
Fast Swept Volume Approximation of
Complex Polyhedral Models

http://gamma.cs.unc.edu/SV

Young J. Kim Gokul Varadhan Ming C. Lin Dinesh Manocha
Department of Computer Science, UNC-Chapel Hill

{youngkim,varadhan,lin,dm}@cs.unc.edu

ABSTRACT
We present an efficient algorithm to approximate the swept
volume (SV) of a complex polyhedron along a given tra-
jectory. Given the boundary description of the polyhedron
and a path specified as a parametric curve, our algorithm
enumerates a superset of the boundary surfaces of SV. It
consists of ruled and developable surface primitives, and
the SV corresponds to the outer boundary of their arrange-
ment. We approximate this boundary by using a five-stage
pipeline. This includes computing a bounded-error approx-
imation of each surface primitive, computing unsigned dis-
tance fields on a uniform grid, classifying all grid points us-
ing fast marching front propagation, iso-surface reconstruc-
tion, and topological refinement. We also present a novel
and fast algorithm for computing the signed distance of sur-
face primitives as well as a number of techniques based on
surface culling, fast marching level-set methods and raster-
ization hardware to improve the performance of the over-
all algorithm. We analyze different sources of error in our
approximation algorithm and highlight its performance on
complex models composed of thousands of polygons. In
practice, it is able to compute a bounded-error approxima-
tion in tens of seconds for models composed of thousands of
polygons sweeping along a complex trajectory.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling

General Terms
Algorithms, Design

Keywords
Swept Volume, Implicit Modeling, Distance Fields

1. INTRODUCTION
Swept volume (SV) is the volume generated by sweeping

a solid or a collection of surfaces in space along a smooth
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trajectory. The problem of SV computation arises in differ-
ent applications, including NC machining verification [11,
13], geometric modeling [16, 37], robot workspace analysis
[4, 7], collision detection [30, 51], maintainability study [34],
ergonomic design [3], motion planning [42], etc. A more ex-
tensive list of potential applications of SV can be found at
[1].

The SV computation problem has been studied in differ-
ent disciplines for more than four decades. This includes el-
egant work based on envelope theory, singularity theory, Lie
groups, sweep differential equations on the characterization
of the problem. As a result, the mathematical formulation
of SV computation is relatively well-understood.

In many applications, the main goal of SV computation
is to identify and extract the boundary of the SV, in par-
ticularly its outermost boundary. Most of the algorithms
for computation of the boundary of SV are based, either
explicitly or implicitly, on the following framework:

1. Find all the boundary primitives that contribute to the
outermost boundary of SV.

2. Compute an arrangement of the boundary primitives
by performing intersection and trimming computations.

3. Traverse the arrangement and extract the outer bound-
ary. Here, the outer boundary of an arrangement is
defined as the boundary of a cell, which is reachable
from infinity following some continuous path, in the
arrangement.

Most of the mathematical work has mainly dealt with
characterizing the boundary primitives, given some assump-
tions on the sweeping path. There is a considerable amount
of research in computational geometry on the combinato-
rial complexity of computing arrangements as well as on
surface-surface intersection computations in geometric and
solid modeling. However, the underlying combinatorial and
algebraic complexity of exact SV computation is very high.
Furthermore, the implementations of any algorithms for com-
puting intersections and arrangements need to deal with ac-
curacy and robustness issues. As a result, no practical algo-
rithms are known for exact computation of the SV for any
arbitrary polyhedron sweeping along a given smooth path.

Given the underlying complexity of exact SV computa-
tion, most of the earlier work has focussed on approximate
techniques. Different algorithms can be characterized based
on whether they are limited to 2D objects, or they only
compute an image-space projection or visualization of the
SV from a given viewpoint, or compute a relatively coarse



discretization of the boundary primitives followed by union
computation of different configurations of the polyhedra
along the trajectory. These algorithms are either slow for
practical applications, or suffer from robustness problems,
or compute a rather coarse approximation of the SV.

Main Results
We present an efficient algorithm to approximate the out-

ermost boundary of SV’s of complex polyhedral models along
a given trajectory. The algorithm initially enumerates a su-
perset of the boundary primitives of SV, which consists of
ruled and developable surfaces [48]. The ruled surface is gen-
erated by considering each edge in the original model as a
ruling line and the trajectory as a directrix curve. The devel-
opable surface is obtained by applying the envelope theory
to moving triangles. Given a formulation of the boundary
elements, our algorithm computes an approximation to the
resulting arrangement using a five-stage pipeline. Firstly, it
computes a bounded-error polygonal approximation of each
surface primitive. Secondly, it samples the surface primi-
tives by computing unsigned, directed distance fields along
the vertices of a grid. Next it classifies the grid points to be
either inside or outside of the surfaces to obtain the signed
distance field using a novel algorithm based on marching
front propagation. This is followed by iso-surface recon-
struction. Finally, the algorithm performs topological re-
finement, taking into account some of the characterizations
of the SV computation. We also present a number of accel-
eration techniques based on culling of surface primitives, use
of interpolation-based rasterization hardware for fast com-
putation of distance field, and a variation of fast marching
level-set method for classification of grid points.

Our algorithm computes a bounded-error approximation
of the SV and we analyze all sources of error. We have im-
plemented this algorithm on a commodity-based PC with
nVidia GeForce 4 graphics card, and benchmarked its per-
formance on complex benchmarks. The underlying polyhe-
dral models consist of thousands of triangles and are sweep-
ing along a complex trajectory corresponding to a paramet-
ric curve. The computation of SV takes a few tens of seconds
on a 2.4GHz Pentium IV processor.

As compared to earlier approaches, the main advantages
of our technique include:

• Generality: The algorithm can handle general
2-manifold polyhedral models, and makes no assump-
tions about the sweep path.

• Complex Models: The algorithm is directly applica-
ble to complex models composed of a high number of
features. Given a trajectory and a bound on the ap-
proximation error, the overall complexity increases as
a linear function of the input size.

• Efficiency: The use of culling techniques and algo-
rithms for signed distance field computation signifi-
cantly improve the running time of the algorithm.

• Simplicity: The algorithm is relatively simple to im-
plement and does not suffer from robustness problems
or degeneracies.

• Good SV Approximation: Our preliminary application
of the algorithm to different benchmarks indicates that
it can compute a good, bounded-error approximation
of the boundary.

Organization
The rest of our paper is organized as follows. In Section

2, we briefly review the earlier work on SV computation.
Section 3 provides the overview of our approach to SV com-
putation. In Section 4, we present an algorithm to compute
the boundary surface primitives of SV. Section 5 describes
our approximation algorithm to compute the arrangement
of the surface primitives using sampling and reconstruction.
We analyze the performance of our algorithm in Section 6
and describe its implementation and performance in Section
7. In Section 8, we conclude our paper and present future
work.

2. PREVIOUS WORK
In this section, we give a brief survey of the work related to

SV computation, arrangements, and iso-surface reconstruc-
tion based on distance fields.

2.1 Swept Volume Computation
SV has been studied quite extensively over the years. We

list some of the crucial development in the history of SV
research here, but refer the readers to see [1] for more thor-
ough survey of SV-related work.

Methodology: The mathematical formulation of the SV
problem has been investigated using singularity theory (or
Jacobian rank deficiency method) [2, 5, 6], Sweep Differen-
tial Equation (SDE) [11, 12], Minkowski sums [19], envelope
theory [38, 48], implicit modeling [41], and kinematics [29].
Moreover, most of this work deals with the SV of generic,
free form objects.

Polyhedral Approximation: Given the complexity of
computing the exact SV, few algorithms have been devel-
oped to provide a polyhedral approximation of SV. In 2D, [9,
35] study an approximation of the general sweep for curved
objects, and they have been applied to font design. In 3D,
[48] describe a geometric representation of SV for compact
n-manifolds with application to polyhedral objects. [41] use
discretized representations and iso-surface reconstruction to
approximate SV, [7, 40] compute the arrangement of swept
polyhedral surfaces based on their coarse approximation,
[10] study a simple rotational sweep of exact SV. However,
these 3D algorithms are either restricted to simple geomet-
ric primitives [40] or simple sweep trajectory [10], or suffer
from accuracy [41] and robustness problems [7].

Visualization: Many algorithms have been proposed to
visualize the boundary of the SV using the rasterization
hardware. These algorithms use the Z-buffer hardware to
compute a 2D projection of the surface from a given view-
point and not the actual boundary of the 3D SV. [26, 27, 44,
47] utilizes rasterization hardware to simulate NC machin-
ing display, [16] uses the Jacobian rank deficiency method
to visualize a SV of trivariate tensor-product B-spline solids,
and [49] studies the SV computation of a 2D image.

2.2 Arrangement Computation
Given a finite collection of geometric objects in Rd, their

arrangement is the decomposition of Rd into connected open
cells [23]. The arrangement computation problem is ubiq-
uitous by nature and arises in a number of applications. A
survey of different algorithms and complexity bounds for ar-



(a) Trajectory (b) Surfaces (c) ∂SV (Γ)

Figure 1: Complexity of SV Computation. (a) shows a sweeping trajectory of a cubic polynomial curve for a X-
Wing model. In (b), each surface primitive comprising in ∂SV (Γ) (total 3793 surface primitives) is color-coded
differently. (c) shows ∂SV (Γ), an outer boundary of the surface elements.

rangements computations is given in [23].

Complexity: It is well known that the worst case combi-
natorial complexity of an arrangement of n surfaces in Rd

is O(nd) [23], and there are such arrangements having θ(nd)
complexity, thus this bound is tight. In this analysis, each
surface is assumed to have a bounded algebraic degree, and
needs to be decomposed into monotonic patches as well.

Algorithms: There are quite a few known algorithms
to compute an arrangement using both deterministic algo-
rithms and randomized algorithms. This includes an output-
sensitive algorithm to compute an arrangement of surfaces
in 3-space and has O(nλq(n) log(n) + V log(n)) time com-
plexity, where V is the combinatorial complexity of the ver-
tical decomposition, q is a constant depending on the degree
of the surfaces, and λq(n) is the maximum length of (n, q)
Davenport-Schinzel sequences [17].

Implementation Issues: Some of the major issues in the
implementation of arrangement computation algorithms are
accuracy and robustness problems. It is quite hard to enu-
merate all degenerate configurations, especially when the
primitives are non-linear surfaces. [40] enumerate 15 differ-
ent possible degenerate cases for an arrangement of polyhe-
dral surfaces. Moreover, [40] proposed a controlled pertur-
bation scheme, and applied it to polyhedral SV approxima-
tion. However, it can take a considerable amount of time for
models composed of few hundred triangles. These problems
get more severe when we are dealing with curved primitives.

2.3 Distance Field Computation and
Iso-Surface Reconstruction

Recently, distance fields have been increasingly used in
volumetric shape representation [21, 22], proximity compu-
tations based on rasterization hardware [25], path planning
[31], surface metamorphosis [15], and SV computation [41].

Grid-based iso-surface reconstruction has been extensively
studied beginning from the seminal work of the Marching
Cubes algorithm [36], and has been extended to its variants
such as the Enhanced Marching Cubes (EMC) [32] or the
dual contouring method [28]. [50] have used surface wave-
front propagation techniques to extract semi-regular meshes

from volumes.

3. OVERVIEW
In this section, we characterize the mathematical formula-

tion of computing the SV of general polyhedral models and
also give an overview of our approximation scheme.

3.1 Notation
We use bold-faced letters to distinguish a vector (e.g.

p(t)) from a scalar value (e.g. time t). f, v, e respectively
denotes a face, a vertex, and an edge of a polyhedron. We
use fΓ

k to denote the kth face of a polyhedron Γ.

3.2 Problem Formulation
Let Γ, also known as a generator, be a polyhedron in R3.

Let the sweep trajectory τ (t) be a tuple of (Ψ(t), R(t)),
where Ψ(t) is a time-varying, differentiable vector in R3 and
R(t) is a time-varying, orthonormal matrix in SO(3). Here,
both Ψ(t) and R(t) depend on a single variable, the time
t ∈ [0, 1]. Furthermore, Ψ(0) corresponds to the origin, and
R(0) to the identity matrix. Then, consider the following
sweep equation of Γ(t):

Γ(t) = Ψ(t) + R(t)Γ (1)

In our paper, the SV of the generator Γ along the trajectory
τ(t) is defined as:

SV (Γ) = { ∪ Γ(t) | t ∈ [0, 1] } (2)

Notice that our SV equation is allowed with only rigid mo-
tions (i.e., translation and rotation), even though, in general,
τ (t) can be any isotopy mapping [48].

Our goal is to compute the boundary of SV (Γ), ∂SV (Γ),
without internal voids. More formally, consider an arrange-
ment A and a cell C in A, which is reachable from infinity
following some continuous path. Let us further define the
outer boundary of A as the boundary of C. Then, we want to
compute the outer boundary1 of A induced by the surface
elements in SV (Γ). We use the following theorems [48] to
characterize the boundary of SV:

1Throughout the paper, we interchangeably use the outer
boundary of A and the outer boundary of SV (Γ) to describe
∂SV (Γ).
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Figure 2: Our Swept Volume Computation Pipeline

THEOREM 3.1 If during the sweep Γ(ti)∩Γ(tj) = φ for
ti 6= tj, then SV (Γ) = { ∪n

k=1 SV (fΓ
k ) | n is the number of

faces in Γ }.

THEOREM 3.2 SV (fΓ
k ) consists of:

• Faces in f
Γ(0)
k and f

Γ(1)
k

• Ruled surfaces using the edges of f
Γ(t)
k as a ruling line

along the directrix τ

• Developable surfaces as an envelope of f
Γ(t)
k along τ .

Therefore, computing the boundary of ∂SV (Γ) boils down
to computing ruled and developable surface primitives, and
finally computing the outer boundary of their arrangement.

3.3 Approximation Algorithm
Our goal is to compute the outermost boundary, ∂SV (Γ)

where the complexity of Γ is relatively high, e.g. thou-
sands of triangles. The major difficulty of the computation
lies in the arrangement computation, as its computational
and combinatorial complexity can be super-quadratic and
its implementation is rather non-trivial due to the accuracy
and robustness problems. Given the complexity of surface-
surface intersection problem, it is very hard to robustly com-
pute all the intersections between thousands of ruled and de-
velopable surface primitives within a reasonable time. For
example, in Fig. 1, in order to exactly compute the SV of
the X-Wing model consisting of 2496 triangles, we need to
compute an arrangement of 3793 surfaces including calculat-
ing their intersection curves of as high as degree nine. Thus,
instead of computing ∂SV (Γ) exactly, we approximate it
using an implicit modeling technique based on discretized
representations and iso-surface-based reconstruction meth-
ods.

The main idea of our approximation approach is to com-
pute the polyhedral approximation of ruled and developable
surface primitives, generate their signed distance field, and
reconstruct the outer boundary of the arrangement of the
discretized surfaces. To accelerate this pipeline, we prune
redundant surfaces in SV (fΓ

k ), and perform fast distance
field computation. As a result, the basic steps of our algo-
rithm are as follows:

1. Given an error threshold of Hausdorff distance ε, we
formulate the ruled and developable surfaces for each
SV (fΓ

k ), and compute a triangular approximation that
is within the surface deviation error threshold. A sub-
set of the primitives SV (fΓ

k ) that do not contribute to
the final boundary, ∂SV (Γ) can be pruned away using
sufficient criteria described in Sec. 4.3.

2. We compute the directed unsigned distance fields for
each SV (fΓ

k ) on a uniform 3D grid, using interpolation-
based rasterization hardware.

3. We use a variant of the fast marching level set method
to classify all the grid points whether they are inside
or outside with respect to ∂SV (Γ). This gives us a
signed distance field.

4. Perform the iso-surface extraction on the resulting
signed distance field to reconstruct the outermost bound-
ary, ∂SV (Γ)

5. Perform a topological check to see if the reconstructed
approximation has more than one component. If yes,
we refine the spatial grid and perform the steps 2-5
again.

The above pipeline is illustrated in Fig. 2.

4. SURFACE GENERATION
In this section, we present techniques to compute the can-

didate surface primitives that contribute to the boundary of
SV and compute a bounded error triangulation of each prim-
itive. We also present new techniques to cull away surface
primitives that do not compute the outer boundary of SV.

4.1 Boundary Surfaces
As shown in Thm. 3.1 in Sec. 3.2, the boundary of SV is

obtained by computing the SV’s of individual faces, SV (fΓ
k ),

in Γ, and computing their union. Moreover, Thm. 3.2 states
that, besides the trivial surfaces of fΓ

k at initial and final
positions during sweep (i.e., Γ(0) and Γ(1) in Eq. 1), there
are only two types of surfaces that belong to fΓ

k : ruled and
developable surfaces (also see Fig. 3).

4.1.1 Ruled Surface Primitives
A ruled surface is generated by sweeping a ruling line

along a directrix curve. The surface x(u, v) has the following
form:

x(u, v) = b(u) + vδ(u) (3)

Here, b(u) is a directrix and δ(u) is the direction of a ruling
line. When we sweep fΓ

k along the trajectory τ (t), each
edge e in fΓ

k generates a ruled surface x(u, v). We denote
the endpoints of an edge e by p0 and p1. By substituting
p0 and p1 for Γ in Eq. 1, we generate two curves, b0(u)
and b1(u). Then, in Eq. 3, b(u) becomes b0(u), and δ(u)
becomes b1(u)− b0(u).



(a) Trajectory (b) Ruled 1 (c) Ruled 2 (d) Ruled 3 (e) Devel-
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Figure 3: Boundary Surfaces of the SV of a Triangle. (a) shows a trajectory for the helical sweep of a yellow
triangle. (b), (c), and (d) show ruled surfaces generated by the sweep, and (e) shows a developable surfaces by
the sweep. (f) shows the final boundary surface of the sweep.

4.1.2 Developable Surface Primitives
When a plane moves continuously along a trajectory τ (t),

its envelope generates a developable surface. Intuitively, a
developable surface is a surface which can be made of a piece
of paper [39]. Thus, a developable surface is locally isometric
to a plane, and its Gaussian curvature at regular points is
zero. Furthermore, a developable surface is a subset of a
ruled surface.

Let us parametrically represent a moving plane p(u, v, t)
as:

p(u, v, t) = q(t) + ur1(t) + vr2(t) (4)

where q(t) is the origin of p(u, v, t), and r1(t) and r2(t) are
two linearly independent vectors spanning p(u, v, t). Then,
using the envelope theory, by solving det(J(p(u, v, t))) = 0
for u and substituting the result for p(u, v, t) = 0, we get
the developable surface d(t, v) as [48]:

d(t, v) = b(t) + vδ(t), where (5)

b(t) = q(t)− r1(t)
q′(t) · r1(t)× r2(t)

r′
1(t) · r1(t)× r2(t)

δ(t) = r2(t)− r1(t)
r′
2(t) · r1(t)× r2(t)

r′
1(t) · r1(t)× r2(t)

This derivation is valid only if r′
1(t) · r1(t) × r2(t) 6= 0.

Otherwise, we can derive a similar equation in terms of u
and t by getting rid of v in Eq. 4.

In the SV computation, sweeping fΓ
k also generates a de-

velopable surface. Let us assume that Γ is triangulated, and
denote any two edges of fΓ

k by e1 and e2. Then, the direc-
tion vectors of e1 and e2 become r1(t) and r2(t) in Eq. 5.
However, since Eq. 5 is derived from a plane, not from a
triangle, the developable surface obtained from Eq. 5 needs
to be clipped against the parametric domain of {u = 0, 0 ≤
v ≤ 1}, {0 ≤ u ≤ 1, v = 0}, and {u ≥ 0, v ≥ 0, u + v = 1}
for all t.

4.2 Bounded Error Triangulation
Once we have generated parametric representations for

ruled and developable surface primitives, the next step is to
compute a triangular approximation within a user-provided
error deviation ε. There are many known algorithms for
triangulating a rational parametric surface using either uni-
form [33] or adaptive tessellation [14, 46]. Since developable
surfaces have zero Gaussian curvature, the uniform tessel-
lation serves the purpose well; however, depending on the

sweep trajectory τ (t), the ruled surface can have regions of
high curvature. In this case, the uniform tessellation tend to
oversample the surface, so that the adaptive tessellation is
more suitable. Notice that, depending on the chosen type of
the trajectory τ , the ruled and developable surfaces can be
well-known rational parametric surfaces or general paramet-
ric surfaces including trigonometric terms. However, since
we can always perform a flat-ness test for smooth surface
patches on the ruled and developable surfaces, we use a
simple recursive algorithm like [14] to handle the general
parametric surfaces as long as they are smooth surfaces.

On the other hand, taking advantage of the nature of
line geometry in ruled surfaces, one can also devise a vari-
ational interpolatory subdivision scheme for ruled surfaces
[39]. Here, one recursively subdivides a ruled surface by
minimizing an discrete energy functional that is represented
in terms of an discrete approximation of mean curvatures at
points on the surface.

4.3 Culling Surface Primitive
In principle, assuming that the input model Γ is triangu-

lated, each SV (fΓ
k ) generates three ruled surface primitives,

one developable surface, and fΓ
k ’s at the initial and final po-

sitions of τ (t). Therefore, the triangle counts of the ruled
and developable surfaces significantly affect the performance
of the pipeline presented in Fig. 2. Consequently, we want
to identify portions of surface primitives that do not con-
tribute to ∂SV (Γ), and prune them away accordingly. We
use a variation of a technique presented in [8] to cull away
redundant ruled surface primitives, and also provide a novel
method for developable surface primitives.

In order to prune ruled surface primitives, we perform the
following operation. First of all, a reflex edge er in Γ is not
used to generate a ruled surface at all, since the surface will
be always subsumed by the SV of the adjacent faces of er

(also see Fig. 4-(a)). The same reasoning is applied to a
coplanar edge, whose adjacent faces are coplanar. Further-
more, if a convex edge ec instantaneously moves inward fΓ

l

and fΓ
m at time t, where fΓ

l and fΓ
m are the adjacent faces

of ec, then ec can stop generating a ruled surface at that
time, since that portion will be also subsumed by SV (fΓ

l )
or SV (fΓ

m) (also see Fig. 4-(b)). This test can be easily
worked out by checking the velocity vectors τ ′(t) at the
endpoints of ec against the face normals of fΓ

l and fΓ
m.

We also present a novel culling scheme for developable
surface primitives. The main idea is that we generate a
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Figure 4: Surface Culling. (a) A reflex edge er is not
needed to generate a ruled surface along the trajectory
τ , because the surface will be subsequently subsumed
by the SV of its adjacent faces, SV (fl) or SV (fm).
(b) A convex edge ec does not need to produce a ruled
surface when it is swept inside of its adjacent faces
(fl and fm) along τ , because it will be subsumed by
SV (fl) or SV (fm). (c) A developable surface d does
not need to be created when it exists inside its genera-
tor triangle. This is checked by the angle between the
normal nt and the difference vector d(t+∆t, v)−d(t, v)
between successive time-steps.

developable surface dfΓ
k

(t, v) only if its boundary can be ex-

posed outside of its generating face fΓ
k . Since a developable

surface dfΓ
k

(t, v) is locally convex [18] and fΓ
k is always tan-

gent to dfΓ
k

(t, v), dfΓ
k

(t, v) locally lies inside or outside of

fΓ
k depending on the face normal nt of fΓ

k . More specifi-
cally, since we perform uniform tessellation of a developable
surface using some fixed time step ∆t, we approximate the
locality with ∆t. Then, we compute two points dfΓ

k
(t, v)

and dfΓ
k

(t+∆t, v) from Eq. 5, and check the angle between

the difference vector dfΓ
k

(t+∆t, v)−dfΓ
k

(t, v) and the plane

normal nt of fΓ
k . If it is less than 90 degrees, fΓ

k is used
during time t, otherwise it is pruned away (also see Fig.
4-(c)).

5. SAMPLING AND RECONSTRUCTION
Once we have computed all the surface primitives of SV,

we approximate the outer boundary of SV by sampling the
surfaces and reconstructing the outer boundary of their ar-
rangement. In this section, we describe the sampling and
reconstruction pipeline (see Fig. 2). We compute an un-
signed distance field with respect to the surface primitives
on a discrete spatial grid. A signed distance field is ob-
tained by propagating a front around the boundary of the
swept volume using a fast marching method. An iso-surface
extraction from this signed distance field provides us with an
initial approximation to the outer boundary. We perform a
topological connectedness test on this approximation. If the
test fails, we refine the spatial grid, recompute the distance
field, and repeat the pipeline.

5.1 Distance Field Representation
Given all the surface primitives of SV, we first discretize

the 3D space occupied by the primitives. As a discrete rep-
resentation of the 3D space, we choose signed distance fields
with respect to the surface primitives, and attempt to com-
pute them efficiently using graphics hardware. This discrete
representation is used later in iso-surface extraction.

We sample the distance values at the discrete points of

a 3D spatial grid, and use an enhanced representation of
the discrete distance field. Here, the distance value at each
grid point means the closest distance to one of the surface
primitives. However, in our scheme, instead of simply us-
ing a scalar distance value for each grid point, we store di-
rected distances along six principal directions corresponding
to x−, x+, y−, y+, z− and z+ axes. Our goal is to eval-
uate the directed distance function at the grid points of a
3D uniform grid. We would like to use an approach that
maps well to SIMD-like capabilities of rasterization hard-
ware. Current graphics processors have the capability to
evaluate the distance function in parallel for each pixel on
the plane. Graphics hardware-based fast techniques have
been used for distance field evaluation [24].

X

Y

Z = D

Figure 5: Directed distance field: This figure shows
how a slice of the directed distance field of a prim-
itive (blue triangle) is computed. The primitive is
rendered under orthographic projection with the slice
(black rectangle) set as the image plane. The Z-buffer
holds the directed distance values. The grey triangle
is the projection of the primitive onto the slice.

We employ a modified approach, and also use graphics
hardware to generate the directed distance fields as follows:

1. Our algorithm computes the directed distance along a
given direction by sweeping a plane along that direc-
tion. This plane corresponds to a slice of the directed
distance field and is perpendicular to the direction of
sweep.

2. Our algorithm computes the directed distance field one
slice at a time. So the problem is reduced to defining
the directed distance function of a primitive over a pla-
nar 2D slice. The main idea of our approach is that
in order to obtain an approximation to the primitive’s
directed distance function, we simply render the prim-
itive under orthographic projection with the slice as
the image plane (see Fig. 5).

3. At each step, the slice is moved by a distance equal to
the size of the grid cell. The planes corresponding to
two consecutive slices are used to define a slab.

4. For each slab, we precompute the set of surface prim-
itives that it intersects with.

5. We use orthographic projection to sample and rasterize
the surfaces. The above slab is set as the near and
far clipping planes. We render the surface primitives
associated with the slab. Each pixel in the frame buffer
corresponds to a point in the current slice and the
depth buffer holds the value of the distance at that
point.



6. We readback the depth buffer and store the directed
distance values. Distances with absolute values larger
than grid edge length are irrelevant since they are not
used during isosurface extraction.

Our algorithm computes only an unsigned directed distance
field. However, the isosurface extraction algorithm requires
a signed distance field; i.e., a distinction needs to be made
between inside and outside.

5.2 Fast Marching Front Propagation
We perform an inside/outside classification at each grid

point to obtain a signed distance field. Conventionally, points
that lie outside the boundary of the SV have a positive sign
while those inside have a negative sign. Our surface primi-
tives are in general not closed. As a result, we cannot define
an inside/outside classification with respect to the individ-
ual surface primitives. We need to define a classification
with respect to the boundary of the SV. However, this clas-
sification problem is non-trivial because we do not know the
boundary of the SV.

In order to solve the inside and outside classification prob-
lem, we present a variant of the fast marching level set
method [43] to propagate a front around the boundary of the
swept volume. Level-set methods are numerical techniques
for computing the position of propagating fronts. Topologi-
cal changes are naturally captured in this setting. We per-
form the front propagation on the discrete spatial grid (see
Fig. 6). We use the unsigned directed distance field gener-
ated in Sec. 5.1 for front propagation. The front consists of
a set of grid points. We can initialize the front to be a set of
grid points corresponding to any surface bounding the SV.
One choice for the initial front is the set of grid points that
lie along the boundary of the spatial grid. Our front prop-
agation method ensures that the front visits exactly those
grid points that lie outside the swept volume.

We tag grid points as Known, Trial, or Far depending on
whether the grid point has already been visited, is currently
being visited, or is yet to be visited by the front, respec-
tively. Each grid point also has a flag whose value can be
Inside or Outside. Initially all grid points are assigned a flag,
Inside. All grid points except the initial front are tagged as
Far. Grid points on the initial front are tagged as Trial.
During one step of front propagation, we perform a number
of operations. These include:

1. We arbitrarily pick a Trial grid point belonging to the
front and remove it from the front. Let this point be
denoted as P . We set its tag to be Known.

2. Consider a neighboring grid point Q of P . If point
Q is tagged as Known, we do not update it. With
respect to P , point Q lies along one of the six princi-
pal directions. We check if the directed distance of P
along that direction is larger than the length of edge
connecting P and Q. If that is the case, we are guar-
anteed that point Q lies outside the boundary of the
SV. Therefore we propagate the front to point Q by
adding Q to the front. In addition, the flag for point
Q is set to Outside.

The pseudo-code is shown in Alg. 5.1. The front propa-
gation continues in this manner until the front has visited
all grid points outside the SV. At this time, front propaga-
tion terminates. In this manner, we obtain an inside/outside

classification for each grid point. We combine this inside/outside
classification with the unsigned distance field computed in
Sec. 5.1 to obtain a signed distance field. All six directed
distances at a grid point always have the same sign.

while front is nonempty
Extract a trial point P from the front
P .tag = KNOWN
for each neighbor Q of P ,

if Q.tag ! = Known then
d = Direction from P to Q
if Directed Distance(P ,d) > Edge Length(P ,Q) then

Q.flag = Outside
if Q.tag == Far then

Add Q to the Front
Q.tag = Trial

endif
endif

endif
endfor

endwhile

ALGORITHM 5.1: Fast Marching Method

Initial Front 

Final Front 

OUTSIDE

INSIDE

PQ

Figure 6: Fast Marching Method. A fast marching
level set method is used to propagate a front (pink
dotted curve) around the surface primitives of SV
(solid blue curves). All the grid points visited by
the front (grey circles) lie outside the outer bound-
ary while the remaining grid points (green circles) lie
inside the outer boundary. During front propagation,
a grid point P can update its neighboring grid point
Q if the directed distance from P to Q is greater than
the length of the edge connecting P and Q

5.3 Isosurface Extraction
We estimate the outer boundary of open surfaces by per-

forming an isosurface extraction from the signed distance
field generated using the approach described in Sec. 5.1 and
Sec. 5.2. We use the Extended Marching Cubes (EMC)
algorithm [32] to perform the isosurface extraction. This al-
gorithm can detect sharp features and sample them in order
to reduce the aliasing artifacts. The output of the isosurface



extraction is a polygonal mesh. This is our initial approxi-
mation to the outer boundary.

In order to perform isosurface extraction, we need to know
which edges of a cube of the spatial grid are intersected by
the isosurface. An edge of a cube is intersecting if the two
endpoints of the edge have different inside/outside classifi-
cation. For each intersecting edge of a cube, the directed
distances of the endpoints of the edge give us the position of
the intersection point (see Fig. 7). The advantage of using
directed distance is that it provides us with exact surface
samples. The standard Marching Cubes algorithm can pro-
duce aliasing artifacts in the vicinity of sharp features. The
Extended Marching Cubes algorithm uses a tangent element
approximation to reduce aliasing artifacts and provide bet-
ter reconstruction in the presence of sharp features. Thus we
have a better approximation to the exact, outer boundary.

We only use the directed distance of the grid point which
is Outside. The directed distance of the grid point which is
Inside may result in incorrect intersection points (see Fig.
7).

Reconstructed
surface

B Ci0

i1

A

Reconstructed
surface

B Ci2

i3

A

Figure 7: Iso-Surface Extraction: Figure on the
left shows the reconstructed surface (purple) for two
surface primitives (blue and red). We use the di-
rected distance (show in brown) to compute intersec-
tion points (i0 and i1). The grey and green circles
respectively indicate grid points that lie Outside and
Inside the outer boundary. Figure on the right shows
that the directed distance of a Inside grid point (Point
B) may result in incorrect intersection points (i2 and
i3). We only use the directed distance of Outside grid
points for reconstruction.

5.4 Topological Refinement
The underlying topology induced by our SV approxima-

tion algorithm can be different from the topology of the
exact SV. This mainly results from the sampling and re-
construction steps in our computational pipeline. However,
our algorithm attempts to maintain some of the topologi-
cal properties of SV, i.e. closed and connected boundary.
According to our sweep equation in Eq. 1, the SV that we
generate for a polyhedron can be a non-manifold. However,
its boundary always provides a closed, water-tight surface,
since the generator is a closed set. Moreover, the structure
always generates one connected component.

To ensure a single connected component in our SV al-
gorithm, we perform a topological check by traversing the
generated polygonal mesh to detect the occurrence of such
a case (see Fig. 8) . We arbitrarily pick a vertex from the
mesh. We mark this vertex and recurse on each of the un-
marked neighboring vertices. At the end of this traversal, if
any unmarked vertices remain, it implies that the mesh has
more than one component. In that case, we refine the spatial

grid, recompute the distance field at a higher resolution, and
perform the reconstruction again. We use EMC algorithm
for the iso-surface reconstruction. This algorithm always
generates a closed polygonal mesh structure. Therefore, our
SV algorithm can guarantee closed, connected surface struc-
tures.

Disconnected Topology Connected Topology

Topology
Check

Figure 8: Topological Refinement. We ensure that
our SV approximation is a single connected compo-
nent by performing topological refinement. We per-
form a topological check to see if our approximation
has more than one component. In that case, we re-
fine the spatial grid and perform the reconstruction
again.

6. ANALYSIS OF SWEPT VOLUME ALGO-
RITHM

In this section, we analyze the performance of our SV
algorithm, and also discuss the sources of errors in the algo-
rithm.

6.1 Performance Analysis
Our SV algorithm has the following computational com-

plexity:

Surface Generation: The computational cost of the sur-
face generation is mainly determined by the surface tessel-
lation process, and its complexity is sensitive to the output;
i.e. O(M), where M is the number of triangles generated
by the tessellation. Let us denote Ne as the total number of
convex edges of the input polyhedra Γ, and Nf as the total
number of faces of Γ. Assuming that Γ is triangulated, in
the worst case, 3Ne ruled surfaces and Nf developable sur-
faces are generated. Let us further denote M i

e(ε, τ ) as the
number of triangles generated by a ruled surface i, which
depends on the given surface deviation error ε and the tra-
jectory τ , and denote M j

f (ε, τ ) as the number of triangles by

a developable surface j. Let M+
e = max3Ne

i=1 (M i
e(ε, τ )) and

M+
f = max

Nf

j=1 (M j
f (ε, τ )). Then, M = 3NeM

+
e + NfM+

f .

Typically, in our experiments, M+
e and M+

f correspond to
a few hundred triangles.

Distance Field Generation: Let D be the maximum
dimension of the bounding box enclosing the surface primi-
tives of SV. Then, let K = D/ε, where ε is the given surface
deviation error. We use a K×K×K uniform spatial grid for
generating the distance field, front propagation and isosur-
face extraction to restrict the reconstruction error within ε
(see Sec. 6.2 for more detail). As stated earlier, we compute
the distance field using graphics hardware. We can measure
the time complexity of the distance field generation in terms



of number of primitives sent to the graphics hardware. A
primitive pi gets rendered npi times where N is the number
of primitives and npi is the number of slabs it occupies. Also
the size of the spatial grid contributes to the time complex-
ity. So the total time complexity is O(K3) + O(

∑N
i=1 npi).

Typically, npi is a small constant for most primitives. So the
time to generate directed distance fields is typically linear
in number of primitives.

Fast Marching Front Propagation: Front propagation
takes time proportional to the size of the spatial grid; i.e.,
O(K3).

Isosurface Extraction: Isosurface extraction takes time
proportional to the size of the spatial grid; i.e., O(K3).

Total Complexity: The total computational complexity
of our SV algorithm is O(M + K3 +

∑N
i=1 npi).

6.2 Error Analysis
Our SV algorithm is an approximation scheme. There are

three main sources of the errors that govern the accuracy of
the result of our algorithm; tessellation errors by approxi-
mating surface primitives, sampling errors from generating
3D grids of distance fields, and iso-surface reconstruction er-
rors from the EMC.

Tessellation Errors: We use adaptive tessellation to tri-
angulate ruled surfaces, and uniform tessellation to trian-
gulate developable surfaces. These methods can triangulate
the surface primitives within an error threshold ε, which is
essentially the Hausdorff distance between the original sur-
faces and approximated ones.

Sampling Errors: The accuracy of the distance field
is dependent on the implementation. We compute it using
graphics hardware and its accuracy is determined by the
number of bits of precision in the Z-buffer, typically 24 or
32 bits in current hardware.

Reconstruction Errors: If ε is the size of the grid cell, we
are guaranteed that each point on our reconstructed outer
boundary lies within a distance ε of some point on the ex-
act envelope. The approximation theory guarantees that a
piecewise linear interpolant to a smooth surface converges
with order O(ε2) where ε measures the sampling density.
In our case, ε is the size of the grid cell. In the presence of
sharp features, however, the convergence rate drops to O(ε).
However, the Extended Marching Cubes algorithm improves
the local convergence rate by performing a tangent element
approximation. This convergence rate is valid only in cells
that have at most one sharp feature.

7. IMPLEMENTATION AND
PERFORMANCE

In this section, we describe the implementation of our SV
algorithm and highlight its performance on different bench-
marks.

7.1 Implementation
To implement our SV algorithm, we used C++ program-

ming language with the GNU g++ compiler under Linux

operating system. For the choice of GUI implementation,
GLUT, OpenGL, Inventor and Qt were used.

We used a public computational geometry library, CGAL,
to perform an efficient traversal on the two-manifold poly-
hedral surfaces. Moreover, CGAL offers quite flexible data
structures based on the usage of templates and STL pro-
gramming, and also provide accurate evaluation of geomet-
ric predicates such as orientation test, cross product, dot
product, etc [20]. We took advantage of these benefits to
implement the generation of surface primitives of SV. In
particular, the Polyhedron 3 class of CGAL was extensively
used.

In order to compute the distances fields quickly and ef-
ficiently, we used nVidia’s GeForce 4 GPU, which has 24
bit precision of accuracy in Z-buffer. With the availability
of new GPU’s such as ATI’s Radeon9700, we can further
improve this accuracy by using their floating point compu-
tational capability in the graphics pipeline.

7.2 Performance
We benchmarked our SV algorithm by using different mod-

els of varying complexities and with different sweeping tra-
jectories. The complexity of our benchmarking models varies
from 1,524 to 10,352 triangles. The model complexities are
summarized from the second to the fifth column in Table 1.
Furthermore, they consist of sharp edges and surface tri-
angles with high aspect ratio. The sweeping paths that
we chose are helical sweep (X-Wing and Swing-Clamps),
translations using cubic rational functions (Input Clutch),
and sinusoidal translations and rotations (the rest of the
models). Therefore, most of our benchmarks perform sweep
along very general trajectories. For the grid resolution in
our benchmarks, we use the grid resolution K = 128 for all
the models.

We performed timing analysis on a PC with Intel Xeon
2.4 GHz processor, 2GB of memory and nVidia GeForce
4 graphics card. The time spent during each stage in our
SV computational pipeline is shown in different columns of
Table 1. As the table shows, most of the time, typically
more than 80% of the total computational time, is spent in
the distance field generation stage of the pipeline. We ob-
served that the distance field computation time was mainly
spent on the readbacks between the framebuffer and main
memory. Thus, as we increase the grid size K, the total
computational time will increase linearly, since we perform
the readbacks O(K) times. We measured performance of
our SV computation pipeline on the hammer benchmark at
a grid resolution of K = 256. The distance field computa-
tion, front propagation and isosurface reconstruction took
41.4 s, 12.6 s and 8.9 s respectively.

In Fig. 9, we illustrate the results of the SV of the bench-
marking models computed by our SV algorithms. In the
figure, each row shows the generator polyhedral model Γ,
sweeping path τ , and the resulting SV approximation
∂SV (Γ), respectively. All the rendered images in Fig. 9 are
flat-shaded.

8. SUMMARY AND FUTURE WORK
We present an efficient, fast algorithm to approximate SV

of complex polyhedral models using the distance fields, fast
marching propagation method, and iso-surface reconstruc-
tion. The algorithm has been benchmarked on a number of
complex models with different sweep paths.



Combinatorial Complexity Computational Performance (seconds)
Model

Γ # of Surf # of Surf Tri ∂SV (Γ) Surf Gen Dist Field Front Prop Isosurface Tot

X-wing 2496 3931 770K 307K 3.208 36.15 1.69 3.12 44.1
Air Cylinder 2280 1152 234K 249K 1.966 16.0 1.65 1.55 21.16

Swing Clamps 1524 1049 212K 126K 1.492 15.7 1.73 1.33 20.2
Hammer 1692 1390 281K 198K 1.822 16.1 1.59 1.97 21.4

Input Clutch 2116 1175 239K 129K 1.789 16.2 1.61 1.39 20.9
Pipe 10352 15554 803K 247K 4.038 59.2 1.61 2.48 67.2

Pivoting Arms 2158 1718 347K 162K 2.138 21.4 1.60 1.64 26.7

Table 1: Model Complexities of SV Benchmarks. The first column shows the model names of the benchmarks.
From the second to the fifth column, each column respectively shows the triangle count of the generator Γ, the
number of ruled and developable surfaces, the total number of triangles in the tessellated ruled and developable
surfaces, and the triangle count of the boundary of ∂SV (Γ) computed by our algorithm. From the sixth to the
tenth column, each column respectively illustrates the timing for the surface primitive generation, distance field
generation, inside/outside classification using fast marching propagation, iso-surface extraction using the EMC,
and the total computation. We have chosen a grid resolution of K = 128 for all the benchmarks.

There are several areas for future work. We would like to
look at adaptive subdivision schemes for better reconstruc-
tion [45]. The performance of our algorithm can be further
improved by investigating more optimizations. These in-
clude more efficient surface generation based on incremen-
tal computations on sweeping path, possibility of using pro-
grammable graphics hardware to simulate the fast marching
method, etc. We would like to further investigate the ap-
plication of our SV algorithm to the areas such as collision
detection, robot workspace analysis, and computer-aided ge-
ometric design. Finally, we will like to extend this algorithm
to solids bounded by curved surfaces.
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Figure 9: SV Benchmarks. In each column, from left to right, each figure shows a generator model, sweeping
trajectory, and two views of the resulting SV approximation reconstructed by our SV algorithm, respectively. In
each row, each figure shows different benchmarking model, from top to bottom, X-Wing, Air Cylinder, Swing
Clamps, Hammer, Input Clutch, Pipe, and Pivoting Arms, respectively.


