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Acoustic Classification and Optimization for
Multi-Modal Rendering of Real-World Scenes

Carl Schissler1, Christian Loftin2, Dinesh Manocha3

University of North Carolina at Chapel Hill

Abstract—We present a novel algorithm to generate virtual acoustic effects in captured 3D models of real-world scenes for multimodal
augmented reality. We leverage recent advances in 3D scene reconstruction in order to automatically compute acoustic material
properties. Our technique consists of a two-step procedure that first applies a convolutional neural network (CNN) to estimate the
acoustic material properties, including frequency-dependent absorption coefficients, that are used for interactive sound propagation. In
the second step, an iterative optimization algorithm is used to adjust the materials determined by the CNN until a virtual acoustic
simulation converges to measured acoustic impulse responses. We have applied our algorithm to many reconstructed real-world
indoor scenes and evaluated its fidelity for augmented reality applications.

Index Terms—Sound propagation, material optimization, recognition
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1 INTRODUCTION

R ECENT advances in computer vision have made it possible to
generate accurate 3D models of indoor and outdoor scenes

from a sequence of images and videos. The resulting models are
frequently used for visual rendering, physics-based simulation,
or robot navigation. In many applications including computer-
aided design, teleconferencing, and augmented reality, it is also
important to augment such scenes with synthetic or realistic sound
effects. It has been shown that good sound rendering leads to an
improved sense of presence in virtual and augmented environ-
ments [1], [2].

The simplest methods for generating acoustic effects in
AR/VR are based on artificial reverberation filters which use
simple parametric decay models. However, the specification of
these parameters is time consuming and these techniques can’t
simulate many effects, such as diffraction or direction-dependent
reverberation. Instead, the most accurate algorithms are based on
sound propagation and dynamically compute an impulse response
(IR), or transfer function, based on the current position of the
source(s) and the listener within the environment. The sound
effects heard by the listener are computed by convolving the
impulse response with unprocessed or dry source audio.

In order to simulate sound propagation within a real-world
scene, a 3D surface representation is needed, usually in the form
of a triangle mesh. Another important requirement for sound prop-
agation is the need for accurate acoustic material properties for
the 3D scene representation. These properties include absorption
and scattering coefficients. They specify how sound waves interact
with surfaces in the scene and can strongly influence the overall
acoustic effects in the scene, including the reverberation time. The
material properties depend on a variety of factors including the an-
gle of sound incidence, frequency, acoustic impedance, thickness,
surface roughness, and whether or not there is a resonant cavity
behind the surface [3], [4], [5].
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Fig. 1: Our approach automatically estimates the acoustic materi-
als, (a), of 3D reconstructions of real-world scenes, (b), using deep
learning material classifiers applied to RGB camera images, (c).
We optimize the material absorption coefficients to generate sound
propagation effects that match acoustic measurements of the real-
world scene using a simple microphone and speaker setup (d).
The synthetic sound effects are combined with visual renderings
of captured models for multimodal augmented reality.

The geometric models used in current sound propagation
systems are either synthetically generated (e.g., using a CAD
system) or reconstructed from sensor data using computer vision
techniques. However, it is difficult to determine the appropriate
material properties for the 3D mesh. Current sound propagation
techniques have relied on tables of measured acoustic material
data that are assigned to the scene triangles or objects by a user [6].
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However, assigning these properties is a time-consuming manual
process that requires an in-depth user knowledge of acoustic mate-
rials. Furthermore, the resulting simulations may not match known
acoustic characteristics of real-world scenes due to inconsistencies
between the measured data and actual scene materials.

Recent improvements in data acquisition and computer vision
techniques have resulted in a large body of work on reflectance
acquisition [7] which is targeted towards realistic visual rendering.
However, these methods may not be directly useful for sound
propagation, as they do not account for acoustic phenomena (e.g.,
frequency-dependent wave effects).

Main Results: We introduce a novel technique for automatically
determining the acoustic material properties of 3D-reconstructed
real-world scenes for multimodal augmented reality applications.
Our approach builds on recent advances in computer vision and
3D scene reconstruction and augments them with a few simple
acoustic impulse response measurements. We apply a convolu-
tional neural network to the images of the real-world scene and
use the result to classify the materials associated with each triangle
of the 3D reconstructed model (Section 3.1). These materials are
used to initialize an optimization algorithm that iteratively adjusts
the frequency-dependent absorption coefficients until the resulting
acoustic simulation, computed using path tracing, is similar to the
measured impulse responses from the real scene (Section 3.2). The
resulting 3D model and the acoustic material characteristics are
used to simulate realistic sound propagation effects for augmented
reality. We have evaluated our technique on several room-sized
scenes and show that it is able to generate impulse responses that
closely match the ground-truth measurements in those rooms (Sec-
tion 5). We also present a preliminary user study that demonstrates
the subjective plausibility of the sound produced by our algorithms
(Section 6).

Our overall approach for capturing the acoustic characteristics
of real-world scenes is designed to be simple and practical. In
particular, we make little assumptions about captured acoustic
data and ensure that the optimization algorithm can compute
the absorption coefficients quickly. Furthermore, we use very
simple acoustic sensors (e.g., a simple microphone and speaker) to
capture the impulse responses of real-world scenes. To the best of
our knowledge, this is the first approach for automatic computation
of acoustic material properties from 3D reconstructed models for
augmented reality applications.

2 RELATED WORK

In this section we give a brief overview of prior work in sound
propagation, acoustic material properties, 3D reconstruction, and
visual material segmentation.

2.1 Sound and Multi-modal Rendering
It is well known that realistic sound effects can improve the
sense of immersion in virtual or augment reality. Further, a
greater correlation between audio and visual rendering leads to
an improved sense of spaciousness in the environment [2], [8]. In
order to generate realistic sound effects, we need the 3D model
of the environment along with the acoustic characteristics of the
materials.

Algorithms that simulate the propagation of sound in a virtual
environment can be broadly divided into two major classes:
wave and geometric. Wave-based techniques numerically solve

the wave equation and are the most accurate sound propagation
approaches. These include offline approaches like the finite-
element method [9], adaptive rectangular decomposition [10], and
the boundary-element method [11]. However, the computational
complexity of these techniques increases dramatically with the
size of the acoustic space and the simulation frequency, making
them impractical for interactive applications. Other techniques
like the equivalent source method [12] are designed for real-time
auralization and perform considerable precomputation, but are in
practice limited to static scenes and low to middle frequencies
(e.g. 1−2KHz). Wave-based precomputation approaches have also
been extended to handle dynamic sources [13], but the memory
and precomputation cost of these is substantial.

On the other hand, geometric sound propagation techniques
are better suited for interactive applications and can generate
plausible effects. These approaches simplify the computation of
acoustic effects by assuming that the wavelength of sound is much
smaller than the size of primitives in the scene. As a result, they are
less accurate at low frequencies, where wave effects become more
prominent. Image source methods [14], beam tracing [15] and
frustum tracing [16] have been proposed for computing specular
reflections, while Monte Carlo path tracing is commonly used for
computing diffuse reflections [16], [17], [18], [19]. Geometric
techniques tend to approximate diffraction as a special case of
sound transport. The uniform theory of diffraction (UTD) [20]
is frequently used for interactive applications, while the more
accurate Biot-Tolstoy-Medwin (BTM) method is better suited
for offline simulation [21]. All these methods assume that a 3D
geometric model of a scene with acoustic material properties is
given and the resulting sounds are generated using real-world
recordings or synthesized sounds.

2.2 Acoustic Materials
The properties of an acoustic material determine how incident
sound interacts with the material: how it is reflected, scattered,
and transmitted through the material. While complex bidirec-
tional reflection distribution functions (acoustic BRDFs) have been
used to describe the reflectance of sound with respect to the
incoming and outgoing directions [22], a lack of measured data
for most material types limits their usefulness. More commonly,
the reflection characteristics of an acoustic material are specified
using a frequency-dependent absorption coefficient α ∈ [0,1] that
determines the fraction of incident sound pressure absorbed with
each reflection [4]. α is generally a function of the incident angle,
θi, though it is common to instead average α(θi) over θi to
compute the random incidence absorption coefficient, αrand . This
value is commonly measured according to ISO 354 [23]. A sheet
of the material to be tested is placed in a reverberation chamber
with a known reverberation time. The change in reverberation
time with the material present is used with the Sabine equation to
estimate αrand . A table of measured sound absorption coefficients
for 66 common architectural material types can be found in [3].
The absorptive properties of a surface can also be described by the
sound energy reflection coefficient, R =

√
1−α . Our optimization

approach is formulated in terms of R, rather than α .
Other models have been proposed for calculating sound scat-

tering. The simplest use a single frequency-dependent scattering
coefficient s ∈ [0,1] that indicates the fraction of incident sound
that is scattered [24]. Usually a Lambertian distribution is assumed
for the scattered sound. The remainder of the sound energy (1−s)
is specularly reflected.
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Fig. 2: Our approach begins by generating a 3D reconstruction of a real-world scene from multiple camera viewpoints. Next, a visual
material segmentation is performed on the camera images, producing a material classification for each triangle in the scene. Given a
few acoustic measurements of the real scene, we use the visual materials as the initialization of our material optimization algorithm.
The optimization step alternates between sound propagation simulation at the measurement locations and a material estimation phase
until the simulation matches the measurements. The result is a 3D mesh with acoustic materials that can be used to perform plausible
acoustic simulation for augmented reality.

Many algorithms have been proposed to optimize the acoustic
parameters for computer-aided design [25] or estimate the acoustic
properties of real world scenes for inverse sound rendering [26],
[27]. Recently, a genetic algorithm has been proposed to estimate
the material properties of an existing room so that it matches
measurements [28]. However, this process is time-consuming and
requires many iterations. Our approach shares the same theme
in terms of using acoustic measurements and is most similar in
formulation to [26], but our approach is also able to handle diffuse
reflections, diffraction, real-world measured IRs, and is robust to
measurement noise.

2.3 3D Reconstruction
3D model reconstruction remains an active area of research in
computer vision [29]. Many reconstruction approaches use two
or more camera images of the same scene to estimate its struc-
ture. Passive methods use RGB images of a scene, while active
reconstruction methods are based on projecting a structured light
pattern into the scene [30], [31]. By analyzing the deformations
of the light source with respect to the projected pattern, pixel
correspondences can be found and used to compute high-quality
depth maps. The relative transformation of the cameras is either
known or estimated from image features. The Iterative Closest
Point algorithm [32] aligns the depth image for a given frame
with the structure of previously captured data, while Structure
from Motion approaches match feature points (e.g., SIFT) in the
images to estimate the camera poses. The depth information in the
images is then fused to generate a 3D mesh in a global coordinate
system. High-level plane primitive models can be used to improve
the quality of the reconstruction [33]. Some of the criteria for 3D
model reconstruction for sound rendering are different than for
visual rendering. For example, it is important to ensure that the
resulting models are watertight with no holes [34], [35]. Further-
more, we may not need to reconstruct many small features of real-
world scenes. Previous work has shown that approximate mesh
data can be sufficient to simulate the main acoustic characteristics
of a virtual space [36], [37].

2.4 Visual Material Segmentation
Given an image of a scene, material segmentation approaches use
visual characteristics to determine a material type for each pixel

in the image. Liu et al. [38] combine both low-level (e.g., color)
and mid-level (e.g., SIFT) image features trained in a Bayesian
framework and achieve moderate material recognition accuracy.
By using object and material recognition together, it has been
shown that recognition results can be improved [39]. The most
recent techniques are based on convolutional neural networks
(CNNs) [40]. The Materials in Context Database (MINC) is
a notable example where CNNs were trained for classification
of material patches [41]. Context within the patches is used to
improve the classification results, and these CNN classifiers were
combined in a conditional random field (CRF) framework to
perform segmentation and material recognition on every pixel in
an image. Our approach builds on this work and extends these
ideas to classification of acoustic materials in 3D reconstructions
of real-world scenes.

3 ACOUSTIC MATERIALS FOR RECONSTRUCTED
SCENES

In this section we describe our approach and how it enables
sound propagation in 3D reconstructions of real-world scenes. An
overview of the pipeline is shown in Figure 2. As input, our tech-
nique takes a dense 3D triangle mesh that has been reconstructed
using traditional multi-camera computer vision approaches. We
assume that the mesh is mostly free of holes and other recon-
struction errors. Our pipeline begins by applying a CNN-based
material classifier to each of the RGB camera images from the
reconstruction to determine the probability that materials from
a known database are present. The materials in each image are
projected onto the 3D mesh and the most likely material is chosen
for each material patch, where the patches are generated using a
3D superpixel segmentation algorithm. If acoustic measurements
of the real scene (i.e. recorded audio samples) are available,
this material information is used to initialize an optimization
algorithm that iteratively refines the materials so that virtual sound
propagation matches these acoustic measurements. The result is
a 3D mesh and a set of materials that can be used for sound
propagation and can generate virtual sounds that match those in
the real environment.
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Fig. 3: The sound propagation and rendering pipeline of our system. Given the 3D mesh and optimized materials produced by our
method, sound propagation is computed in the scene using separate modules for specular early reflections, diffraction, and path tracing.
The result is auralized using a combination of delay interpolation for direct and early reflections paths, as well as convolution with the
impulse response for late reverberation. HRTF-based spatial sound is applied to direct and early paths, while vector-based amplitude
panning is used for the impulse response. The propagation path computation is also used by the optimization algorithm in Section 3.2.

3.1 Visual Material Classification for Acoustics

We present a new technique that uses the visual appearance
of a real scene to estimate the acoustic material properties of
the primitives. We make the assumption that there is a strong
correspondence between the visual appearance of a surface and
its acoustic material. For example, if a surface appears to be
like brick, it is likely to have acoustic properties similar to the
measured acoustic characteristics of a brick (e.g., to be highly
reflective). The basis of our material classification approach is the
Materials in Context Database (MINC) and its classifier models
that have been trained for 23 common material categories [41].
From these 23 categories, we select a subset of 14 that are likely to
be encountered in real scenes and discard material categories that
are less relevant for acoustic simulation (e.g. hair, skin, food). We
manually associate each of the categories with measured data for
similar acoustic material types from [3]. For example, the MINC
“brick” material category is matched with the measured absorption
coefficients for the “unpainted brick” acoustic material. When
there is not a one-to-one mapping between the visual material
categories and the acoustic material data, we pick the most similar
acoustic material in the database. This process is performed once
per material category. The resulting table of material categories
and their associated acoustic materials are summarized in Table 2.

The MINC CNNs were trained using 3 million material
patches from 436,749 images classified by human workers on
Amazon Mechanical Turk. Bell et al. [41] have shown that
context, i.e. the image content surrounding a point of interest,
is important in accurately classifying the materials in an image.
For this reason, we choose to use images of real scenes as the
input to the classification pipeline since they contain the necessary
context information. For 3D scene reconstruction, a structured-
light RGBD camera is used to capture the images of the scene. We
use these images as the input to our material classification method.
Using the approach of [33], we also generate a 3D triangle mesh
for the scene with the color specified per-vertex. As part of the
reconstruction, we assume that the camera projection matrix for
each image is also available. These matrices are used to project
the computed materials onto the mesh.

Our material classification approach is applied to each of
the RGB camera images independently. We use a variant of the
sliding-window approach detailed in [41] to apply the MINC
trained GoogLeNet [42] to a grid of locations in each input image.
The input to the network is a square image patch centered at the

test location of size p = d ∗ 256/1100 where d is the smaller
of the image dimensions. The patches are extracted from the
input image and scaled to 224×224 resolution. The mean of the
patch is subtracted before it is passed through the CNN. At each
test location, the CNN classifier predicts a probability for each
material category. This grid of test locations is used to generate
probability maps for all of the material categories. The probability
maps are low-resolution images indicating the probability that a
given material type is present at a position in the original image.
The results are bilinearly filtered to the original image resolution
and padded with zeros to maintain alignment before they are used
to generate a final probability map for each camera image and
material category.

3.1.1 Patch Segmentation
The next step is to determine the segmentation of material patches
that should be used for the reconstructed 3D triangle mesh. These
patches are localized groups of triangles that are assumed to be
the same material. We use a 3D version of the SLIC superpixel
segmentation algorithm [43] and the vertex colors computed
during reconstruction from the RGB images to determine the
segmentation. In our particular implementation, we are concerned
with clustering triangles rather than voxels, so we cluster ac-
cording to the interpolated color of each triangle’s centroid. The
first step in the SLIC algorithm is to convert the RGB color for
each triangle centroid to the LAB color space. Then, the initial
superpixel cluster centers in 3D space are determined by sampling
the bounding box of the mesh at regular interval s on a cubic
grid. The sampling interval s is determined using the relation
s = (V/k)1/3, where V is the volume of the mesh’s bounding
box and k is the desired number of cluster centers. The initial
color values for the cluster centers are chosen to be the colors of
the nearest triangle centroids. Thus, each cluster and triangle is
described by an (X ,Y,Z,L,A,B) tuple.

Next, the SLIC algorithm iteratively refines the clusters until
the maximum error for all clusters is lower than a threshold or until
the algorithm converges. First, each cluster considers all triangles
within a 2s×2s×2s region around the center point in 3D space.
The distance in XYZLAB space between the triangle centroid
and cluster center is computed according to the standard SLIC
distance metric, and the cluster label for each triangle is chosen
to be the cluster with the smallest distance. Then, the XYZLAB
cluster centers are recomputed as the average of all triangle
centroids that belong to a cluster. The residual error between the
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old and new cluster centers is determined using the L2 norm in
XYZLAB space. If the error is less than a threshold or if the error
converges, the algorithm is terminated. The result is a collection
of material patches that tend to closely match the visual features
and boundaries in the reconstructed mesh. These patches are used
as the basis of our material optimization algorithm (Section 3.2).

3.1.2 Material Projection
Next, the 2D classification results for all images are combined and
applied to the reconstructed 3D triangle mesh. For each patch in
the mesh, we create an accumulator pi, initially set to zero, that
stores the probability that the patch has the ith material type. Next,
we project the material probabilities present in each image into the
scene with the camera projection matrix. In our implementation,
we perform this operation by tracing a ray for each image pixel.
The patch intersected by the ray is updated by sampling from the
probability map for the ith material type, and then we add the
sampled probability to pi. After this step has been carried out for
every input image, we choose the final material for each patch to
be the material with the largest pi. By combining the results from
many input images that are likely to have significant overlap, we
achieve more robust material classification than could be achieved
by using the results from a single image. Additionally, pooling the
pi for each material patch rather than for each triangle generates
more robust material classifications that follow patch boundaries
and are more likely to match the visual features of the mesh.

3.1.3 Mesh Simplification
The final step in preparing the reconstructed mesh for acoustic
simulation is to simplify the dense triangle mesh. Dense 3D
reconstructions frequently have triangles that are smaller than
the smallest audible wavelength of 1.7cm, given by the speed of
sound in the air and human hearing range. However, geometric
sound propagation algorithms are generally more accurate when
surface primitives are larger than audible sound wavelengths.
Therefore, we apply acoustic mesh simplification techniques [19]
to the dense 3D mesh and its material properties to increase the
size of surface primitives and to reduce the number of edges for
diffraction computation. The simplification algorithm involves a
combination of voxel remeshing, vertex welding, and the edge
collapse algorithm to reduce the model complexity. Boundaries
between the patches are respected by the simplification so that
no additional error is introduced. This results is a mesh that is
appropriate for geometric sound propagation.

3.2 Acoustic Material Optimization
While visual material classification algorithms can achieve good
results for visually salient materials (e.g., brick and grass), other
material types may be ambiguous (e.g., painted walls) or not in-
cluded in the training set. Furthermore, the materials for occluded
areas in the scene are also unknown. At the same time, these
occluded areas contribute to the acoustic effects of reflections
and diffraction. In addition, when applied to acoustic material
classification, the techniques developed for visual materials do
not consider non-visual properties like density and the presence
of hidden resonant cavities in the scene that can also affect the
acoustic characteristics. The thickness and rigidity of walls also
influences how sound propagates and these properties cannot be
determined visually. As a result, a visual material classification al-
gorithm used on the surfaces in a scene may not accurately classify

the acoustic materials. Even if accurate material segmentation and
classification information is known, the resulting sound simulated
using that information may not match the real scene because the
measured acoustic material data that is assigned to each material
does not necessarily generalize to arbitrary scenes. Another issue
is that holes in the 3D reconstructed mesh can cause the sound to
’leak’ out of the scene, unnaturally decreasing the reverberation
time. This problem can be mitigated by automatic hole-filling
techniques [44], [45], but they do not always produce a correct
result and can introduce other meshing errors.

In order to overcome these issues, we utilize captured acoustic
measurements in the real-world scenes. We propose a second
pipeline stage that optimizes the visually-classified material prop-
erties, computed using the algorithm in Section 3.1, so that the
resulting acoustic simulation more closely matches the IRs of
acoustic measurements taken from the real-world scene. One
simple possibility would be to use the reverberation time, RT60,
and Sabine reverberation equation to globally modify the ab-
sorption coefficients to match the measured RT60. However, the
Sabine model is only valid for rectangular rooms and does not
consider other important quantities like the ratio of direct to late
sound energy. The RT60 also doesn’t vary much throughout an
environment, and so it doesn’t provide much information about
the spatial locality of absorption. As a result, an approach based
on matching only the RT60 might lead to large errors with respect
to other perceptually-relevant metrics.

Our formulation instead optimizes the sound energy reflection
coefficient R for each material patch and simulation frequency
band using an iterative least-squares approach in order to minimize
the error between energy-time histograms from the simulation and
energy-time histograms from measured IRs. This is similar to the
approach of [26]. However our technique improves on several
significant limitations. Their method makes the assumptions that
all reflections are specular, that there is no significant diffraction,
that all sound propagation paths are discrete and known to the
optimization system, and that there is a one-to-one correspondence
between the paths in the optimized and target IRs. These assump-
tions can only be satisfied if the optimization target IR is computed
using the same simulation that is used during optimization, which
is not the case for measured IRs. In addition, the approach of [26]
only considers the early reflections computed via beam tracing
and so it can’t optimize the late reverberation present in real-
world scenes that involves high-order diffuse reflections. These
limitations prevent that method from optimizing acoustic materials
to match real-world measurements.

Therefore, we introduce a new method that is able to handle
the case of optimizing materials for sound rendering in real-world
scenes.

3.2.1 Acoustic Measurments
The target of our optimization algorithm is a collection of im-
pulse response measurements from the real scene. For each IR
measurement, there is a corresponding source and listener placed
within the virtual reconstructed 3D mesh. The target measured
IR for a single source/listener pair is given by the time-domain
signal HT (t), while the IR computed in the virtual scene for
the same source/listener pair is given by the signal HS(t). To
use these pressure IRs in our optimization approach, the first
step is to filter them into the frequency bands used for the
sound propagation simulation. This yields HT, f (t) and HS, f (t) for
frequency band f . Then, the Hilbert Transform is applied to extract
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Fig. 4: The results of our visual material classification algorithm for the four benchmark scenes. Colors indicate the material category
that has been assigned to each triangle of the reconstructed model. The middle row shows the results of our material classification, and
the bottom row shows the manually-generated ground-truth classification that are used for validation. The source and listener positions
for the acoustic measurements within the real room are shown as red and blue circles, respectively. These are used to optimize the
acoustic materials present in the scenes.

the pressure magnitude envelope from the filtered IRs [46]. The
square of the IR envelope then yields the energy-time curve for
each impulse response, indicating the distribution of sound energy
over time. The energy-time curve for the target and simulated
impulse responses and frequency band f are given by Tf (t)
and S f (t) respectively. The high-level goal of the optimization
algorithm is to minimize the error between S f (t) and Tf (t). Since
the number of time samples in the IRs may be on the order
of 105, it is necessary to perform the optimization at a lower
sampling rate than the audio rendering sample rate to reduce the
size of the optimization problem and increase its robustness. This
is done by binning the energy present in the energy-time curves
to produce energy-time histograms S f ,b and Tf ,b, where b is the
bin index. Thus, our algorithm in practice minimizes the error
between S f ,b and Tf ,b. The energy for bin b in each IR is given
by: S f ,b = ∑tb∈b S f (tb) and Tf ,b = ∑tb∈b Tf (tb). The bin size L is a
parameter that determines the time resolution of the optimization
and it impacts the robustness, convergence, and performance. We
used L = 10ms.

3.2.2 IR Registration
On each iteration of our optimization algorithm, the simulated IR
must be registered with the measured target IR so that it has the
same time alignment and similar amplitude. This is very important
for correct operation of our algorithm. If bins S f ,b and Tf ,b do not
correspond to the same time window in the IR, then the error
between them can be very large and this can lead to incorrect
results as the error grows on subsequent iterations. To rectify
this, we propose a method for registering the IRs that is robust
to the presence of noise in the measured IR. The registration
operation is performed independently for every frequency band
and at each optimization iteration. The first step is to compute
the cross correlation between the IRs at every time offset. The
simulated IR is then shifted in time to the offset where the cross

correlation is highest. Once the IRs have been time aligned,
the amplitudes must be matched. A significant problem with
matching them robustly is that the signal-to-noise ratio (SNR) of
the measured IR may be poor due to the presence of ambient noise.
This noise produces incorrect registration which can lead to poor
optimization performance. As a result, we only consider the bins
in the IRs that have energy over the noise floor for both IRs. Given
a signal-to-noise ratio for each IR, SNRT and SNRS, we determine
the noise floors to be εT =

max(Tf (t))
SNRT

and εS =
max(S f (t))

SNRS
. In the

case of our measurement data, SNRT ≈ 104 and SNRS = ∞. Then,
an energy scale factor λ for the simulated IR that minimizes the L2
error between all bins Tf ,b > εT and S f ,b > εS is computed using
a least-squares solver. S f ,b is multiplied by λ to yield a simulated
IR that is registered to the target measured IR. The registered
IRs are used on each iteration of our algorithm to estimate the
error for each IR bin. The error in decibels for bin b between the
simulated and target IRs is given by E f ,b = dB(Tf ,b)− dB(S f ,b)
where dB(x) = 10log10(

x
I0
) and I0 is the reference sound intensity.

3.2.3 Acoustic Simulation
A key part of our algorithm is the incorporation of sound transport
information from virtual simulations within the scene’s 3D recon-
struction. We use a ray-based geometric sound propagation system
that computes S f (t) directly as the sum of many individual ray
paths, e.g. S f (t) = ∑δ (t− t j)I j, f where I j, f is the sound intensity
for path j and frequency band f , t j is the propagation delay time
for path j, and δ (x) is the Dirac delta function. Along with S f (t),
the sound propagation system also computes a weight matrix,
Wf , for each frequency band. Wf has rows corresponding to the
impulse response bins and columns corresponding to the material
patches present in the scene. For IR bin b and patch m, the entry
of Wf is given by w f ,bm =

∑ I j, f d j,m
∑ I j, f

where d j,m is the number of
times that path j hit material patch m during its scene traversal.
Therefore, w f ,bm represents the average number of reflections



7

from patch m for all paths that arrived at the listener during
bin b, weighted according to the sound intensity of each path.
Essentially, Wf encodes the amount of influence each material
patch has on every IR bin. The weight matrix is used during the
optimization procedure to estimate the best changes to make to the
material patches to minimize the error between S f ,b and Tf ,b.

3.2.4 Solver System
In the unlikely case where there is just one sound propagation
path per bin in the impulse response, the energy for a simulated
impulse response bin is given by:

S f ,b =
P

4πN ∏
d

R j f d (1)

where P is the sound source’s power, N is the number of primary
rays emitted from the source, and R j f d is the frequency-dependent
energy reflection coefficient encountered along path j at reflection
bounce d. Converting S f ,b to decibels by taking the logarithm
allows the energy to be expressed as a linear combination of the
logarithm of reflection coefficients:

dB(S f ,b) = dB
(

P
4πN

)
+∑

d
dB

(
R j f d

)
. (2)

In the approach of [26], this relationship is used to directly solve
for the reflection coefficients that produce dB(S f ,b)≈ dB(Tf ,b) in
a least-squares sense. Given the weight matrix Wf obtained during
the simulation, the system of equations solved by [26] is roughly:

Wf dB(R f ) = dB(Tf )−dB
(

P
4πN

)
(3)

where R f is a vector of the reflection coefficients for each material
patch, and Tf is a vector of the energy for the bins of the
target impulse response. After solving for dB(R f ), the reflection
coefficients can be directly determined by inverting the decibel
transform. This formulation requires a one-to-one correspondence
between the propagation paths in the simulated and target impulse
responses and so cannot be used in the presence of diffuse reflec-
tions or diffraction because these phenomena introduce scattering
that “blurs” the boundaries between paths. Their approach also
requires accounting explicitly for the effects of additional acoustic
phenomena such as air absorption. In addition, since it is difficult
to extract discrete paths from a measured impulse response,
especially for late reverberation, the technique of [26] cannot be
applied to real-world measurements.

To handle these problematic cases, we reformulate the opti-
mization problem as an approximate iterative algorithm. In the
general case where many paths are assigned to the same bin, the
energy in each bin of the simulated IR is given by:

S f ,b =
P

4πN ∑
j
∏

d
R j f d . (4)

This produces a non-linear system of equations that is difficult
to handle accurately within the framework of [26]. Therefore we
make the assumption that most of the paths in the same bin will hit
a similar number of patches during the scene traversal. While this
assumption introduces some error, it allows the use of a similar
least-squares formulation. Rather than solving directly for the
reflection coefficients, we instead iteratively estimate the change
in decibels to each reflection coefficient that minimizes the error
between the simulated and target IRs. This enables our algorithm
to automatically handle a wider range of acoustic phenomena and

means that it is robust to external influence from noise. The system
solved on each iteration is given by:

Wf dB(∆R f ) = E f (5)

where dB(∆R f ) is a vector of the change in decibels for each
patch’s reflection coefficient, and E f is a vector of the error
between the simulated and target IRs in decibels for all IR bins.
The reflection coefficients are then updated on each iteration by
R′f ,m = R f ,m∆R f ,m. To enforce physical plausibility, the reflection
coefficient should be constrained to the range [Rmin,Rmax] en-
countered for typical real-world materials. We use Rmin = 0.3 and
Rmax = 0.999. For other applications (e.g. architectural acoustics)
it may be useful to apply additional constraints on material
placement.

This approach can be easily extended to handle the case where
there are multiple measured IRs. If W i

f is the weight matrix
computed for IR i, then the final weight matrix Wf used to solve
the system for all IRs is formed by vertically concatenating the
rows of each W i

f . Similarly, if E i
f is the error in decibels for IR

i, then the final error vector E f is the vertical concatenation of
the various E i

f . The final optimized materials will then incorporate
information from every measured IR.

3.2.5 Optimization
The optimization begins with the initial materials for every patch
in the scene as determined in Section 3.1. Then, our iterative
constrained least-squares optimization algorithm is applied to
modify the materials so that the simulation better matches the
real scene. The main steps of our algorithm at each iteration are
summarized below:

1) For each IR in the scene, build the solver system:
a) Compute simulated energy-time curve S f (t) and weight

matrix Wf .
b) Register simulated IR S f (t) to target measured IR Tf (t).
c) Bin S f (t) and Tf (t) into energy-time histograms S f ,b and

Tf ,b with bin size L.
d) Compute, E f ,b, the error in decibels between S f ,b and Tf ,b.

2) Solve least-squares system to get change in reflection coeffi-
cients, ∆R f ,m.

3) Apply ∆R f ,m to material patches R f ,m, enforcing constraints.
4) Check termination conditions.

The algorithm terminates once a maximum number of iterations
has elapsed, if the average per-bin error is less than 1 decibel, or
the algorithm converges to a local minimum.

4 IMPLEMENTATION

In this section, we describe the implementation of various
components of our approach.

3D Model Reconstruction: We generated a 3D reconstruction of
each real-world scene (i.e., a room) using a few hundred RGB-D
images captured with a Microsoft Kinect at 640x480 resolution.
The reconstruction algorithm utilizes high-level plane primitive
constraints and SIFT features [33] to compute the 3D triangle
mesh that is used as an input by our acoustic classification and
optimization algorithm. The captured images are also used as the
input to our classification algorithm. All material classifications
were performed using the Caffe deep learning framework [47]
and MINC patch classifier models [41] on an Nvidia GTX 960.
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Sound Propagation and Rendering: An overview of our sound
propagation and rendering system is shown in Figure 3. We use
a combination of the image source method for specular early
reflections [14], diffuse path tracing for late reverberation [17],
[19], and the UTD diffraction model for approximating edge
diffraction [20]. All the sounds in our system are computed in
8 octave frequency bands centered at 63.5Hz, 125Hz, 250Hz,
500Hz, 1kHz, 2kHz, 4kHz, and 8kHz. The paths computed by
the underlying propagation algorithm are used in the material
optimization algorithm. The result of sound propagation is an
impulse response for every source and listener pair in the scene.
The impulse response is spatialized using vector-based amplitude
panning [48] and the unprocessed dry source audio is convolved
with the IR. We also compute perceptually important sound paths
such as the direct and early reflection paths separately from
the impulse response so that linear delay interpolation [49] and
HRTF spatial sound can be applied independently for each path.
The outputs of delay interpolation and convolution rendering
are mixed and then sent to the audio device for playback over
headphones (see the supplementary video).

Acoustic Measurements: The ground-truth acoustic measure-
ments for our optimization approach consist of impulse responses
at various source and listener locations in the real scenes. The
measurements are captured using complimentary Golay codes [50]
played through a JBL LSR4328P speaker and captured by a
Beyerdynamic MM1 omnidirectional measurement microphone.
The measurement setup is depicted in Figure 1 (d). These mea-
surements for each room take about 20− 30 minutes, including
the time to setup the equipment. We measured 4 impulse responses
for each scene that correspond to 4 different speaker/microphone
pairs. Each IR was measured 20 separate times and then the
results were averaged to reduce the amount of noise present. These
measured IRs are used for auralization and are also used during
our optimization algorithm. The positions and orientations of the
microphone and speaker with respect to the 3D reconstruction
were also measured and entered into the simulation. In order to
correctly replicate the directional characteristics of the speaker in
the sound propagation simulation, we also measured the direc-
tional transfer function of the speaker in free space at 15 azimuths
and 4 elevations for a total of 60 measurements. The magnitude
response of the transfer function in the 8 octave frequency bands
is used to model the directional speaker in our simulation so that
there is better correspondence with the measured IRs. Overall, the
audio capture requirements of our approach are low and robust
to measurement errors from consumer audio equipment (e.g.,
with nonlinear microphone or speaker frequency response). In
situations with low background noise, the impulse response can
even be estimated by recording the result of the user clapping
their hands.

5 RESULTS AND ANALYSIS

We have evaluated our acoustic material classification and op-
timization approach on several indoor real-world scenes typical
of an office environment. The major characteristics and results
for these scenes are summarized in Table 1. Our approach is not
optimized and currently takes 6-9 hours to classify the materials
in each scene. The results for the visual material classification are
shown in Figure 4. We compare the output of the classification
approach to a manually segmented mesh that is used as the

ground truth. Overall, about 48% of the triangles in the scenes are
correctly classified. For some of the materials that are incorrectly
labeled (e.g. the carpet floor in Room 229 labeled as “Stone, pol-
ished”), it is possible that the CNN is unable to tell the difference
between certain types of visually similar materials. A possible
explanation for these results is that the input image resolution
used in our implementation is less than half of the training images
for the MINC dataset (1100px vertical dimension), and the RGB
images contain lots of noise. There is not enough salient high-
frequency information in the input images for the CNN to detect
all of the material types. Another shortcoming of our automatic
acoustic material classification is that the CNN cannot accurately
predict materials that require higher-level knowledge of the scene.
For instance, some of the test rooms contain posters on the wall
that have negligible effect on the acoustics, and so the wall
material (e.g. “painted”) should be used. However, the CNN can be
confused in these situations and produces incorrect predictions that
cannot be rectified without high-level knowledge of how sound
propagates through materials.

On the other hand, our acoustic material optimization algo-
rithm for computation of absorption coefficients improves the
accuracy of the simulated impulse responses with respect to
the measured IRs. The results of our optimization algorithm
for one IR in each scene are shown in Figure 5. Results for
additional additional IRs can be found in the supplementary
document. We show the energy-time histograms for the 125Hz,
500Hz, 2,000Hz and 8,000Hz frequency bands. For each band,
we compare the measured data to the results produced directly
after material classification, as well as the final results generated
by our optimization algorithm. Before optimization, there are
several significant mismatches with the measured data, especially
in the mid-frequency bands. This can be partially explained by
error during classification, though another significant factor is
the table of measured absorption coefficients (Table 2), which
may not always be valid for general scenes with various wall
construction techniques. When the classified results are compared
to the ground truth materials (before optimization), we observe
similar error for both with respect to the measured data. This
supports the conclusion that the material database does not match
the test rooms well.

After optimization is applied, the impulse responses are much
closer to the measured data. Overall, the optimization results
are very close for the mid frequencies (500− 1000Hz), with
an average error of just 1− 2dB. At low frequencies there is
a substantial amount of noise in the measured data, and the
energy decay is not very smooth. This causes some error when
compared to the optimized results that have a perfectly smooth
energy decay curve. At high frequencies, we observe that the
measured IRs tend to decay at a decreasing rate over time (e.g.
not linear in decibels). This is most visible for Room 229 in the
8kHz frequency band. Our simulation does not reproduce this
effect and it generates completely linear decay curves. This is
an additional source of error that may require more sophisticated
sound propagation algorithms to rectify. Noise in the measured
IRs also makes it difficult to precisely match the energy decay
for the entire impulse response decay. If the noise floor is set too
high, then not all of the IR is considered during optimization. If
the noise floor is set too low, such that the optimization considers
the noise to be part of the IR, then it tends to produce a result with
a slower incorrect decay rate. Setting the signal to noise ratio for
each IR and frequency band is important for correct operation of
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(a) Room 216, IR 1
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(b) Room 229, IR 1
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(c) Room 251, IR 1
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(d) Room 348, IR 1
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Fig. 5: The main results of our optimization approach in the benchmark scenes. We compare the energy-time curves and several
standard acoustic parameters for the measured IRs (measured) to the results before optimization (classified) and the optimized results
(optimized). We also show the results for manually-segmented materials without optimization (ground truth). The energy-time curves
are presented for four different octave frequency bands with center frequencies 125Hz, 500Hz, 2000Hz, and 8000Hz. The noise floor
corresponds to the signal to noise ratio of the measured IR for each frequency band.
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Scene Complexity Classification Optimization
Scene Dimensions (m) # Triangles RT60 (s) # Images Time (hr) % Correct Time (s)

Room 216 5x3.8x2.6 228,017 0.29 486 9.3 43.6 142.2
Room 229 5.3x3.6x2.6 139,545 0.44 481 9.2 52.5 154.1
Room 251 3.9x3.3x2.6 168,098 0.37 340 6.5 43.8 134.9
Room 348 4.3x3.1x2.6 131,194 0.37 481 9.2 51.4 150.5

TABLE 1: This table provides the details of the four room-sized benchmark scenarios. We give the physical dimensions of each room
and the geometric complexity of the 3D reconstructed mesh models after simplification, as well as the RT60 values computed from
the IRs. We highlight the time spent in the material classification and the optimization algorithms, as well as the percentage of scene
surface area correctly classified.

the algorithm.

We also compared the results for several standard acoustic
parameters: reverberation time (RT60), early decay time (EDT),
clarity (C80), definition (D50), and center time (TS). For the RT60
and EDT, the optimized results are close to the measured results
for most frequencies, and the average error is 0.08s. There are
some mismatches at low frequencies, but these are explained
by noise at the end of the IR incorrectly increasing the reported
decay rates for RT60. The EDT parameter is less sensitive to this
noise because it only considers the first 10dB of energy decay.
The C80, D50, and TS parameters consider the ratio of early to
late sound in different ways. The results for these parameters are
mixed. In some cases the optimized parameters are very close to
the measured data (e.g. 1dB), but for others there are significant
differences (e.g. over 5dB). A few errors are caused by noise
impacting the computation of the parameters. In particular, for
the computation of C80 and D50, it is important to know the time
of first arrival in the IR. If this time is not determined accurately,
it can cause significant differences in the reported parameters.
Other errors seem to be mostly random, so it is hard to tell what
is the cause. Overall, our optimization algorithm is able to match
the measured data reasonably well, though there may be room for
future improvement.

Analysis: The accuracy of our approach depends on four main
components: the quality of the reconstructed 3D mesh model, the
resolution of the input images and machine learning approach
used for material classification, the database of acoustic materials,
and the sound propagation model. While we may not need to
reconstruct some small features of the scene (e.g. the door knob or
a book on the shelf), it is important that we get nearly watertight
meshes with only small holes, otherwise the sound waves
can ‘leak’ from those models. Furthermore, the reconstruction
algorithm may not capture some hidden areas that affect the
sound propagation characteristics (e.g., hidden resonant cavities
or non-line-of-sight large objects). It is important to acquire
high resolution input images of the scene, as that affects the
accuracy of the classification algorithm. Ideally, we want to use
classifier models that are trained in terms of acoustic material
categories and take into account the relationship between the
visual appearance and the acoustic properties, but such data does
not exist. As more acoustic material databases are becoming
available, we can use them to increase the fidelity of our material
classification algorithm. Finally, our optimization approach is
based on geometric sound propagation which may not accurately
simulate all sound phenomena. As a result, the optimization
may not produce impulse responses that are identical to the
measured ones. Ultimately, we would like to use more accurate

models for sound propagation such as wave-based methods
like the Boundary Element Method, but that would increase
the computational complexity of our optimization algorithm
substantially. Interestingly, all these four components are active
areas of research in different research communities: computer
vision, learning, acoustics, and scientific computation.

Applications: The proposed technique has many possible applica-
tions where it is useful to generate physically-based sound effects
for real-world scenes. On such application is teleconferencing.
When a remote person is speaking, the sound from their voice
can be auralized as if they are within the room. By combining
our technique with head or face tracking, it may also be possible
to estimate the IR between a human voice and microphone. This
IR can be deconvolved with the microphone audio to approximate
the dry sound from the voice. Another application is to use virtual
sound sources to provide feedback for an augmented reality user
interface. For example, a virtual character that is overlaid onto the
real world could communicate with the user. Our technique would
allow the character’s voice to be auralized as if it was within the
real environment. The audio could be presented through open-
back headphones that produce virtual sound with little attenuation
of the external sound.

6 USER EVALUATION

In this section, we present results from a preliminary user
study that evaluates the perceptual plausibility of our acoustic
classification and optimization algorithms in terms of generating
plausible sounds in real-world scenes.

Study Design: In the study, we compare sound auralized
using measured impulse responses, referred to as measured, to
the sound simulated using our technique both before and after
absorption coefficient optimization, referred to as classified and
optimized, respectively. We evaluated 2 comparison conditions:
measured vs. classified and measured vs. optimized. For each
case, we tested 2 source and listener pairs for each of the 4 scenes,
for a total of 16 comparisons. The study was conducted as an
online survey where each subject was presented with a 16 pairs of
identical videos with different audio in a random order and asked
two questions about each pair. The questions were (a) “which
video has audio that more closely matches the visual appearance
of the scene?” and (b) “how different is the audio in the videos?”.
The responses were recorded on a scale from 1 to 11. For the first
question, an answer of 1 indicates the audio from the left video
matched the visuals better, an answer of 11 indicates the audio
from the right video matched the visuals better, and an answer
of 6 indicates the videos were equal. On the second question,
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Absorption
Visual Category Acoustic Material 125Hz 250Hz 500Hz 1,000Hz 2,000Hz 4,000Hz

Brick Brick, unglazed 0.02 0.02 0.03 0.04 0.05 0.07
Carpet Carpet, heavy, on concrete 0.02 0.06 0.14 0.37 0.60 0.65
Ceramic N/A 0.10 0.10 0.10 0.10 0.10 0.10
Fabric Fabric Drapery, lightweight 0.03 0.04 0.11 0.17 0.24 0.35
Glass Glass, ordinary window 0.35 0.25 0.18 0.12 0.07 0.04
Leather Leather seating 0.44 0.54 0.60 0.62 0.58 0.50
Metal Steel 0.05 0.10 0.10 0.10 0.07 0.02
Painted Gypsum board, 1/2”, with 4” airspace 0.29 0.10 0.05 0.04 0.07 0.09
Plastic N/A 0.10 0.10 0.10 0.10 0.10 0.10
Stone Concrete, rough 0.01 0.02 0.04 0.06 0.08 0.10
Stone, polished Concrete, smooth 0.01 0.01 0.02 0.02 0.02 0.02
Tile Tile, marble or glazed 0.01 0.01 0.01 0.01 0.02 0.02
Wallpaper Gypsum board, 1/2”, with 4” airspace 0.29 0.10 0.05 0.04 0.07 0.09
Wood Wood, 1” panneling, with airspace 0.19 0.14 0.09 0.06 0.06 0.05

TABLE 2: The material categories and absorption coefficient data that was used in our classification approach. For each of the visual
material categories, a similar acoustic material and its absorption coefficients were chosen from [3]. For the “Ceramic” and “Plastic”
categories, there was no suitable measured data available so a default absorption coefficient of 0.1 was assigned for all frequencies.

an answer of 1 indicates the videos sounded extremely similar,
while an answer of 11 indicates the videos sounded very different.
Our research hypotheses were: (1) the optimized case has sound
with the same level of audio-visual correlation as the measured
case and better correlation than the classified case; (2) The sound
generated in the optimized case will be more similar to that from
the measured case than the sound from the classified case.

Study Procedure: The study was completed by a total of 19
subjects between the ages of 18 and 61, made up of 17 males and
2 females. The average age of the subjects was 28, and all subjects
had normal hearing. At the start of the study, subjects were given
detailed instructions and filled out a demographic information
questionnaire. Subjects were required to use either headphones
or earbuds when taking the study, and they were asked to calibrate
their listening volume using a test audio clip. Subjects were then
presented the 16 pairs of videos and responded to the questions
for each pair. The subjects were allowed to replay the videos as
many times as needed, and they were able to move forward and
backward in the study to change their answers if necessary. After
rating the 16 video pairs, the study was completed.

6.1 User Evaluation Results
The main results of our user evaluation are summarized in Fig-
ure 6. A two-tailed one-sample t-test across all scenes was used to
test hypothesis 1. For question (a), the subjects indicated the video
with the audio that more closely matched the visual appearance of
the scene. For the comparison between the measured case and the
classified case, the measured case is slightly preferred (p= 0.038),
with an average score of 5.3 across the scenes. This indicates that
the raw output of our classification approach does not match the
visual appearance of the scene very closely. However, the com-
parison between the measured and optimized cases indicates that
there is no preference for either case (p = 0.82), with an average
score of 6.1. The low significance supports our first hypothesis
that the level of audio-visual correlation for the measured and
optimized cases is similar. Therefore, our approach is suitable
for augmented reality applications that require generating virtual
audio that matches the appearance of the real-world scene.

For question (b), the audio differences between the 3 cases
were considered. When comparing the audio from the measured

and classified case, the average user score was 9.3, suggesting
strong differences in the audio. On the other hand, the audio
from the optimized case was more similar to the measured audio,
with an average user score of 5.9. When the second hypothesis
is evaluated using a two-tailed Welch’s t-test, we find that the
optimized sound has much fewer differences as compared to the
measured audio than the sound without optimization (p < 0.001).
This suggests that the optimization step is important for generating
sound that is close to the real-world scene.

Overall, the responses of the subjects varied significantly
across individuals, producing large standard deviations. Some
subjects could reliably tell the difference between the sound
conditions, but other subjects seemed to be guessing, especially
for the question concerning audio-visual correlation. The inclusion
of more subjects and expert listeners could improve the quality of
these results.

7 CONCLUSIONS, LIMITATIONS, AND FUTURE
WORK

We have presented a novel technique for acoustic material clas-
sification and optimization for 3D reconstructions of real-world
scenes. Our approach uses a CNN classifier to predict the material
categories for 3D mesh triangles, then iteratively adjusts the
reflection coefficients of the materials until simulated impulse
responses match corresponding measured impulse responses. We
evaluated this technique on several room-sized real-world scenes
and demonstrated that it can automatically generate acoustic
material properties and plausible sound propagation effects. We
used the results for multimodal augmented reality that combines
real-world visual rendering with acoustic effects generated using
sound propagation. Our initial results are promising and we
also conducted a preliminary user study that suggests that our
simulated results are indistinguishable from the measured data.

Our approach has some limitations. The accuracy of our
approach is governed by the sensor resolution and underlying 3D
model reconstruction algorithms. The input images for our ma-
terial classification system have low resolution and our approach
may not work well in this case. Moreover, the current approach of
assigning measured material data to the MINC material categories
can produce incorrect results. The number of categories is small
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Fig. 6: We compare the user evaluation results for measured
case versus the classified and optimized cases for 4 scenes and
2 questions. For question (a), a score below 6 indicates higher
audio-visual correlation for the first method in the comparison,
whereas a score above 6 indicates higher audio-visual correlation
for the second method. For question (b), the higher the score, the
more dissimilar the audio for the two cases under comparison.
Error bars indicate the standard deviation of the responses.

and therefore the current MINC CNN model doesn’t handle all
real-world material variation. However, the material optimization
technique proposed in Section 3.2 can be used to adjust the
absorption coefficients so that the simulation is more consistent
with acoustic measurements from the real scene. It is possible
that the optimization may not converge to physically-accurate
absorption coefficients because our approach may get stuck in
local minima. Our technique also may not work well in scenes
with many dynamic objects (e.g. humans) that can affect the
sound. However, the impact of these objects is usually negligible
if they are small in proportion to the size of the scene.

There are many avenues for future work in this domain.
Most work in computer vision has been targeted towards 3D
model reconstruction for visual rendering, and we need different
criteria and techniques for sound rendering, as described in Sec-
tion 2. Similarly, there is lack of measured data corresponding to
acoustic-BRDFs for most real-world materials. It would be useful
to extend recent work on visual material property acquisition [7]
to acoustic materials. There is not always a one-to-one mapping
between the visual material categories and the acoustic material
data. This can be improved by training CNN models for new
material types that disambiguate between specific acoustic ma-
terial categories (e.g. painted vs. unpainted brick). Our approach
also lacks high-level knowledge of the scene and materials, and
so can produce incorrect material predictions where high-level
knowledge is needed. Introducing additional material categories
or features, such as the surface normal or size of the room, may
help to classify problematic materials. Another possible avenue for

improvement would be to try alternative machine learning models
such as the support vector machine (SVM) or genetic algorithms.
For instance, an SVM could be used to classify materials based
on features extracted by the CNN [51]. We have only considered
the effects of the absorption/reflection coefficient on the impulse
response. It may be possible to achieve better results by simulta-
neously optimizing for other material attributes like the scattering
coefficient s, or by considering acoustic metrics like RT60, the
early decay time (EDT), or clarity (C80) as constraints. We would
also like to further evaluate our technique on larger indoor scenes
with varying reverberation effects (e.g. cathedrals, concert halls),
as well as outdoor scenes.
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