Parameterized
Crowd Simulation as an algorithm f where crowd param-
eters are part of the input. Formally, for each timestep k:[

xk+1
vk+1

]
= f (xk,vk,g,p). (2)

Simulation Models Several common crowd simulation
models fit the form described by Equation (2). We focus on
five widely used agent-based simulation algorithms:

1. In the Boids model [Rey99], f is a function of the agents’
position at some specified future time (current time plus
constant). When the predicted distance between agents
gets too low, a separation force is computed and added
to an attraction force which is pulling towards the agent’s
goal. Parameters are: radius (size of 2D circle agents) and
comfort speed (i.e., speed when no interactions occur).

2. In the Helbing Social Force model [HFV], f is a function
of the agents’ positions. Repulsive forces are computed
between agents and combined with attraction forces to-
ward goals. Parameters are: radius and comfort speed.

3. In the RVO2 model [VDBGLM11], which computes an
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agent’s admissible velocity space (space which remains
collision-free in a future time window), f returns the opti-
mal admissible velocity. Parameters are: comfort speed,
neighbor distance (only agents within this distance are
considered for local interactions), radius, and time hori-
zon (only future collisions within this horizon are consid-
ered for local interactions).

4. In the Synthetic Vision model [OPOD10], which is based
on principles from human cognition and visual naviga-
tion, f is a function of perceptual variables derived from
synthetic optic flow. Parameters are: comfort speed and
(a,b,c), which define a threshold function; perceived val-
ues under this threshold are considered for local interac-
tions.

5. In the Tangent model [POO∗09], which works in the ve-
locity space and considers possible perception errors, f
returns the optimal admissible velocity. Parameters are:
comfort speed, radius and two error-quantifying parame-
ters.

The parameter set p for each of these models can be found
in Appendix E.

Given a parameterized crowd simulation (Eqn. (2), our
goal is to find a parameter set popt which leads to the clos-
est match between a model and some user-defined reference
data, which can vary per timestep zk. Over all timesteps m,
we can define the reference data as follows:

z =
m⋃

k=1

zk. (3)

In the same way, we can define a complete simulation as all
states of a simulator initialized with the reference data:[

x
v

]
= f (z,p) =

m⋃
k=1

f (xk,vk,g,p), (4)

initialized with x1 = z1, v1 = speed(z1) and g = zm.

Given this complete simulation and reference data, plus
some user defined distance metric, dist(), we can formally
define our framework as computing

popt, f = argmin
p

dist( f (z,p),z), (5)

where popt, f is the parameter set which matches the refer-
ence data closest for a given simulation method f .

In general, the optimization problem that we pro-
pose in Equation (5) is very high-dimensional (dim(p) =
∑

n
i=1 dim(pi)), making it difficult to optimize consistently

across a wide range of similarity metrics, reference data,
and simulation methods. We describe our optimization al-
gorithm in Section 3.3, which is designed to deal with such
high-dimensional problems.

Once an optimal parameter set popt has been computed,
we can fairly compare two different simulation methods, f1
and f2, by examining their optimal distance from the refer-
ence data. Formally, we declare simulation method f1 better

than simulation method f2 if and only if:

dist( f1(z,p
opt,f1),z)< dist( f2(z,p

opt,f2),z). (6)

3.2. Optimization Metrics

The role of reference data is to provide a description of
the desired behavior or motion trajectories that the simula-
tion should generate. This data can either come from mea-
surements of real motion (e.g., from an overhead camera or
motion-capture devices) or can be generated. Generated data
can come from artists (flow fields) or some other high-level
simulation algorithms. The function dist() in Equation (5)
should capture how close a simulation state comes to match-
ing the reference data. The exact representation of dist() de-
pends on the nature of the reference data and on the features
of the data which the user considers most salient for his or
her application.

At a high level, there are two fundamentally different
types of reference data that can be used in Equation (5):

• microscopic data, which specifies the exact trajectory of
each agent in the data, and

• macroscopic data, which describes aggregate measures of
the overall crowd motion.

Below we briefly describe various metrics that can be eas-
ily used in our framework, a more detailed description as
well as their mathematical representation can be found in
Appendix B

Microscopic Data Metrics

• absolute difference metric (D) computes the total distance
in position over all agents over all timesteps,

• path length metric (L) compares the difference in total
length traveled between agents in the reference data and
the simulated agents,

• inter-pedestrian distance metric (I) compares the differ-
ence in average distance (as a 2-norm) between every pair
of agents,

• progressive difference metric (P) measures the absolute
difference between the simulated agents and the reference
data when the simulation is reinitialized at each timestep.

Macroscopic Data Metrics

• vorticity metric (V) measures the vorticity (as defined in
fluid mechanics) of the crowd flow,

• fundamental diagram metric (F) compares the speed of an
agent to the density of agents in its location. This metric
is inspired by the field of pedestrian dynamics, where it
is commonly used to measure pedestrian flow rates (e.g.,
[CM12]).

3.3. Optimization Techniques

Once a user has chosen the reference data and an appro-
priate optimization metric, Equation (5) can be optimized
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using different combinatorial optimization algorithms. Be-
cause several parameters need to be chosen for every agent in
the simulation, the result is a very high-dimensional search
problem (hundreds of dimensions) and the complexity of
finding an optimal solution is very high. We have analyzed
three different widely-used optimization techniques that can
be applied to these high-dimensional search spaces.

Each optimization technique uses a different strategy to
sample plausible parameters for each agent, maximizing the
match of the simulation algorithm to the reference data. All
three methods proceed by choosing perspective values for
the per-agent simulation parameters from a user-specified
domain of reasonable values. A list of the parameter distri-
butions used in our experiments is given in Appendix E.

Greedy approach (G): this approach works by replacing
one parameter from p at a time for each agent. If this re-
placement lowers the optimization function, the new param-
eter value is chosen; if not, the previous value is restored.
This method can get stuck in local minima.

Simulated annealing (SA): a variant of the greedy ap-
proach, this approach attempts to avoid local minima by oc-
casionally using new parameter sets that are “worse” (have
higher value of the optimization function) than the old ones
[KJV83]. The likelihood of accepting a worse parameter set
decreases over time. Given an unlimited amount of time, SA
will compute the global minimum.

Genetic algorithm (GA): methods based on genetic algo-
rithms also seek to avoid local minima, and do so by main-
taining a pool of parameters that can lead to different local
minima [Hol92]. New pools of parameters are computed by
combining and modifying previously successful candidates.

Covariance Matrix Adapation (CMA) [HHOO96]: a
solution-pool based method similar to GA, which generates
new solutions from ditributions defined by a covariance ma-
trix that is adapted at each iteration.

After a comparison in terms of convergence and time
of convergence, a combination of genetic and greedy algo-
rithms (GA+G) has been chosen as offering the best compro-
mise between score optimization and runtime performance.
While there is no estimation of how close they come to the
real optima, the simulated annealing method should provide
a good indication as it can theoretically find a global op-
timum given an infinite computation time. More results on
this comparison can be found in Appendix D; pseudocode
for the above methods can be found in Appendix C.

Other global optimization techniques, such as Particle
Swarm Optimizations (PSO) [PKB07] or the adjoint method
[MTPS04], can be applied to optimize Equation (5). Multi-
ple methods can be combined or applied sequentially.

4. Results

The primary benefit of this framework is its generality: it
can automatically find the best parameters for any simula-
tion algorithm, based on any metric, for any reference data.
In this section, we highlight some advantages and benefits
of our parameter-optimization and the framework. First, we
present different types of ground-truth data, which are a ba-
sis for model comparison, along with examples of model
comparisons for each type. Second, we present scores ob-
tained by our implementations of the Boids-like, Social-
force and RVO2 models, in the form of a benchmark chart
and its analysis.

4.1. Data Categories

Microscopic data, 2-5 agents This data category regroups
various cases of 2-5 pedestrians crossing ways. The follow-
ing are two visual examples showing model comparisons
based on this data using the Difference metric:

• a simple crossing scenario between two pedestrians. With
default parameters, none of the algorithms correctly repli-
cate the avoidance strategy of the pedestrians; after cali-
bration, only the Vision-based algorithm can reproduce it
(Figure 3(a)). This is consistent with its goal, which is to
reproduce human-like reactions to impending obstacles.

• a scenario where trajectories are correct but the agents are
ill-synchronized with the real pedestrians, i.e. their speeds
along the trajectories are incorrect. After calibration, the
Tangent simulation model [POO∗09] gives a better speed
profile than the other algorithm, because its agents accel-
erate and decelerate when needed and are better synchro-
nized with pedestrians (Figure 3(b)).

Microscopic data, 6-24 agents This data category is simi-
lar to the previous, except that more pedestrians are present
(6-24) and they are organized into circles, with their goal be-
ing to get to the antipodal positions. Here are two examples
of comparisons:

• six pedestrians case: before calibration all trajectories are
far from the real ones; after calibration, RVO2 trajectories
are near-identical to real-world data (Figure 3(c)).

• twenty-four pedestrians case: after calibration, Social-
force agents agglomerate in the center without anticipa-
tion, while RVO2 agents anticipate future collisions and
are spread in a pattern more similar to that of the real
pedestrians (Figure 4).

Microscopic data, ∼150 agents This data [PCBS11] con-
tains ∼150 people in two groups crossing ways. Due to the
nature of this data (pedestrians constantly appearing and dis-
appearing from the cameras’ field of view), a time-window
is extracted and only a subset of all simulated pedestrians
are evaluated (their positions and velocities are then known
during the entirety of the time-window; the more numerous
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Figure 4: Example of a result of the calibration of two models with the Difference metric in the case of 24 pedestrians in a
circle with the goal to cross said circle. Left: reference data trajectories (ending positions in bright). Top row: five consecutive
positions of real (red) and simulated (blue) agents in the case of the RVO2 model. Button row: same for the Social-force model.
With the lack of anticipation, the Social-force model’s agents tend to agglomerate in the center before solving their interactions.
On the contrary, the RVO2 model’s agents anticipate interactions and spread in a way more similar to the original data.

(a) Pair-wise crossing.

(b) Four-agent crossing.

(c) Six agents in a circle going for antipodal positions.

Figure 3: Examples of calibration results of algorithms with
the Difference metric in different scenarios, which enables
their fair comparison. Colored area represents error be-
tween real (red) and simulated (blue) trajectories identifi-
able through the color gradient. Left: reference data tra-
jectories (ending positions in bright). (a) Middle: RVO2,
incorrect trajectories. Right: Vision-based model, correct
trajectories. (b) Middle: the RVO2 model’s agents are ill-
synchronized with real pedestrians. Right: Tangent correctly
synchronizes agents with pedestrians. (c) Middle: RVO2;
copes well with these more complex interactions. Right:
Vision-based model; incorrect paths.

(a) Five controlled agents (blue) amidst a flow of 111 agents.

(b) Five controlled agents (blue) amidst a flow of 152 agents.

Figure 5: Example of a result of the calibration of two mod-
els with the Difference metric in the case of 150 agents; 5 of
them are controlled by simulation algorithms. Colored area
represents error between real (red) and simulated (blue) tra-
jectories identifiable through the color gradient. Left: ref-
erence data; only recent trajectories are shown for clar-
ity (ending positions in bright). Middle: Boids-like. Right:
RVO2. (a) RVO2 leads to a slightly increased error com-
pared to the Boids-like model. (b) RVO2 leads to a decreased
error compared to Boids-like.

the controlled pedestrians are, the shorter the time-window
is). Here are two examples:

• 111 agents total, 5 controlled, traveling from left to right:
RVO2 leads to slightly higher errors than the Boids-like
model (Figure 5(a)).

• 152 agents total, 5 controlled, traveling from left to right:
RVO2 leads to lower errors than the Boids-like model
(Figure 5(b)).
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Macroscopic data In many scenarios, the goal is not to
match a specific motion, but to produce an overall charac-
teristic flow. Our framework can be used in these scenarios.
For example, there are well-documented cultural differences
between the flow rates of Germans and Indians [CSC09].
These cultural flow differences can be described by two dif-
ferent fundamental diagrams.

We can match these fundamental diagrams in different
situations with different simulation methods. To this end,
we consider the fundamental diagrams of German and In-
dian people as described in [CSC09] and, in the case of
30-pedestrian crowds, constrain the Boids-like, Social-Force
and RVO2 models to follow them. To constrain these models
to the fundamental diagrams, we set them to 6 consecutive
density-velocity points on each diagram (at 0.75, 1.0, 1.25,
1.50, 1.75 and 2.0 pedestrians per square meter).

The diagrams obtained after merging the data for these 6
points are represented on Figure 6, along with the original
data found in [CSC09].

These diagrams are very useful in setting up evacuation
scenarios and adapting them to different cultures. Addition-
ally, the framework can also help decide which model is best
suited to a task. For example, here the Boids-like algorithm
gets easily stuck in the corridor, and the resulting diagrams
are far from the original data. However, the Social-force and
RVO2 algorithms fit the data well; RVO2 ultimately matches
the fundamental diagrams better at higher densities. This is
largely due to the Social-force agents displaying instabilities
near walls at high densities (as seen in Figure 7).

Sketch-like data Our framework also has a broader appli-
cation as a metric-driven animation tool for artists animat-
ing crowd scenes. If an animator provides a rough idea of
a motion (in the form of a metric), our framework can be
used to indicate which is the best algorithm to generate the
animation, and can also provide the best parameters for the
task. This spares the animator the tedious task of setting each
agent’s trajectory individually or building new mechanics
into the model he is using. Additonally, this process is in-
dependent of the simulation algorithm. We provide three ex-
amples below. The first example is a group of pedestrians
that are made to walk close to each other, then separate, and
finally regroup. In order to simulate such behavior, we define
three zones based on waypoints, where a distance metric is
applied to determine pedestrian distance from one another.
This metric is then used to maintain a low inter-agent dis-
tance in the first zone, a higher distance in the second zone,
and a lower distance in the last zone. Figure 9 shows the re-
sulting animations at various stages for the RVO2 algorithm.

The second example involves the vorticity metric used to
create vortex-like patterns. Figure 8 shows results obtained
with Boids and RVO2. Here, the Boids-like model lacks an-
ticipation and fails to completely recreate the wanted behav-
ior; RVO2 is more successful, thanks to anticipation.

Figure 6: Cultural variation in fundamental diagrams
[Chattaraj et al. 2009]. Top left: original data; top right:
Boids-like model fit to the fundamental diagrams; bottom
left: Social-force; bottom right: RVO2. Boids poorly fits
the data while Social-force and RVO2 models offer better
matches. Social-force agents travel too fast at high densities
compared to RVO2.

RVO2 model’s agents Social-force model’s agents

Figure 7: High density (2 agents per square meter) illus-
tration (“tails” indicating recent movement) after calibrat-
ing to a fundamental diagram. RVO2 agents on the left go
straight. Social-force agents on right become unstable and
bounce off of walls causing them to accelerate (explains the
excess speed in the fundamental diagram in Figure 6).

Figure 10 shows another example with three corridors.
Two groups enter through two corridors and exit as one
group through a third corridor. They are made to be sparse
when entering and dense when exiting.

4.2. Benchmarks

Figure 11 summarizes scores obtained by the Boids-like,
Social-force and RVO2 algorithms for the various data cate-
gories in a benchmark fashion. These three algorithms were
chosen for this benchmarking analysis as they are broadly
applicable, make few assumptions about the scenarios be-
ing used in, and are representative of the types of simulation
strategies commonly found in games and VR.

Examining the results, some trends can be seen to emerge
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Figure 8: Sketch-based simulation. Left: desired trajecto-
ries, four groups forming a vortex-like pattern. Top row: op-
timized solution for the Boids-like model. Bottom row: same
for RVO2. Boids only offers radius and speed parameters,
and doesn’t include anticipation, it is unable to maintain sig-
nificant distances between groups of agents without break-
ing them apart. RVO2 anticipates over a parameterized time
horizon, allowing it to keep groups distant while maintaining
members of a same group close.

Figure 9: Sketch-based simulation. RVO2 agents are made
to travel grouped, then disperse and then regroup again.
Four consecutive states are shown.

across various dataset and metrics. For example, across
many datasets and metrics the RVO2 algorithm tends to lead
to better scores than our simple Boids-style simulation and
Social-force models. This is likely due to RVO2 being the
only one of the three methods to incorporate predictive col-
lision avoidance. In fact, as the number of agents (and com-
plexity of the scenario) increased, the advantage of RVO2
decreased significantly. This trend can be seen most clearly
in the difference metric. The convergence of the performance
is expected, in part, because there is little room to anticipate
trajectories in dense scenarios with 100s of individuals in
close quarters. RVO2 and the Social-force model score simi-
larly in the Fundamental diagram metric for similar reasons.

Figure 10: Sketch-based simulation where two sparse
groups enter through two corridors and merge into a dense
group when exiting through a third corridor. Two consecu-
tive states are shown.

Figure 11: Benchmarks. Comparative scores (lower is bet-
ter) of the Boids-like (red), Social-force (green) and RVO2
(blue) models in five data categories: microscopic data with
2-5 agents, microscopic data with 6-24 agents, microscopic
data with ∼150 agents, macroscopic, and sketch-based.

Applying our framework to sketch-like data can also re-
veal interesting aspects of the simulation techniques. For ex-
ample, the smooth group behaviors produced by the Boids-
like simulation work well in capturing the desired behavior
in separate & regroup benchmark. In contrast, the vortex sce-
nario shows how RVO2’s anticipation can be used to create
novel behaviors difficult for the other methods such as keep-
ing high distances between groups of agents while keeping
agents belonging to a same group close to each other.

5. Analysis and Conclusions

In this paper, we have addressed the problem of comparing
various crowd simulation algorithms. We have formulated
the estimation problem in a generalized way as an optimiza-
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tion problem. We have optimized the set of simulation pa-
rameters to provide the closest match between the simulation
results and target reference data provided by users. We have
implemented several comparison metrics to evaluate various
aspects of simulation results. The resulting framework can
be widely applied and supports different optimization met-
rics to match a user’s target application.

Our approach has several important properties. First, our
technique is very generally applicable. In this paper we have
shown our ability to use the framework with a variety of
simulation models (force-based, rule-based, velocity-based,
etc.); a variety of types of metrics (microscopic, macro-
scopic); a variety of reference data (real data, example tra-
jectories, macroscopic measures, sketch-based, etc.). Sec-
ond, we have explored the problem in its full dimensional-
ity; each agent given individualized parameter values while
maintaining reasonable computing requirements. Finally, we
have demonstrated the applications of our framework in var-
ious contexts.

Our results demonstrate the importance of parameter es-
timation: the same model can show very different behaviors
depending on the parameters of the simulation. It is there-
fore crucial that researchers account for the effects of pa-
rameters when evaluating and comparing simulation mod-
els. Our framework has sought to address this question in a
generalized way, and we hope this contribution opens vari-
ous perspectives for future work. We would first like to add
more models and more metrics to the framework (and try
combining our approach with [SKFR09, KWS∗11]). This
would facilitate the use of the framework by the research
community at large and facilitate efforts for more exhaus-
tive comparisons for different simulation methods. We have
also demonstrated the applicability of this framework to the
creation of fully animated simulations from high-level spec-
ifications of desired behavior. Such cases were previously
handled by means of scripts or tedious waypoint sequences
that had to be defined by animators. We have shown that our
parameter-estimation approach can alleviate some of this te-
dious work to assist in crowd animation. Further exploration
of this area, perhaps with human subject studies, is a very
promising research direction.

Limitations Along with the above contributions, our method
has some limitations still to be addressed. Most impor-
tantly, because a simulation’s parameter-space is so high-
dimensional, large scenarios with hundreds of agents are still
time-consuming. It is not easy to estimate the complexity
of our framework because of all the components involved.
One metric evaluation step is usually equivalent to running a
whole simulation based on the reference data and then com-
paring the results with the data. Our framework is thus very
dependent on the complexities of the metrics and simulation
algorithms as well as reference data. For instance, a longer
time-window in the reference data or the lack of an accelerat-
ing structure (e.g. kd-tree) in the simulation algorithm’s im-

plementation can greatly impact the time an evaluation call
takes. As for optimization algorithms, only the complexity
(in terms of evaluation calls) of an iteration can be theoret-
ically estimated: O(nm) for the greedy algorithm and simu-
lated annealing (n number of agents, m number of parame-
ters per agent); constant (solution pool size) for the genetic
algorithm. Some indicative times can be found in Figure 14
from Appendix D. It is possible to address the question of
performance and scalability by using parallel versions of op-
timization algorithms and simulators (this is less of a prob-
lem when evaluating multiple simulation algorithms on mul-
tiple scenarios which is easily parallelizable - e.g. one thread
per scenario).

We would also like to study how parameters can be gen-
eralized beyond a given scenario or metric: can a certain
set of parameters work well across various scenarios? Can
a “style” be exported and kept for much larger crowds? In
situations where there is not a single metric or a single piece
of reference data to fit, it would be desirable to find parame-
ter sets that are “good enough” in some high-level sense, or
a set of scenarios that are semantically related and provide
a good coverage of the problem domain. Such a goal will
likely involve user studies and be greatly affected by percep-
tual factors. Finally, a key point in future studies will have to
focus on the metrics. This would include determining which
metrics (or combinations of metrics) are best adapted to var-
ious scenarios. But also defining metrics that are immune to
the variability of agent behavior to similar conditions and
that are able to capture high-level aspects that remain con-
sistent across different data.

We hope this framework will prove to be an important
step in the direction of standardized assessment of crowd-
simulation models. By providing fair comparisons between
methods, a standardized means of analysis will help forward
the field of parameterized crowd simulation as a whole.
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[POO∗09] PETTRÉ J., ONDŘEJ J., OLIVIER A.-H., CRETUAL
A., DONIKIAN S.: Experiment-based modeling, simulation and
validation of interactions between virtual walkers. In Proceed-
ings of the 2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (New York, NY, USA, 2009), SCA ’09,
ACM, pp. 189–198. 2, 4, 5

[Rey87] REYNOLDS C. W.: Flocks, herds and schools: A dis-
tributed behavioral model. In SIGGRAPH ’87 (New York, NY,
USA, 1987), ACM, pp. 25–34. 2

[Rey99] REYNOLDS C. W.: Steering behaviors for autonomous
characters. In Game Developers Conference 1999 (1999). 2, 3

[sha] Shark. http://image.diku.dk/shark/sphinx_
pages/build/html/index.html. 12

[SKFR09] SINGH S., KAPADIA M., FALOUTSOS P., REINMAN
G.: An open framework for developing, evaluating, and shar-
ing steering algorithms. In Proceedings of the 2nd International
Workshop on Motion in Games (Berlin, Heidelberg, 2009), MIG
’09, Springer-Verlag, pp. 158–169. 3, 9

[SKRF11] SINGH S., KAPADIA M., REINMAN G., FALOUTSOS
P.: Footstep navigation for dynamic crowds. In Symposium on In-
teractive 3D Graphics and Games (New York, NY, USA, 2011),
I3D ’11, ACM, pp. 203–203. 2

[TCP06] TREUILLE A., COOPER S., POPOVIĆ Z.: Continuum
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