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Abstract
We present a novel algorithm to compute cache-efficient layouts of bounding volume hierarchies (BVHs) of polygonal
models. Our approach does not make any assumptions about the cache parameters or block sizes of the memory
hierarchy. We introduce a new probabilistic model to predict the runtime access patterns of a BVH. Our layout
computation algorithm utilizes parent-child and spatial localities between the accessed nodes to reduce both the
number of cache misses and the size of the working set. Our algorithm also works well for spatial partitioning
hierarchies including kd-trees. We use our algorithm to compute layouts of BVHs and spatial partitioning hierarchies
of large models composed of millions of triangles. We compare our cache-efficient layouts with other layouts in the
context of collision detection and ray tracing. In our benchmarks, our layouts consistently show better performance
over other layouts and improve the performance of these applications by 26%–300% without any modification of the
underlying algorithms or runtime applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Hierarchy and Geometric
Transformations

1. Introduction

Bounding volume hierarchies (BVHs) are widely used to ac-
celerate the performance of geometric processing and interac-
tive graphics applications. The applications include ray trac-
ing, visibility culling, collision detection, and geometric com-
putations on large datasets. Most of these algorithms precom-
pute a BVH and traverse the hierarchy at runtime to perform
intersection tests or culling.

The leaf nodes of a BVH correspond to the triangles of
the original model. The intermediate nodes are the bounding
volumes (BVs) such as spheres, axis-aligned bounding boxes
(AABBs), oriented bounding boxes (OBBs), and convex poly-
topes. The memory requirements of BVHs can be high for
large datasets. For example, the storage cost of a hierarchy of
OBBs (i.e., an OBB-tree) is approximately 64 bytes per node.
As a result, BVHs of large datasets composed of tens of mil-
lions of triangles can require gigabytes of space.

Our goal is to compute cache-efficient layouts of BVHs
to reduce the number of cache misses and improve the per-
formance of BVH-based algorithms. As the gap between the
processor speed and main memory speed widens, system de-
signers increasingly use caches and memory hierarchies to re-
duce memory latency. The access times of different levels of
a memory hierarchy can vary by orders of magnitude. As a
result, the running time of an algorithm varies as a function of
its cache access pattern.

Many mesh representations and algorithms have been pro-
posed to improve the cache access patterns of geometric mod-
els for specific applications. These representations and algo-
rithms include rendering sequences (e.g., triangle strips), pro-
cessing sequences (e.g., streaming meshes), layouts computed
using space filling curves, and minimum linear arrangement
(MLA). However, these representations and algorithms may

not improve the cache access patterns for different geometric
applications.

Main Results: We present a novel algorithm to compute
cache-efficient layouts of BVHs of large models. Our ap-
proach is cache-oblivious as it does not require any knowledge
of cache parameters or block sizes of the memory hierarchy
and is applicable to all kinds of BVHs and spatial partitioning
hierarchies that can be represented as a tree. We represent a
BVH as two separate linear sequences of BVs and triangles.
Our problem is reduced to computing cache-efficient layouts
of the BVs and the triangles. We introduce a new probabilistic
model to predict the runtime access patterns of BVHs based on
localities. Specifically, we utilize two types of localities during
traversal of a BVH: parent-child and spatial localities between
the accessed nodes. Our approach also uses the tree decompo-
sition algorithm [GI99] and cache-oblivious mesh layout al-
gorithms [YLPM05, YL06] to compute a layout that reduces
the number of cache misses and the size of the working set.

We use our algorithm to compute layouts of OBB trees
and kd-trees of large models composed of millions of trian-
gles. Based on these layouts, we accelerate the performance of
collision detection and ray tracing without any modifications
to the underlying algorithms or runtime application. We also
compare the performance of our layouts with other layouts in-
cluding depth-first layout, breadth first layout, van Emde Boas
layout, cache-oblivious mesh layout, and cache-aware layouts.
We have observed 26%–2600% improvement in performance
based on our cache-efficient layouts. Moreover, in some ap-
plications the performance of our cache-oblivious layouts is
comparable to that of cache-aware layouts. Overall, our ap-
proach offers the following benefits:

1. Generality: Our algorithm is general and applicable to a
wide range of BVHs and spatial partitioning hierarchies. It
does not require any knowledge of cache parameters or of
the block sizes of a memory hierarchy.

2. Applicability: Our algorithm does not require any modi-
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Figure 1: Ray Tracing the Lucy model: We apply a standard
kd-tree based ray tracing algorithm to the Lucy model consisting of 28
million triangles. A reflective plane is placed behind the Lucy model
and the scene also has shadows. We compute a cache-efficient layout
of the kd-tree of the Lucy model using our algorithm. Our layout im-
proves the performance of ray tracing by up to two times over previous
layouts, without any change to the underlying algorithm.

fication of BVH-based algorithms or the runtime applica-
tion. layouts.

3. Improved performance: Our layouts reduce the number
of cache misses during traversals of BVHs and spatial par-
titioning hierarchies. We are able to improve the perfor-
mance of standard collision detection and ray tracing algo-
rithms.

Organization: The rest of the paper is organized in the fol-
lowing manner. We give a brief survey of related work in Sec-
tion 2 and an overview of memory hierarchies and BVHs in
Section 3. Section 4 describes the localities that are used by
our algorithm. We present a novel probabilistic model to pre-
dict the runtime access patterns of BVHs in Section 5 and de-
scribe our layout algorithm in Section 6. We highlights its per-
formance in Section 7 and compare its performance with prior
approaches in Section 8.

2. Related Work

In this section, we give a brief overview of related work on
cache-efficient algorithms and layouts of BVHs and geometric
models.

2.1. Cache-Efficient Algorithms

Cache-efficient algorithms have received considerable atten-
tion over last two decades in theoretical computer science and
compiler literature. These algorithms include theoretical mod-
els of cache behavior [Vit01,SCD02] , and compiler optimiza-
tions based on tiling, strip-mining, and loop interchanging to
minimize cache misses [CM95].

At a high level, cache-efficient algorithms can be classi-
fied as either cache-aware or cache-oblivious. Cache-aware
algorithms utilize knowledge of cache parameters, such as
cache block size [Vit01]. On the other hand, cache-oblivious
algorithms do not assume any knowledge of cache parame-
ters [FLPR99]. There is considerable literature on developing
cache-efficient algorithms for specific problems and applica-
tions [ABF04, Vit01].

2.2. Layouts of BVHs

The impact of different layouts of tree structures has been
widely studied. There is considerable work on cache-coherent
layouts of tree-based representations including work on accel-
erating search queries. Given the cache parameters, Gil and
Itai [GI99] cast cache-coherent layout computation as an op-
timization problem. They propose a dynamic programming
algorithm to minimize the number of cache misses during
traversals of search queries. However, the computed layout
may not be storage efficient. Alstrup et al. [ABFC∗03] pro-
pose a method to compute cache-oblivious layouts of search
trees by recursively partitioning the trees.

There is relatively less work on cache-coherent layouts of
BVHs. We refer the readers to a recent book on real-time
collision detection [Eri04]. Opcode [Ter03] uses a blocking
method that merges several bounding volumes nodes together
to reduce the number of cache misses. The blocking is based
on van Emde Boas layout of complete trees [vEB77]. How-
ever, it is not clear that van Emde Boas layouts can minimize
the number of cache misses during traversal of general BVHs.
Havran analyzes various layouts of BVHs in the context of ray
tracing and improves the performance by using a compact lay-
out representation of BVHs [Hav97]. Yoon et al. [YLPM05]
propose a cache-oblivious mesh layout algorithm to compute
layouts of geometric meshes and bounding volume hierar-
chies. We compare our approach with this algorithm in Sec-
tion 8.2.

Layouts of geometric meshes: Many algorithms and repre-
sentations have been proposed to compute coherent layouts for
specialized applications. Rendering sequences (e.g., triangle
strips) [Dee95,Hop99] are used to improve rendering through-
put by optimizing the vertex cache hits in the GPU. Isenburg
and Gumhold [IG03] propose processing sequences, includ-
ing streaming meshes [IL04], as an extension of rendering se-
quences for large-data processing. In these cases, global mesh
access is restricted to a fixed traversal order. Many algorithms
use space filling curves [Sag94] to compute cache-friendly
layouts of volumetric grids or height fields. These layouts
are widely used to improve performance of image process-
ing [VG91] and terrain or volume visualization [PF01, LP01].
However, it is unclear whether space filling curves would ex-
tend to compute layouts of unstructured models and their hier-
archies. In graph theory, minimum linear arrangement (MLA)
[DPS02] has been widely researched to minimize the sum of
edge lengths of all the edges in a graph layout. However, there
is no direct relationship between reducing the sum of edge
lengths and minimizing the number of cache misses. Recently,
Yoon and Lindstrom [YL06] show that the MLA metric is a
cache-oblivious metric assuming that all the cache block sizes
are employed at runtime. Moreover, they also showed that the
sum of a log function of edge lengths is a practical cache-
oblivious metric derived from assuming power-of-two block
sizes.

3. Memory Hierarchies and BVH Layouts

In this section, we give an overview of memory hierarchies,
BVHs, and their layouts. We also introduce some of the ter-
minology used in the rest of the paper.

3.1. Memory Hierarchy and Caches

Most modern computer architectures use hierarchies of mem-
ory levels, where each level of memory serves as a cache for
the next level. The memory hierarchies have two main charac-
teristics [AV88]. First, higher levels in the hierarchy are larger
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in size, farther away from the processor, and have slower ac-
cess times. Second, data is moved in large cache blocks be-
tween different memory levels. The BVH layout is initially
stored in the highest memory level, typically the disk. The por-
tion of the layout accessed by the application is transferred in
large blocks into the next lower level, such as the main mem-
ory. A transfer is performed whenever there is a cache miss
between two adjacent levels of the memory hierarchy. The
number of cache misses depends on the layout of the BVH in
memory and the access patterns of the application. If the nodes
of a BVH are packed in blocks in a cache-coherent manner, the
number of cache misses can be reduced. For the sake of clar-
ity, we will use the term of cache block to indicate blocks of
different caches including L1/L2, main memory, and disk.

3.2. Bounding Volume Hierarchies

BVHs are widely used in various applications to accelerate the
performance of intersection or culling tests. The leaf node of a
BVH corresponds to the triangulated primitives and the inter-
mediate nodes are the bounding volumes (BVs). Each BV con-
servatively encloses its geometry contained in the node. Some
of the commonly used BVHs include sphere-trees [Hub93],
OBB-trees [GLM96], and k-DOP-trees [KHM∗98]. In the rest
of this paper, we use collision or intersection queries as the
driving application to explain the concepts behind computing
cache-efficient layouts of BVHs. These algorithms typically
take two inputs: two 3D objects or one 3D object and a ray.
The runtime algorithm traverses the BVHs of each object us-
ing a depth-first or a breadth-first order. The depth-first order
is typically used when we need to check for ray-object inter-
section or to check whether two objects overlap. The breadth-
first traversal order is preferred when the runtime algorithm
can be interrupted and may return approximate results, e.g.
time-critical computations or constant frame-rate rendering of
large models.

Extensive work has been done on evaluating the per-
formance of different BVHs for ray-tracing and proxim-
ity queries. These include the cost equations for ray-tracing
[WHG84] and collision detection [GLM96, KHM∗98]. These
cost equations take into account the tightness of fit for a BV
and the relative cost of computing intersections or overlaps
with those BVs based on the traversal pattern. However, these
formulations do not take into account the cost of memory ac-
cesses or of cache misses incurred while traversing the BVHs.
If the underlying model and its BVH cannot fit into the main
memory, the cost of memory accesses and cache misses can
become a significant factor.

3.3. Layout of BVH

We use the following notation to represent the BVs of a BVH.
We define n1

i as the ith BV node at the leaf level of the hier-
archy and nk

i as a BV node at the kth level of the hierarchy.
We also define Le f t(nk

i ) and Right(nk
i ) to be the left and right

child nodes of the nk
i . A parent node and a grandparent node

of the nk
i are denoted by using Parent(nk

i ) and Grand(nk
i ).

Formally speaking, a BVH is a directed acyclic graph,
G(N,E), where N is a set of BV nodes, nk

i , and E is a set of
directed edges from a node, nk

i , to each child node, Le f t(nk
i )

and Right(nk
i ), in the BVH. A layout of a BVH is composed of

two parts: a BV layout and a triangle layout. A BV layout of
a BVH, G(N,A), is a one-to-one mapping of BVs to positions
in the layout, ϕ : N →{1, . . . , |N|}. Our goal is to compute a
mapping, ϕ, that minimizes the number of cache misses and

Figure 2: Hugo and 1M Power Plant Models: The Hugo robot
model is placed in the top left of the power plant model, whose over-
all shape is shown on the right. We are able to achieve 35%–2600%
performance improvement in collision detection by using our cache-
efficient layouts of the OBB-tree over other tested layouts.

the size of the working set during the traversal of the BVH at
runtime. Similarly, we also compute a triangle layout to min-
imize the cache misses and the working set size during BVH
traversals.

4. Localities in BVH Traversal
In this section, we define two localities that are used to com-
pute a cache-efficient layout of a BVH. We also give a brief
overview of prior work on packing trees and cache-oblivious
mesh layout algorithms, which are used by our novel layout
algorithm.

4.1. Access Patterns during BVH Traversal

Collision queries traverse BVHs as long as each query be-
tween two BVs reports a collision between them. We decom-
pose the access pattern during a traversal into a set of search
queries. We define a search query, S(nk

i ), to be the traversal
from the root node of the BVH to the node, nk

i , which can
be either a leaf or an intermediate node. Let us assume that
the traversal of a collision query starts from the root node and
ends at nodes, nk(1)

i(1)
, . . . ,nk(m)

i(m)
(= BV1, . . . ,BVm). In this case,

the nodes, (BV1, . . . ,BVm), define a front of the BVH for this
traversal. We represent this traversal as the union of traversals
of m different search queries, S(BV j). An example of an ac-
cess pattern between two colliding objects is shown in Fig. 3.
In frame i, the collision query ends at n3

1 and n3
5 starting from

the root node, n4
1, of the BVH of object 1. We can represent the

access patterns of this collision query with two search queries
ending at n3

1 and n3
5.

There are two different localities, parent-child locality and
spatial locality, which arise during the traversal.
1. Parent-child locality: Once a node of a hierarchy is ac-

cessed by a search query, it is likely that its child nodes
will be accessed soon. For example, in frame i of Fig. 3, if
the root node of the BVH is accessed, its two child nodes,
n3

1 and n3
5, are likely to be accessed soon. Moreover, after

n3
1 is accessed during frame i, its child nodes are likely to

be accessed in the next frame.
2. Spatial locality: Whenever a node is accessed by a search

query, other nodes in close proximity are also highly likely
to be accessed by other search queries. For example, colli-
sions or contacts between two objects occur in small local-
ized regions of a mesh. Therefore, if a node of a BVH is
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Figure 3: Two localities within BVHs: We show two successive
frames from a dynamic simulation and the change in access patterns
(shown with blue arrows) of a BVH. In this simulation, object 2 drops
on object 1, as shown on the left. The access pattern of the BVH of
object 1 during each frame is shown on the right. The BVs from the
2nd level in the BVH are shown within object 1 on the left. We also
illustrate the front traversed within each BVH during each frame in
green. The top BVH shows the parent-child locality, when the root
node, n4

1, of the BVH of object 1 collides with the BVs of objects 2.
During frame i + 1, object 2 is colliding with object 1. In this config-
uration, the BVs n2

3 and n2
7 (and their sub-nodes) are accessed due to

their close spatial locality.

accessed, other nearby nodes are either colliding or are in
close proximity and may be accessed soon. In frame i + 1
of Fig. 3, if one of two nodes, n1

4 and n1
7, is accessed, the

other node is also likely to be accessed during that frame
or subsequent frames.

We consider each of these two localities and use them to com-
pute the layout of a BVH. In the remainder of this section, we
briefly summarize several known results related to these local-
ities.

4.2. Parent-Child Locality

We use several results presented by Gil and Itai [GI99] to com-
pute a cache-coherent layout of a BVH. Gil and Itai address
the problem of computing a good layout for search queries
on a tree. They define two different measures for the cache-
coherence of a layout of a tree. The two measure are:

1. The number of cache misses (or page faults): PF1(BVi)
is defined as the number of cache misses, given a cache that
can hold only single cache block during the traversal of a
search query ending at BVi.

2. The size of working set: The working set during the
traversal of the search query is a set of the different cache
blocks that are accessed. WS(BVi) is defined as the size of
the working set.

Intuitively speaking, PF1(BVi) measures the number of times
that accessing BVs crosses boundaries of cache blocks of the
layout during the traversal. Additionally, [GI99] introduced a
virtual probability function, Pr(BVi), that can measure how
many times BVi is accessed during any search query on the
tree. The expected size of working set, WS, of the layout can
be formulated as:

WS = ∑
BVi ∈ BVH

Pr(BVi)WS(BVi),

for all nodes BVi in the hierarchy. Similarly, we can define the
expected number of cache misses, PF1, of a layout by multi-
plying Pr(BVi) by PF1(BVi) for all nodes BVi in the tree. If a
tree layout is optimal given the PF1 or WS measure, the tree
layout is defined as PF1-optimal or WS-optimal, respectively.

Lemma 1 (Convexity): If a layout of a tree is PF1-optimal or
WS-optimal, the layout is convex [GI99].

The layout of a tree is convex if all the intermediate BVs be-
tween BV0 and BVk are stored in the same block when a node
BV0 and its descendant BVk are stored in the same cache block.

Lemma 2 (Equivalence): A layout of a tree is PF1-optimal if
and only if it is WS-optimal [GI99].

Lemma 3 (NP-Completeness): Computing a layout of a tree
that is a WS-optimal with a minimum storage is NP-Complete
[GI99].

We use these properties and lemmas to design our layout al-
gorithm that considers parent-child locality during the traver-
sal of search queries.

4.3. Spatial Locality

Recently, Yoon et al. proposed approaches to compute cache-
coherent layouts of meshes and graphs [YLPM05, YL06].
They construct a graph to represent cache-coherent access pat-
terns on an input mesh . Each vertex of the graph represents a
data element (e.g. a vertex of the mesh) that an application ac-
cesses. Depending on the spatial locality between two vertices,
an edge connecting two vertices is created with a weight that
is proportional to the spatial locality. Also, to compute cache-
coherent layouts of meshes, Yoon et al. perform multi-level
optimization given the cache-oblivious metric to measure the
expected number of cache misses for each edge.

We summarize two major results that are relevant to our
work. First, Yoon et al. show that the expected number of
cache misses during accessing an edge consisting of two ver-
tices has high correlation with a log function of the edge
length, the index gap of the two vertices in the layout. There-
fore, the multi-level layout construction seeks a layout that
has a lower sum of the log functions of edge lengths to min-
imize the expected number of cache misses. Second, any lay-
out computed by the multi-level layout construction method
that recursively divides each chunk of the mesh into k subset
as proposed in [YLPM05] is implicitly sub-optimized to con-
struct cache-oblivious layouts of meshes. These two results
are used as part of our layout algorithm with our probabilistic
model.

5. Probabilistic Model
In this section we present our probabilistic model, which is
used to predict the runtime access patterns on BVHs. We de-
rive our formulation based on the geometric relationship be-
tween the nodes of BVHs.

We assign to a BV, nk
i a probability, Pr(nk

i ), that the node
would be accessed during the traversal as part of a search
query. Suppose the parent node, Parent(nk

i ), of a node, nk
i ,

of an object collides with a BV node, BVOb j2, of another ob-
ject. In this case, the two children of Parent(nk

i ) are fetched
and tested to further localize the colliding region. Therefore,
Pr(nk

i ) can be computed by multiplying two factors: 1) the
probability that Parent(nk

i ) is accessed, and 2) the probability
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edges (shown in blue) indicate ordering between clusters. Also, the middle figure indicates that leftmost cluster is merged with its neighboring
cluster.

that Parent(nk
i ) collides with BVOb j2. If there is a collision be-

tween the two nodes, each node is further refined with its two
child nodes. Thus, the second probability can be computed by
assuming that there was also a collision between Grand(nk

i )

and BVOb j2. The probability that nk
i is accessed during the

traversal can be recursively formulated as following:

Pr(nk
i ) = Pr(Parent(nk

i ))Pr(nk
i ,Xp = 1|Xg = 1) (1)

where Xp and Xg are two binary random variables indicat-
ing whether there are collisions between the Parent(nk

i ) and
BVOb j2 and between Grand(nk

i ) and BVOb j2, respectively.

5.1. Probability Computation

Our goal is to efficiently compute Pr(nk
i ,Xp = 1|Xg = 1) given

the recursive probability formulation presented in Eq. (1).
Since we compute probabilities for nodes of the BVH as a
preprocess, we do not know anything about the size or BV
type of BVOb j2, a BV node of another object. Instead of as-
suming any particular BV for BVOb j2, we enumerate all pos-
sible configurations of BVs for BVOb j2 and compute the prob-
ability. Let Sg(nk

i ) be the set that represent all possible con-
figurations of BVOb j2 that collide with Grand(nk

i ). We can
similarly define Sp(nk

i ). For example, if BVOb j2 is a sphere,
Sp(nk

i ) can be constructed by Minkowski sum: Sp(nk
i ,r) =

Parent(nk
i )

⊕
Sphere(r) where Sphere(r) is a sphere with a

radius, r ∈ [0,∞) and
⊕

is the Minkowski sum operator. In
the more general case, BVOb j2 would correspond to a box or
a convex shape and could have arbitrary orientation. As a re-
sult, both Sg(nk

i ) and Sp(nk
i ) can be represented as high dimen-

sional configuration-space. Given the formulation of Sp(nk
i )

and Sg(nk
i ), Pr(nk

i ,Xp = 1|Xg = 1) can be defined as:

Pr(nk
i ,Xp = 1|Xg = 1) =

Pr(Xp = 1∩Xg = 1)

Pr(Xg)

=
Vol(Sp(nk

i )∩Sg(nk
i ))

Vol(Sg(nk
i ))

,

(2)

where Vol(A) represents the volume of A. Intuitively speak-
ing, the probability is the ratio of the volume of the intersected
space between Sp(nk

i ) and Sg(nk
i ) to the volume of Sg(nk

i ).
We refer to the intersected volume ratio between Sp(nk

i ) and
Sg(nk

i ), as Vintersected(nk
i ).

It is, however, complex and expensive to construct the

Minkowski sum or the configuration space in general [VM04].
The combinatorial complexity is high and the resulting algo-
rithms are susceptible to degeneracies and robustness prob-
lems. As a result, exact computation of Pr(nk

i ) is non-trivial.

5.2. Approximate Probability Computation

We propose a simple method to approximate the probability
function described in Eq. (2). We observe that the intersected
volume ratio computed when BVOb j2 is considered to be a
point–therefore, BVOb j2 has zero extent–is a good approxima-
tion of the probability, which is the intersected volume ratio,
Vintersected(nk

i ), between Sp(nk
i ) and Sg(nk

i ). In other words,
we use an intersected volume ratio, Vintersected(nk

i ,0), between
Parent(nk

i )(= Sp(nk
i ,0)) and Grand(nk

i )(= Sg(nk
i ,0)) for the

probability defined in Eq. 2. This approximation is based on
the following observations:

• Relative importance of probabilities during layout com-
putation: Suppose that our layout algorithm considers two
nodes, n1 and n2, to decide which node should be ordered
first. Our layout algorithm will choose a node that has a
higher probability.

• Importance of Sp(nk
i ,0) and Sg(nk

i ,0) for probability
computation: Suppose that an intersected volume ratio,
Vintersected(n1,0), between Parent(n1) and Grand(n1) is
bigger than its counterpart, Vintersected(n2,0), of Parent(n2)
and Grand(n2), when r is zero. It is then likely that
the intersected volume ratio, Vintersected(n1,r), between
Sp(n1,r) and Sg(n1,r) is also bigger than its counterpart,
Vintersected(n2,r), of n2, when r is non-zero. Therefore,
we can approximate the relative importance of the inter-
sected volume ratio, Vintersected(nk

i ), between Sp(nk
i ) and

Sg(nk
i ) as the relative importance of the intersected vol-

ume ratio, Vintersected(nk
i ,0), between BVs of Parent(nk

i )

and Grand(nk
i ).

In order to quantitatively verify our approximation, we
selected two nodes, n1 and n2, during layout computation
of the dragon model and measured Vintersected(n1,r) and
Vintersected(n2,r) as r geometrically increases from zero. We
observed that less than 5% of relative importance between
Vintersected(n1,0) and Vintersected(n22,0) is reversed as com-
pared to Vintersected(n1,r) and Vintersected(n2,r), when we used
a higher radius for BVOb j2 as a sphere.

Discretization: In order to approximate the volume ratio
of the intersected area between Parent(nk

i ) and Grand(nk
i )

to Grand(nk
i ), we overlay a uniform grid on the BV of
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Grand(nk
i ) and measure the number of cells of the grid that

are contained in the BV of Parent(nk
i ). We generate a sample

point in each cell to perform this containment test. In practice,
we found that using 64 samples to compute the probability
was sufficient.

6. Layout Computation
In this section, we present a simple greedy algorithm to com-
pute a cache-efficient layout of a BVH. We use the properties,
lemmas, and the probability model described in the previous
sections to compute cache-efficient layouts of BVHs.

6.1. Overall Algorithm

At the top level, our algorithm decomposes a BVH into clus-
ters. If we knew the cache parameters and the block size, we
could compute how many BV nodes fit into the cache block.
Given this information, we could decompose the BVH into a
set of clusters, such that the size of each cluster is equal to
the size of the cache block. However, our algorithm does not
assume any particular cache size and constructs a layout that
works well with any cache parameter. In order to achieve this
goal, we recursively compute the clusters. We first decompose
the BVH into a set of clusters and recursively decompose each
cluster. In this case, the cache block boundaries can lie any-
where within a layout that corresponds to the nodes of these
clusters. Therefore, we need to compute a cache-efficient or-
dering of the clusters computed at each level of recursion.

Our algorithm has two different components that handle
parent-child and spatial localities. In particular, the first part
of our algorithm decomposes a BVH into a set of clusters that
minimize the cache misses for parent-child locality. The clus-
ters are classified as a root cluster and child clusters. The root
cluster contains the root node of the BVH and child clusters
are created for each node outside the root cluster whose par-
ent node is in the root cluster (see the middle image in Fig.
4). The second part of the algorithm computes an ordering of
the clusters and stores the root cluster at the beginning of the
ordering. The ordering of child clusters is computed by con-
sidering their spatial locality. Then, we can merge two child
clusters if it can further decrease the size of the working set.
We recursively apply this two-fold procedure to compute an
ordering of all the BVs in the BVH.

Cluster size: For each level of recursion, we decompose the
BVH into a set of clusters that have approximately the same
number of BV nodes. Suppose that a root cluster has B BV
nodes. Then, the root cluster has B + 1 child clusters and we
decompose the BVH into B + 2 clusters. Assuming that each
cluster is reasonably balanced in terms of the number of BV
nodes belonging to each cluster, B× (B+2) should be bigger
than n, the number of nodes in the BVH, to contain all the
nodes in the BVH. Therefore, B is set to be d

√
n+1−1e.

6.2. Cluster Decomposition

Before computing clusters from the BVH, we first compute
and assign a probability, Pr(nk

i ), to a BV, nk
i , as described in

the previous section. Then, we partition the BVH into B + 2
clusters, where B is the number of nodes in the root cluster.

Our goal in this step is to store the BV nodes, which are ac-
cessed together due to the parent-child locality, into the same
cluster in order to minimize the number of cache misses. Ac-
cording to our probability model shown in Eq. (1), the proba-
bility assigned to each node can also be considered the proba-
bility that the node is accessed, given that a root node of a clus-
ter is already accessed. Therefore, we can achieve our goal by

maximizing the sum of probabilities of BVs belonging to the
root cluster. Moreover, maximizing this sum to the root cluster
also minimizes the probability of accessing the nodes belong-
ing to the child clusters. This formulation also minimizes the
number of times that a search query accesses the data across
the boundaries of cache blocks of the layout, quantified by
PF1 measure. According to Lemma 2, computing an optimal
layout for the PF1 metric is equivalent to computing an op-
timal layout that minimizes the expected size of working set,
WS. Therefore, maximizing the sum of probabilities of BVs
belonging to the root cluster minimizes the expected size of
the working set during collision queries in the end.

However, computing a layout that minimizes the working
set and the number of cache misses for all possible search
queries with minimum space of a layout is NP-complete (as
per Lemma 3). As a result, we employ a greedy algorithm
to efficiently compute a cache-oblivious layout of the BVH.
Our algorithm greedily traverses the BVH and merges nodes
from the root node of the BVH into the root cluster by lo-
cally choosing a node that has the highest probability. Once
the root cluster has B nodes, we stop merging the nodes into
the root cluster. Then, each child node of the nodes inside the
root cluster whose child nodes are outside the root cluster con-
sists of a child cluster containing all the nodes of its sub-tree.
The layout computed by our greedy approach also maintains
the convexity of the layout as defined by Lemma 1.

6.3. Layouts of Clusters

Given the computed clusters at each level of the recursion, we
compute a cache-oblivious ordering of the clusters by consid-
ering their spatial locality. During each recursive step of the
algorithm, the number of BV nodes belonging to each clus-
ter roughly reduces by a factor of B + 2, based on our cluster
computation algorithm. This causes considerable differences
between the sizes of clusters created during the previous level
of the recursion and the current level of the recursion. There-
fore, it is important to compute a cache-coherent ordering of
the clusters in order to further reduce the cache misses. This is
because there is high likelihood that the size of a cache block
may lie between the cluster size of the previous level and the
current level of recursion.

We place the root cluster at the beginning of the ordering of
clusters, since the traversal typically starts at the root node of
the BVH. In order to compute an ordering of child clusters, We
test two different layout methods based on two results summa-
rized in Sec. 4.3.

Our first approach is to construct a cache-oblivious layout
of child clusters by computing an undirected graph that repre-
sents access patterns between clusters. To construct the graph,
we construct an edge between two clusters if they are in close
proximity, that is, if their BVs overlap. Then, we compute a
probability that a BV of a cluster has collided given that a BV
of another cluster has collided based on the probability for-
mulation described in Eq. 2. Once the graph is computed, a
cache-oblivious layout of child clusters is computed using the
cache-oblivious mesh layout algorithm [YLPM05]. We found
that this method effectively reduces the size of working set.
However, we also found that the runtime performance of the
application can increase, especially, when the performance is
dominated by disk access time. This is mainly because the
layout of child clusters is constructed solely based on spatial
locality between the clusters, although a runtime application is
likely to access child clusters from left to right clusters since
the application typically uses depth-first or breadth-first traver-
sal.
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Figure 5: Dynamic Simulation between Dragon and Turbine Mod-
els: This image sequence shows discrete positions from our dynamic
simulation between dragon and CAD turbine models. We are able to
achieve 38%–215% performance improvement in collision detection
by using our cache-efficient layouts of the OBB-tree over other tested
layouts.

To address this issue, we layout child clusters from leftmost
to rightmost following their position in the BVH as our second
approach. Note that this order can be viewed to be constructed
through a multi-level layout construction method since root
nodes of child clusters can be considered to be recursively
divided from their common root node of the child clusters.
Therefore, this simple layout of child clusters can be also con-
sidered as a sub-optimized cache-oblivious layout based on
the second results summarized in Sec. 4.3, We are also able
to observe that the working set size during runtime traver-
sal based on the layout computed by our second approach is
within 5% of that of the first layout approach. Moreover, we
also found that the runtime performance of applications is fur-
ther improved with the second layout method since the layout
order is more coherent to breadth-first and depth-first runtime
traversal.

Merging clusters: If we recursively apply the cluster de-
composition method and the cluster layout method proposed
above, all the nodes contained in one cluster are stored before
or after nodes of another cluster. However, if there is more
overlap between root nodes of two clusters than between each
root node and its child nodes, two root nodes of the child clus-
ter are likely to be accessed sequentially. By doing this, we can
further reduce the size of working set. We formalize this ob-
servation like this: if the probability that two root nodes are ac-
cessed due to spatial locality is bigger than the probability that
their children nodes are accessed due to the parent-child local-
ity, we merge two clusters into one. Once clusters are merged
into one bigger cluster, the two root nodes of the clusters are
stored consecutively in the final computed layout within our
layout algorithm.

6.4. Triangle Layout

Once a set of BV pairs is computed during the runtime traver-
sal of the BVHs of two objects, exact query computation based
on the triangles of leaf nodes is performed. We extract a trian-
gle layout from the BV layout of the BVH for efficient layout
computation. If we encounter leaf nodes of the BVH during
layout computation, we sequentially order the triangles stored
in the BVs into the triangle layout since we perform the over-
lap tests at runtime in a sequential manner based on the stored
order of the triangles within a leaf node.

7. Implementation and Performance
In this section we describe our implementation and highlight
the performance of cache-oblivious layouts on different BVHs

Model Triangles Size of BVH Mean and std Comp.
(M) (MB) of depth of leaves time (min)

Hugo 0.02 2 16,1.7 0.03
Bunny 0.07 8 17,0.8 0.26
Dragon 0.8 108 21,1.6 3
1M power plant 1.1 139 23,2.9 6
Turbine 1.7 220 22,0.7 8
Lucy 28 4,811 37,3.4 34

Table 1: Benchmark Models: Model complexity, sizes of BVHs,
mean and standard deviation(std) of depth of leaf nodes, and compu-
tation time to compute cache-oblivious layouts are shown.

and spatial partitioning hierarchies. These include the kd-tree
used by a ray tracing algorithm and OBB-tree used to perform
collision queries in a dynamic simulation.

7.1. Implementation

We have implemented our cache-oblivious layout computa-
tion algorithm as well as the two applications on a 2.4GHz
Pentium-IV PC with 1GB of RAM. Our cache-oblivious lay-
out algorithm can handle very large datasets in an out-of-core
manner. Our system runs on Windows XP and uses the oper-
ating system’s virtual memory through memory mapped files.

7.2. Benchmark Models

Our algorithm has been applied to different polygonal mod-
els. These include the Lucy model composed of more than 28
million polygons (Fig. 1), 1M version of power plant model,
a Hugo model consisting of 16K polygon (Fig. 2), the CAD
turbine model consisting of a single object with 1.7 million
triangles (Fig. 5), the dragon model consisting of 800K poly-
gons, and the Stanford bunny model consisting of 67K poly-
gons (Fig. 7). The details of these models are shown in Table
1.

7.3. Performances

We applied our out-of-core layout computation algorithm to
compute cache-oblivious layouts of BVHs of the models. Ta-
ble. 1 presents the layout time for each model. An unoptimized
implementation of our out-of-core algorithm can process up to
14K triangles per second.

7.3.1. Collision Detection

We have implemented an impulse based rigid body simulation
[MC95] for dynamic simulation. We use OBB-trees [GLM96]
to perform collision queries. To compute OBB-trees in an out-
of-core manner, we decompose the input mesh into chunks
of geometry [YSGM04]. We compute cache-efficient layouts
of the OBB-trees of different models and use these layouts
with the same underlying algorithm, i.e. RAPID [GLM96], to
perform collision queries. In our current implementation, each
OBB node takes 64 bytes.

We compared the performance of our cache-oblivious
layout of BVHs (COLBVH) with different layouts includ-
ing depth-first layout(DFL) of the BVH, breadth-first lay-
out(BFL), van Emde Boas layout (VEB) [vEB77], cache-
oblivious mesh layout (COML) [YLPM05], and a cache-
aware layout obtained by explicitly setting cache size into our
cache-oblivious layout algorithm (CALBVH). The OBBs are
precomputed and only the ordering of the hierarchy is mod-
ified. The COML, as explained in Sec. 4.3, is computed by
constructing an undirected graph. This is accomplished by
generating edges between parent and child nodes and between
nearby nodes on the same level of the BVH. We use OpenCCL
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library [YMLP05] to compute cache-oblivious layouts of the
graph representing access patterns on the BVH. The VEB lay-
out is computed recursively. The tree is partitioned with a hor-
izontal line so that the maximum height of the tree is divided
into half. The resulting sub-trees are linearly stored by first
placing the root sub-tree followed by other sub-trees from left-
most to rightmost. This process is applied recursively until it
reaches a single node of the tree.

We have tested the performance of the OBB-tree collision
detection algorithm with our layouts in three different bench-
marks:
1. Bunny and Dragon: A bunny moves towards a dragon

(Fig. 7).
2. Dragon and Turbine: A dragon drops onto the CAD tur-

bine model(Fig. 5).
3. Power plant and Hugo: A Hugo robot model is placed in

the top left side of the power plant model (Fig. 2. This is
our benchmark 3-a. Also, the robot model is placed in the
middle of the power plant model, specifically in the furnace
room. This is our benchmark 3-b. This particular bench-
mark has much larger overlaps between the BVs since the
robot model is placed inside the power plant model.

Our first and second benchmarks are performed during a rigid
body simulation.

We collected timing data after making sure that there is no
loaded data in the main memory. Moreover, we also made sure
there is no file fragmentations since the fragmentations can
slow down the performance of I/O accesses. Dynamic simu-
lations of the first and second benchmarks are shown in the
accompanying video. In the first and second benchmarks, we
are able to achieve a 26%–215% improvement in the perfor-
mance of collision queries by using COLBVHs over other
layouts on our benchmarks. Also, the performance of cache-
oblivious layout is comparable to that of cache-aware layout.
This improvement is achieved by reducing the working set
during collision queries and fewer cache misses. Moreover,
in our benchmark 3-a and 3-b, we are able to achieve up to 26
times improvement over other layouts. Since the power plant
model has very irregular distribution of geometry, our layout
method considering geometric relationship between BVs is
able to achieve higher performance improvement over other
layouts in this particular model. Also, our layout consistently
shows better performance over other layouts. In Fig. 6, we re-
port the average collision query times and working set size in
our benchmarks.

In benchmarks 1, 2, and 3a, VEB layout has slightly worse
performance over our layouts. This is mainly because the
OBB-trees are almost balanced trees and the ordering of child
clusters from left to right during VEB layout computation
maintains reasonably good cache-coherence as discussed in
Sec. 4.3. However, in our benchmark 3-b, BFL layout has
much smaller working set size compared to VEB. Since the
robot model is placed inside the power plant model and BVs
of the plant have high overlaps with other BVs, BFL is more
suitable in that case.

7.3.2. Ray Tracing

We implemented an interactive ray tracer based on kd-trees
[Wal04]. To allow different layouts of kd-nodes, we change
intermediate kd-nodes to have the left and right child indices;
therefore, the size of each kd-node is 16 bytes as opposed to 8
bytes used in the state-of-the-art kd-tree representation.

We applied our layout algorithm to compute cache-
oblivious layouts of kd-trees. Since the implicitly computed

Figure 6: Performance of Collision Detection: Average collision
query time and the size of working set for collision detection in our
benchmarks. We highlight the performance of other layouts (i.e. VEB,
DFL and BFL) and compare them with our layouts (COLBVH and
CALBVH). VEB is the van Emde Boas layout, DFL and BFL are
the depth-first and breadth-first layouts, respectively. We obtain 26%–
2600% improvement in the performance of collision queries based on
reduced working set size and fewer cache misses. Moreover, the per-
formance of cache-oblivious layout (COLBVH) is comparable to that
of cache-aware layouts (CALBVH) (in the first and second bench-
marks) and consistently shows better performance over other layouts.

BV of each kd-node is fully contained in its parent BV and
some BVs can have zero volumes, we use the surface ar-
eas of BVs as the volume for probability computation. Such
techniques have also been used by kd-tree construction algo-
rithms [MB90]. We compute the probability based on the ratio
of surface areas and use our layouts of kd-trees without any
modification of runtime ray tracer.

We tested different layouts of the Lucy model consisting of
28 million triangles. Please note that the kd-tree of the Lucy
model is unbalanced, since the standard deviation of depth of
leaf nodes is about 3. We also ensure that there is no fragmen-
tations in the data files.

We are able to achieve 77%–180% improvement in the per-
formance of ray tracing and able to achieve 7%–55% reduc-
tion in the size of working set compared to other layouts. In
this case, the performance improvement cannot be directly
measured by reduction in the working set size since the I/O
access time is also affected by other factors including disk
I/O sequential prefetching. Since the cache-oblivious layout
stores coherent data in spatially close region on the disk, it is
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Figure 7: Dynamic Simulation between Bunny and Dragon Mod-
els: This image sequence shows discrete positions from our dynamic
simulation between bunny and dragon models. We are able to achieve
26%–166% performance improvement by using our cache-oblivious
layouts of OBB-trees as compared to other layouts. Moreover, the
cache-oblivious layout has only 10% lower performance as compared
to the cache-aware layout.
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Figure 8: Performance of Ray Tracing: Average render time and
the size of working set during ray tracing of the Lucy model with 28
million triangles are shown with different layouts. By using the cache-
oblivious layout, we are able to achieve 77%–180% improvement in
the performance of ray tracing and reduce the working set size by
7%–55%.

likely that its layout is well suited to reducing disk I/O access
times. We report the rendering time and the working set size
in Fig. 8. The ray tracing traverses the kd-tree in the depth-
first order and performs intersection tests between the BVs of
kd-tree and the rays. Moreover, there is no overlap between
the BVs of kd-nodes that are not descendant to each other.
Therefore, depth-first layout is likely to be more coherent at
runtime traversal compared to van Emde Boas (VEB) layout
and the breadth-first layout (BFL). Our experimental results
also support this conjecture.

8. Analysis and Limitation

In this section, we analyze the performance of our algorithm
and discuss some of its limitations.

8.1. Performance Analysis

We can achieve performance improvement by storing related
data into one block since many current caching architectures
employ a block fetching mechanism [AV88]. The performance
of the cache-oblivious layouts of BVHs strongly depends on
the size of each BV relative to the size of the cache block.
We observe higher performance improvement when we have
many disk I/O accesses, which typically have a block size of
4KB. On the other hand, we do not achieve significant im-
provement in terms of reducing L1/L2 cache misses, which
have block size of 64 bytes. In the extreme case, when the
block size is exactly the same as the size of each element used
in the layout computation, there is very little improvement due
to our layouts.

8.2. Comparison with Cache-Oblivious Mesh Layouts

Yoon et al. [YLPM05] presented a cache-oblivious mesh lay-
out (COML) to minimize the number of cache misses during
runtime accesses on the mesh. We were able to achieve 40%–
2000% performance improvement over the cache-oblivious
mesh layout (COML). We attribute the improvement of our
new algorithm to the following reasons:

• Clustering method: The COML method uses a graph par-
titioning to compute layouts for any graph that may corre-
spond to a polygonal mesh or a BVH. However, there is
no guarantee that clustering the outputs of the graph par-
titioning on the input graph satisfy the convexity property,
which is very important to compute cache-coherent layouts
of trees. Therefore, the constructed layout of the BVH may
be far from an optimal layout that minimizes the size of the
working set during traversal of collision queries. Instead,
our layout algorithm optimized for BVHs always guaran-
tees that the clustering output satisfies the convexity prop-
erty. At the same time, our layout maximizes the probabil-
ities that BVs, which are accessed together due to parent-
child locality, are stored in the same cluster.

• Probability computation: In order to construct an input
graph for the COML algorithm, edges should be created to
represent access patterns of traversals of collision queries.
However, it is difficult to consistently compute weights for
edges that represent parent-child or spatial localities in the
graph. The edge creation methods for BVHs described in
Yoon et al. [YLPM05] do not adequately represent access
patterns of the traversals. On the other hand, our algorithm
(COLBVHs) considers two different localities and quanti-
fies the probability that a node is accessed during runtime
traversal based on the geometric relationship between the
BVs. As a result, we are able to capture more accurate run-
time access behavior on the BVHs for layout computation.

8.3. Limitations

Our algorithm works well for our current set of benchmarks.
However, it has certain limitations. Our greedy algorithm is
based on greedy heuristics to compute cache-coherent layouts
based on parent-child locality. Therefore, there is no guarantee
that our cache-oblivious layouts of BVHs always reduce the
number of cache misses or the size of the working set. More-
over, our current layout algorithm assumes that traversals of
collision queries start from the root node of the BVH.

9. Conclusion and Future Work

We have presented a novel algorithm to compute cache-
efficient layouts of BVHs. We do not make assumptions about
the cache parameters or the memory hierarchy and take advan-
tage of coherent data access patterns on BVHs. We describe a
new probabilistic model to predict the runtime access patterns
of applications on BVHs. We decompose the access patterns
during the traversal of BVHs into a set of search queries and
utilize parent-child and spatial localities between the accessed
nodes. Our layout algorithm considers these two localities and
reduces the number of cache misses and the size of working
set. We have used cache-oblivious layouts of BVHs for col-
lision detection between complex models and ray tracing of
massive models. We were able to achieve 26%–2600% im-
provements on the performance over different layouts.

There are several areas for future work. We would like to
extend our probability formulation that predicts runtime data
access patterns of collision queries to consider other proximity
queries such as minimum separation distance. We also would
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like to compute cache-coherent layouts of other hierarchical
representations such as multiresolution meshes (e.g. vertex hi-
erarchies) by extending our layout algorithm. In this regard,
we already applied our layout to an LOD hierarchy combined
with a kd-tree for interactive ray tracing [YLM06] and were
able to observe up to 60% improvement. Also, we would like
to apply our probability formulation to construction of BVHs
in order to reduce the number of intersection between two ob-
jects and further improve the runtime performance. Finally, we
would like to design layout algorithms for deformable mod-
els [LYTM06].
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