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Abstract

We present an interactive algorithm to model physics-based interac-
tions in multi-agent simulations. Our approach is capable of model-
ing both physical forces and interactions between agents and obsta-
cles, while allowing the agents to anticipate and avoid collisions for
local navigation. We combine velocity-based collision-avoidance
algorithms with external physical forces. The overall formulation
can approximately simulate various physical effects, including col-
lisions, pushing, deceleration and resistive forces. We have inte-
grated our approach with an open-source physics engine and use
the resulting system to model plausible behaviors of and interac-
tions among large numbers of agents in dense environments. Our
algorithm can simulate a few thousand agents at interactive rates
and can generate many emergent behaviors. The overall approach
is useful for interactive applications that require plausible physical
behavior, including games and virtual worlds.

CR Categories: I.2.11 [Artificial Intelligence]: Distributed Artifi-
cial Intelligence—Multiagent systems

Keywords: Multi-Agent Simulation, Physical interactions

1 Introduction

Multi-agent simulations are frequently used to model a wide vari-
ety of physical systems, including human crowds; traffic; groups
of birds, bees, fish, ants; and etc. In many of these applications
it is important for the agents to interact in a physical manner with
each other and the environment. Agents often collide, push, and
impart forces on other agents and on the obstacles in the environ-
ment, changing their trajectory or behavior. A challenging goal is to
model these interactions in large multi-agent systems at interactive
rates. Many algorithms based on behavior modeling, social forces,
cellular automata, and velocity-based formulation have been pro-
posed for multi-agent simulation. Most of these techniques, how-
ever, focus on only the local navigation for each agent, and do not
explicitly take into account physical interactions between agents or
between agents and obstacles in the environment.

At a high level, there are two different sources of physical forces
which may affect an agent’s trajectories: interactions with other
agents and interactions with objects in the environments. For ex-
ample, dynamic objects such as falling boxes or moving cars may
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Figure 1: Wall Breaking. We demonstrate the physical forces ap-
plied by cylindrical agents to breakable wall obstacles. Our al-
gorithm can model such interactions between the agents and the
obstacles in dense scenarios at interactive rates.

collide with an agent, pushing it from its path. Likewise, an agent
may be pushed by, or bump into, other agents in dense scenarios.
This can happen because of agent’s intention (e.g. aggressive agent)
or because the agent was pushed by an external force.

While physical forces impact an agents trajectory, the agents mo-
tion will also impart forces upon the objects in his environment.
This effect becomes increasingly important when the forces from
many individual agents combine to produce a large effect on the
environment, such as when dense, aggressive crowds bend fences
or break walls. In order to simulate such scenarios, we need
to develop appropriate two-way coupling techniques between au-
tonomous agents and their physical environment.

Main Results: In this paper, we present a new method to model
physical interactions between agents and objects in an interactive
velocity-based multi-agent framework. Our approach incorporates
both an agent’s ability to anticipate the motion of other agents and
avoid collisions using velocity obstacles and respond to physical
forces in a single unified framework. We formulate the computation
of velocity of each agent for each timestep as a linear programming
problem in the velocity space. The linear constraints are computed
by approximating the motion induced on an agent through Newto-
nian dynamics. This allows agents to account for forces from their
environment and from other agents and generate a plausible trajec-
tory. The resulting approach is efficient and can be used to simulate
dense scenarios with thousands of agents at interactive rates. We
have integrated our approach with the Bullet Physics Engine [AMD
2012], and reciprocal velocity obstacles [van den Berg et al. 2011],
and demonstrate its performance in many complex scenarios with
large number of agents and multiple moving obstacles, In practice,
our approach can be used to generate physically plausible behavior
for interactive multi-agent simulation.

The rest of the paper is organized as follows. Section 2 gives a
brief review of related work. Section 3 gives an overview of our
approach, which combines velocity-based multi-agent simulation
and rigid body dynamics. We describe our approximate approach
to computing velocity constraints using Newtonian dynamics for
agent-agent interaction in Section 4 and for agent-obstacle interac-
tion in Section 5. In Section 6, we highlight the performance on
different scenarios and compare it with other techniques.
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2 Related Work

In this section, we give a brief overview of some related work in
multi-agent and physically-based character simulation.

2.1 Multi-Agent and Crowd Simulation Models

Many approaches have been proposed to simulate the motion of
large number of agents and crowds. Often these models are based
on rules, which are used to guide the movement of each agent.
An early example of such an approach is the seminal work of
Reynolds [1999], which uses simple rules to model flocking be-
havior.

Force-based methods, such as the social force model [Helbing and
Molnár 1995], use various forces to model attraction and repulsion
between agents. These forces are not physically based; rather, they
provide a mechanism to model the psychological factors that gov-
ern how agents approach each other. Helbing et al. [2000] model
panic behavior with two additional physical forces (body force and
sliding friction) in addition to the social forces. Yu and Johans-
son [2007] model the turbulence-like motion of a dense crowd by
increasing the repulsive force. Other approaches model collision-
avoidance behavior with velocity-based techniques [van den Berg
et al. 2011; Pettré et al. 2009; Karamouzas and Overmars 2012] or
vision-based steering approaches [Ondřej et al. 2010].

Other techniques have been proposed to model complex social in-
teraction. HiDAC [Pelechano et al. 2007] uses various rules and
social forces to model interactions between agents and obstacles;
collision avoidance and physical interactions between agents and
objects are handled using repulsive forces. The composite agent
formulation [Yeh et al. 2008] uses geometric proxies to model so-
cial priority, authority, guidance, and aggression. Many other multi-
agent simulation algorithms use techniques from sociology [Musse
and Thalmann 1997], biomechanics [Guy et al. 2012], and psychol-
ogy [Sakuma et al. 2005; Durupinar et al. 2011; Guy et al. 2011;
Kim et al. 2012] to model different aspects of agent behaviors and
decision models. These approaches are able to generate realisti-
cally heterogeneous behaviors for agents. Our approach to model
physical interactions can also be combined with many of these ap-
proaches.

Many researchers have proposed cognitive and decision-making
models to generate human-like behaviors [Shao and Terzopoulos
2005; Yu and Terzopoulos 2007; Ulicny and Thalmann 2002], or
use data-driven approaches to the problem [Lee et al. 2007; Lerner
et al. 2009].

Other approaches for modeling crowds are based on continuum or
macroscopic models [Hughes 2003; Treuille et al. 2006; Narain
et al. 2009]. In particular, Narain et al. [2009] present a hybrid
technique using continuum and discrete method for aggregate be-
haviors in large and dense crowds. They are mainly used to simu-
late the macroscopic flow and do not model the interaction between
the crowd and obstacles. In contrast, our approach simulates agent-
agent and agent-obstacles physical interaction.

2.2 Force-Based Techniques for Character Animation

There has been extensive work on using physics-based models to
improve character animation. Sok et al. [2010] use a force-based
approach to ensure that the resulting motions are physically plau-
sible. Other approaches consider geometric and kinematic con-
straints [Shum et al. 2012] or use interactive methods for character
editing [Kim et al. 2009]. These techniques, which are primarily
based on enhancing motion-captured data, can be used to simulate

behaviors of and interactions between the characters and obstacles
in their environment.

Many hybrid techniques have been proposed that bridge the gap
between physics-based simulation of character motion and pre-
recorded animation of characters to model responsive behavior of
character [Shapiro et al. 2003; Zordan et al. 2005]. Muico et
al. [2011] propose a composite method to improve the responsive-
ness of physically simulated characters to external disturbances by
blending or transitioning multiple locomotion skills.

Our approach is quite different from these methods. Unlike charac-
ter animation techniques that mainly focus on generating the full-
body motion of a relatively small number of characters, we focus on
generating physically plausible interactions between a large number
of agents in dense scenarios.

2.3 Crowd Simulation in Game Engines

Some commercial game engines or middleware products can sim-
ulate character motion or crowd behavior. This includes Natural
Motion’s Euphoria, which simulates realistic character behavior
based on biomechanics and physics simulation. There are also com-
mercial AI middlewares for game engines that combine crowd and
physics simulation: Kynapse, Havok AI, and Unreal Engine are ex-
amples of these. These systems primarily focus on the local and
global navigation of each agent using navigation meshes and local
rules. Our approach to generating physical interactions can be com-
bined with these systems to improve local interactions between the
agents and the obstacles in the scene.

3 Overview

Our framework simulates agents and objects differently, based on
two fundamental assumptions about the nature of their motion.
Agents are assumed to be autonomous and self-actuated. In the ab-
sence of external forces, we use velocity-based collision avoidance
techniques to control the paths of the agents, who avoid collisions
using anticipatory techniques. In contrast, objects in the environ-
ment move only when physical forces act on them. The positions
of objects are updated by solving Newton’s equations of motion;
contacts are handled with a constraint-based method. This section
gives an overview of our proposed approach to simulating agents
and objects together in a shared space.

Local navigation and anticipatory collision avoidance of agents can
be efficiently modeled using reciprocal velocity obstacles, which
imposes linear constraints on an agent’s velocity to help it navi-
gate its environment. We extend this framework by representing
the effect of physical forces on agents also as linearized velocity
constraints. This allows us to use linear programming to compute
a new velocity for each agent – one which takes into account both
the navigation and force constraints imposed upon that agent.

Agent simulation is typically performed over discrete timesteps.
Agents are assumed to have a preferred velocity. This is the ve-
locity at which the agent would travel if there were no anticipatory
collision-avoidance or physical constraints. This velocity is used to
define the cost function for linear programming or constrained op-
timization. At each timestep, an agent computes a new velocity that
satisfies the velocity constraints, then updates its position based on
this velocity. A new set of velocity constraints are then computed
based on the new positions and velocities.

There are two types of constraints which we impose on an agent’s
velocity:
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Figure 2: System Overview. The motions for objects and agents are computed by a rigid-body dynamics solver and a constrained optimizer,
respectively. Physical interactions between agents and obstacles determine forces. For obstacles, the forces serve as inputs to the rigid-body
system; for agents, they become force constraints. These force constraints are combined with the original ORCA planning constraints and
serve as inputs to optimization algorithm.

• ORCA Constraints define the space of velocities which are
expected to remain collision-free for a given period of time.
The derivation of agent-agent ORCA constraints is given in
Section 3.1, and that of agent-object ORCA constraints in
Section 5.1.1.

• Force Constraints are constraints which arise out of forces
initiated by physical interactions with other agents and ob-
jects. The details are given in Sections 3.2, 4, and 5.

Fig. 2 gives an overview of the full simulation system for computing
these constraints and for updating an agent’s position and velocity.

3.1 Velocity Constraints for Local Navigation

ORCA constraints are defined by a set of velocities that are guaran-
teed to avoid upcoming collisions with other nearby agents [van den
Berg et al. 2011]. The constraints are represented as the boundary
of a half plane containing the space of feasible, collision-free ve-
locities. Given two agents, A and B, which we represent as 2D
discs, we compute the minimum vector u of the change in relative
velocity needed to avoid collision. ORCA enforces this constraint
by requiring each agent to change their current velocity by at least
1/2u. The ORCA constraint on A’s velocity induced by B would
be:

ORCAA|B = {v|(v � (vA +
1
2
u)) · û � 0}, (1)

where vA is A’s current velocity and û is the normalized vector u.

If A has multiple neighboring agents, each will impose its own
ORCA constraint on A’s velocity. Local navigation is computed
by finding the new velocity for A (vnew) which is closest to its pre-
ferred velocity (vpref ) while respecting all the ORCA constraints.

3.2 Velocity Constraints from Physical Forces

The set of neighbors involved in physical interactions with an agent
include both nearby agents and obstacles. We define a radius and
an angle that are then used to define a range of physical interac-
tions for each agent. When an agent is pushed, either by another
agent or by an obstacle, the agent experiences an external force. By
Newton’s second law, the net force acting on an agent implies a net
acceleration. Given a known timestep, we can compute the change
in velocity exactly. We represent this change in velocity induced by
a force as an additional constraint on the agent velocity.

One benefits of applying forces as a form of constraint is the ability
of an agent to adapt to the forces. While the constraint guarantees
an acceleration at least as large as that implied by the dynamics,
the actual acceleration from the forces may be greater than that.
When pushed, rather than simply falling sideways, an agent could
accelerate faster to reach a stable, controlled state.

We classify these forces into two types, depending on the origin of
the force:

Forces from agents are generated when an agent pushes (or is
pushed into) another agent, or when there is a collision between
two agents. This effect of a pushing force can persist across mul-
tiple time-steps depending on the agent’s response. The effect of a
pushing force on an agent can also propagate to other agents as a
result of the first agent’s being pushed into others. The force im-
parted by the agent onto an object is given as an input to a rigid
body dynamic simulation, which we use to simulate the behavior
of the objects in the environment. This simulation accounts for the
impact of agent’s force on the motion of the object.

Forces from objects are the forces an agent receives from objects.
Note that forces acting upon agents from objects are only those
caused by the collision, i.e. the reaction force. These forces are then
summed up and represented as a Force Constraint, an additional
constraint to the velocity computation.

3.3 Velocity Computation Algorithm

We can summarize our new velocity computation algorithm as fol-
lows: Given an agent A with neighbors B, we define the permitted
velocities for A, PVA as the intersection of all velocity constraints.
We can state our agent update algorithm as an optimization prob-
lem. Formally:

PVA = FCA \
\

B 6=A

ORCAA|B (2)

vnew = argmin
v2PV

A

kv � vprefk. (3)

In conditions where the preferred velocity of an agent is only de-
termined by physical forces (i.e., in the absence of navigation con-
straints) the formulation will reproduce the motion based on New-
ton’s second Law. This is because the closest velocity to the agent’s
current velocity will be the perpendicular distance to the velocity
constraint FCA.
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Figure 3: Contact Forces An agent (orange disk) can affect nearby
neighbors (grey disks) through physical contact expressed as im-
pulse forces. These physical forces can be used to push other agents
as in (a) or resolve physical collisions as in (b). The red arrows dis-
play the direction of the resulting forces.

4 Force Computation

In this section, we present our approach for computing velocity con-
straints from physical forces. We propose an approximate approach
because we need to handle a large number of agents in dense envi-
ronments. As a result, we approximate the physical interactions
based on appropriate velocity constraints. We assume that these
forces are initiated from a collision or by pushing. When an agent
experiences these forces, the impact on its motion lasts more than
one timestep because of its effort to recover momentum. We ap-
proximate the effects of momentum by using two inferred forces:
a resistive force and a deceleration force. These two additional
forces have the net effect of propagating the momentum through
the crowd.

4.1 Contact Forces

Pushing Forces: Pushing is one of the ways for agents to physically
interact with each other [Pelechano et al. 2007]. Agents can impart
a pushing force on nearby agents. In our formulation, agents can
impart a pushing force to nearby agents; this pushing force follows
the approximate direction of the pushing agent’s preferred velocity
and pushes the blocking agent out of the pushing agent’s path (see
Fig. 3a). The pushing force imparts an impulse to the nearby agents
in the direction of the normal vector from the pushing agent towards
the pushed agent. Formally, the pushing force fpi|k exerted by an
agent i pushing another agent k can be given as:

fpi|k = ⇢kfp
pk � p+

i

kpk � p+
i k

, (4)

where pi and pk indicate the positions of agent i and k, respec-
tively, and p+

i = pi + vi�t is the pushing agent’s future position
at the next time step. fp is used to define the weight of pushing
force, and we formulate it as an inverse of number of agents that
are pushed.

Collisions: In case of collisions between agents, a collision res-
olution force is applied (Fig. 3b). This force is computed based
on the physically-based simulation approach proposed by [Baraff
1997], and depends on the mass and velocity of colliding agents.
We consider only linear momentum and simulate agents as radially
symmetric disks. As a result, we do not take into account the ori-
entation of the agents. For an agent i colliding with agent k, the
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Figure 4: Inferred Forces: Forces between agents can be inferred
based on local navigation. If an agent has a large change in ve-
locity in the absence of force applied to the agent, as in (a), then a
deceleration force, fd, is inferred to have caused the change, and is
applied to nearby agents. (b) Likewise, when a force is applied to
an agent which produces no change in agent’s velocity, we model
in terms of resistive force fr , which implicitly opposes this motion.
This inferred resistive force is also applied to nearby agents.

collision force f c is computed as follows:

f c = ( �(1+✏)vrel

1/m
i

+1/m
k

· n)/�t, (5)

where n is the collision normal, pointing towards agent i from agent
j; vrel is relative velocity; and mi and mk are the mass of agent i
and agent k, respectively. ✏ is the coefficient of restitution.

4.2 Inferred Forces

We also define two forces, deceleration force and resistive force,
to model agent’s ability to adjust their motion when external force
is applied. The contact forces that result from agents colliding or
pushing each other are computed as impulses. After being bumped
or pushed, an agent will naturally exert forces in order to quickly re-
cover its preferred velocity. Forces will therefore propagate through
a dense crowd, since one agent is likely to push others in order to
recover from the external pushing force.

This kind of behaviors are inspired from biomechanics, an observa-
tion about how humans react to recover their balance in various con-
ditions including when the external forces are applied to the body.
More details are given in [Kim et al. 2013].

These propagation forces can be inferred when the motion com-
puted using constrained optimization does not match the motion
expected from external physical forces. For example, when an
agent decelerates at a faster rate than that implied by the external
forces, we infer that the agent must be pushing against other agents
or obstacles in order to be able to slow down so quickly. Like-
wise, when an agent accelerates at a rate less than that implied by
external forces, we infer the agent must be pushing against other
agents or obstacles, which resist the effect of the forces. These in-
ferred propagation forces are applied to the appropriate neighboring
agents during the subsequent timestep. We describe the formulation
for each of these forces below.

Deceleration Forces: When an agent reduces speed while preserv-
ing direction to within a certain threshold ( ✓d), we introduce a force
into the system based on this velocity change. The deceleration
force generated by agent i’s deceleration is defined as:

fdi =

⇢
kthreshmi�vi/�t if (�v̂i · v̂i) < �cos(✓d),
0 otherwise, (6)



where �vi = vi � v�
i is the change in velocity from the previous

time step to the current time step. Because agents are not rigid
bodies, they can absorb or transform forces. We approximate this
behavior by introducing a parameter kthresh.

We assume that the speed reduction arises from one of two sources:
self-will (e.g. sudden change of preferred velocity) or agent interac-
tion (e.g. impending collision avoidance). When there are no inter-
acting agents, we assume it is the former case, and the deceleration
force is applied back to the agent itself. In the latter case, where
the deceleration is caused by interaction with the agents neighbors,
the behavior of those neighbors should also change as a result of
the interactions; we thus distribute the deceleration force among
them in the case of collision avoidance. Furthermore, a neighbor-
ing agent k causes such behavior if it lies within a cone centered
on v�

i and is within an angular space of 2✓d degrees (as shown in
Fig. 4a ). For each interacting neighbor k of agent i, the portion of
the deceleration force acting on agent k is defined as:

fdi|k = ��kf
d
i , (7)

where �k is a parameter that indicates how the deceleration force is
transferred to agent k. We set this parameter to 1/n, where n is the
number of interacting agents.

Resistive Forces: Resistive forces occur when an agent’s computed
velocity does not account for the entire change in velocity expected
from the external force. This difference is propagated to neighbor-
ing agents via the resistive forces. This force is computed by the
difference between the velocity v computed by (3) and the velocity
vf computed only from the net force applied to the agent. The re-
sistive force of an agent i experiencing the discrepancy between vf

and v is:

fri =

⇢
kthreshmi(vi � vf

i )/�t if vf
i 6= 0

0 otherwise. (8)

As in the case of deceleration force, the resistive force is applied
to the agent i when there is no interacting agent. Otherwise, the
resistive force is distributed equally among the interacting agents,
whose position is inside a cone centered on vf

i and with an angular
span of 2✓r degrees (as shown in Fig. 4b ). The resistive force fri|k
applied to agent k is given as:

fri|k = ��kf
r
i , (9)

where �k is a weighting parameter for agent k (we use 1/n).

The resistive force and deceleration force can be viewed as comple-
mentary to one another. The resistive force is non-zero only in the
presence of external physical forces on an agent, and the decelera-
tion force is non-zero only in the absence of such forces.

4.3 Force Constraints

The net force f is the sum of all the forces applied to the agent.
Mathematically, force f used to compute force constraint FC (de-
scribed in (12)) is computed as follows:

f =
X

f c +
X

fd +
X

fr +
X

fp. (10)

The force constraint FC induced by the net force f is computed as
follows:

vf = v +
f
m

�t (11)

FC = {v|(v � vf ) · f̂ � 0}. (12)

FC is a half plane whose boundary, a line through vf , is perpen-
dicular to the normalized force f̂ . This half plane contains a set
of velocities that is equal to or greater than the minimum veloc-
ity change required by the force f . This term is used for velocity
computation in Equation (2).

5 Interaction with Obstacles

A key part of our approach is to model interactions between the
agents and static and dynamic objects, i.e. two-way coupling be-
tween agents and obstacles. The behavior of agents towards the ob-
jects around them includes anticipatory collision avoidance, push-
ing, and unintended collisions. An agent might also impose forces
from its motion (e.g., resistive force and deceleration force) on ob-
stacles, as it does to other agents. If there is a collision, then objects
also exert forces on the agent. In this section, we present an efficient
algorithm to model these interactions for interactive applications.

5.1 Dynamic Objects

There are some significant differences between agent-agent and
agent-obstacle interactions, both in terms of the motion computa-
tion and in how an agent responds to those obstacles. Importantly,
the motion of obstacles (e.g. rigid bodies) is governed by Newto-
nian physics, since these objects have no will and are unable to ini-
tiate movement on their own. As a result, the agents cannot assume
that the obstacles will anticipate collisions and change trajectory to
avoid them. Moreover, the rigid body simulation is performed on
the obstacle motion in 3D space, while the agents are constrained
to move on a 2D plane.

5.1.1 Anticipatory Collision Avoidance

In our approach, agents attempt to anticipate and avoid collisions
with the obstacles. Since the agent’s navigation is performed in 2D
space, we project the boundary of the dynamic obstacle onto the 2D
plane (see Fig. 5).

The dynamic object O is represented, like the agents, as an open
disc centered at p with the radius r of the bounding sphere of the
object. While we use this bounding shape for collision avoidance
with the agents, the underlying rigid body simulation uses an exact
3D object representation for collision detection and for response to
other objects in the scene.

p஺ ORCAt
A|O 

A 

O 

pை  

vை  

v஺ 

v஺ 
𝑝𝑟𝑒𝑓 

𝑟 

Figure 5: Collision Avoidance and Anticipation with a 3D object
projected onto 2D plane We take into account the object location
in computing appropriate collision avoidance constraints for agent
A, shown in the shaded region.

Agents try to avoid collisions with dynamic obstacles, just as they
try to avoid collisions with other agents, whenever the dynamic ob-
stacles are within agent’s visual range. However, agents do not



assume objects will reciprocate in avoiding collisions. Therefore,
assuming that a change in velocity of u (Section 3.1) is required to
avoid an anticipated collision with an obstacle, the agent will mod-
ify its velocity by at least u; this is twice as large as the velocity
bound using ORCA algorithm.

Therefore, the collision avoidance constraint for agent A induced
by object O is:

ORCA⌧
A|O = {v|(v � (vA + u)) · n � 0}. (13)

5.1.2 Agent-Object Collisions

When there is a collision between an agent and an object, the im-
pulse force f c is computed by the method used in [Baraff 1997].
We only consider rotational factors in the computation of object
motion, not for the agents. We can compute the impulse force f c

from the collision between an agent a and object o is as follows:

f c = ( �(1+✏)vrel

1/m
a

+1/m
o

· n)/�t, (14)

where mo is the mass of object o, vrel and n are the relative veloc-
ity and the contact normal between the contact points, respectively.
A force with the same magnitude but with the opposite direction is
applied to the object, which also results in change of angular motion
generated by the torque ⌧ c:

⌧ c = f c ⇥ ro, (15)

where ro is the displacement vector for the contact point of the
object.

6 Results & Analysis

In this section, we highlight the performance of our algorithm in
different scenarios. We also analyze the approach and compare it
with other techniques.

6.1 Agent-Agent Interaction

We first demonstrate a few scenarios which highlight the effect of
forces propagating in agent-agent interactions.

Running Through Scenario: We demonstrate a scenario where an
agent runs at a high speed through a dense crowd of 25 agents that
are standing still. Figure 6 compares the result of our method to
those achieved using multi-agent simulation without any physical
interactions.

While Moving After 

(a) without physical interactions

While Moving After 

(b) with physical interactions

Figure 6: Rushing through still agents: The red agent tries to
rush through a group of standing agents, simulated (a) with only
anticipatory collision avoidance and (b) with physical interactions.
Using our method, the forces are propagated among the agents,
resulting in a new distribution pattern (b).

The left side of each image shows a pushing agent (red) passing
through the crowd, and the right side of each image shows the posi-
tion of all other agents in the crowd after the fast-moving agent has
passed. As Fig. 6 demonstrates, agents simulated without physics-
based interaction use minimal motion to avoid collisions. In con-
trast, agents simulated using our physically-based formulation re-
sist the pushing motion (in an attempt to stand still) and propagate
the effects of being pushed to other agents.

Figure 7: Pushing through dense crowd: The red agent pushes
through a dense crowd that moves perpendicular to its direction of
travel. Agents are simulated using (a) ancipatory collision avoid-
ance only, and (b) combination of anticipatory collision avoidance
and physically-based interaction. In the latter case, the red agent
can proceed to its goals quickly by pushing other agents through its
path.

Dense Crossing Scenario: In this case, an agent attempts to cross
perpendicularly through a dense stream of crowd flow. Fig. 7 shows
a comparison between our method and using no physical interac-
tions.

As the figure shows, an agent who is only avoiding collisions (with-
out pushing) cannot effectively cut through the crowd’s flow, is
eventually swept up with the crowd, as that motion avoids all im-
pending collision. This is because moving with the crowd success-
fully avoids all impending collisions. However, the pushing force
based on our approach allows an agent to clear its path and move
freely.

Two Bottlenecks Scenario: In this scenario, long lines of closely
spaced walking agents attempt to pass through two narrow bottle-
necks, as illustrated in Fig. 8. The first bottleneck (shown as (2)) is
about the width of two agents; the second is narrower, about wide
enough for one agent (shown as (1)). A local navigation algorithm
that performs collision avoidance frequently results in congestion at
both the bottlenecks due to stable-arch formation of agents (high-
lighted with a yellow circle) in Fig. 8 (a). However, agents sim-
ulated by our physically-based method are able to break this con-
gestion at the bottleneck area by pushing the blocking agents. The
ability to break through bottlenecks also results in a quantitatively
higher rate of flow for agents using our approach. After seconds,
twice as many agents make it through both the bottlenecks, using
our algorithm.

6.2 Agent-object Interaction

We can also demonstrate the effect of two-way coupling between
dynamic objects and agents in multi-agent simulations. In the fol-
lowing scenarios, the Bullet Physics engine [AMD 2012] is used
to compute the 3D rigid body dynamics, which in turn are used to



(a) Multi-agent simulation with no physical interaction

(b) Physical interaction amongst agents and with the walls

Figure 8: Two bottlenecks scenario We simulate and compare
crowd behavior at two narrow bottlenecks in these scenarios, (1)
and (2), which are marked with red dotted lines. Bottleneck (1) is
barely wide enough for one person to pass through; bottleneck (2)
is about twice that width and allows two agents to pass through it at
a time. The result from collision-avoidance-only simulation results
in an arch-shaped arrangement of agents in the crowd (highlighted
with a yellow circle), which causes congestion at the bottleneck.
Our method breaks the congestion by allowing the agents to push
one other in congested conditions.

compute object motion (see Fig. 2). The effects of user interaction
in these scenarios can be seen in the supplemental video1.

Rolling Ball Scenario: In this scenario, a few agents interact with
varying numbers of dynamically generated balls. A user can inter-
act with the agents by moving around the dynamic obstacles, or by
generating new balls. Agents attempt to avoid these dynamically
moving balls and push them away when there is a collision.

Wall Breaking Scenario: In this scenario, long lines of agents
come at a constant rate into the simulated region, which is blocked
off with a movable wall made of 200 blocks glued together. This
wall can be broken into separate blocks if a large external force is
applied by the agents. Agents initially stop to avoid hitting the wall,
but as other agents start to push from behind, the wall breaks apart
and gets carried away with the agents. Fig. 1 shows stills from the
simulation.

Cluttered Office Scenario: In this scenario, several decomposed
3d models - a table, a chair, and a shelf, and several rigid bodies
(e.g. boxes) stacked on top of each other – are placed in the way
of the agents. A long stream of agents attempts to navigate past
the obstacles. Users can throw boxes, which push the agents and
knock over objects in the environment. Fig. 9 shows a still from the
simulation.

These scenarios demonstrate several features of our approach:

• Dynamic Obstacle Avoidance: Agents try to avoid collisions
with other agents and with dynamic obstacles.

• Agent-Object Interactions: Our method takes into account the
collisions which occur between the agents and the objects.

1Supplementary video can be found at
http://gamma.cs.unc.edu/CrowdInteractions/

The forces generated by these collisions affect both the ob-
jects and the agents.

• User Interactions: Our method is fast enough for real-time
interactive simulation. Users can participate in the simulation
by moving rigid bodies inside the scene; this movement dy-
namically changes the environment for the moving agent.

Figure 9: Office Scenario. Agents navigate to avoid office furni-
ture. As users insert flying pink boxes into the scene, the agents
get pushed, collide into each other, and avoid falling objects (see
video).

6.3 Performance

We measured the simulation timings for the demos we presented
(see Table 1). The timings were computed on a 3.4 GHz Intel i7
processor with 8GB RAM. Our method efficiently simulates large
numbers of agents, and also exhibits interactive performance when
integrated with the Bullet Physics Library.

# # Dynamic # Static
Scenario Agents Obstacles Obstacles fps
Pushing Through 1600 0 0 229.6
Two Bottlenecks 1000 0 20 829.7
Rolling Balls 10 1000 2 1205.9
Wall Breaking 1200 200 2 50.1
Office 1200 65 0 69.0

Table 1: Performance on a single core for different scenarios. Our
algorithm can handle all of them at interactive rates.

6.4 Analysis

Our approach is mainly designed for interactive applications that re-
quire plausible physical behavior (e.g. games or virtual worlds). By
using a combination of force and navigation constraints that affect
agents’ behavior, our approach can simulate many use effects and
emergent behaviors. For example, our formulation allows for inten-
tionally uncooperative agents to physically push their way through
a crowd by imparting physical forces to nearby agents. Addition-
ally, agents can use navigation constraints to avoid collisions with
dynamic obstacles as well as other agents. By expressing all inter-
actions as linear velocity constraints, we can naturally combine the
two different simulation paradigms of forces and navigation into
a unified framework and compute the new velocity for each agent
using linear programming. This is useful in generating physically
plausible simulations of large numbers of agents.

Benefits of Our Method

Many techniques have been proposed in the literature for simulat-
ing large numbers of agents that display a wide variety of emergent
behaviors. However, the primary emphasis of these methods is on
collision avoidance – avoiding any physical contact between the

http://gamma.cs.unc.edu/CrowdInteractions/


agents. In other words, they model how agents move around each
other, but do not usually model explicit physical contacts, interac-
tions, and external forces.

Force-based methods such as [Helbing and Molnár 1995] use forces
to describe social factors (e.g. attraction and repulsion) between the
agents, not physical interactions. Most closely related to our work
are methods such as [Helbing et al. 2000; Yu and Johansson 2007;
Pelechano et al. 2007], which model crowd turbulence or physi-
cal interactions among panicking agents by adding explicit physical
force or by increasing repulsive forces. These methods are capable
of reproducing some important emergent crowd phenomena, but do
not account for the anticipation needed to efficiently avoid upcom-
ing collisions with other agents and obstacles [Curtis et al. 2012].

Force-based methods can also suffer from stability issues in dense
scenarios, which require careful tuning and small time steps in order
to remain stable [Curtis et al. 2011]. Our method provides stable,
anticipatory motion for agents while incorporating agent responses
to forces. It can be easily combined with other velocity-based ap-
proaches. Our approach is also stable in terms of varying the size
of time-steps. More details are given in [Kim et al. 2013].

Limitations

We use a physically-inspired approach to simulate the interactions
between a high number of agents and the obstacles. However, it is
only an approximation and may not be physically accurate. Sec-
ondly, we assume that agents are constrained to move along a 2D
plane, and we use the projected positions of 3D dynamic objects to
compute the interactions. Third, like other agent-based simulation
methods, we use a rather simple approximation for each agent (a
2D circle). This means that we cannot accurately simulate physical
interactions with human-like articulated models and 3D objects.

7 Conclusion and Future Work

We have proposed a novel method to combine physics-based in-
teractions with anticipatory collision-avoidance techniques that use
velocity-based formulation. Our method can generate many emer-
gent behaviors, physically-based collision responses, and propaga-
tion of forces to the agent’s nearby neighbors. In combination with
the Bullet Physics library, we were able to simulate complex inter-
actions between agents and dynamic obstacles in the environment.
The resulting approach is useful for interactive large-scaled simu-
lations and can generate physically plausible behaviors. This ap-
proach has been extended to model physical interactions between
dense crowds and applied to Tawaf simulation [Kim et al. 2013].

In our future work, we would like to further explore our method
by comparing the results with real-world crowd behaviors and by
performing more validation. We would like also to extend our
model to agents moving in 3D space or multi-layer frameworks, and
to consider using more complex shapes, or even articulated body
models, to represent agents, as this would allow for more accurate
force computation. Finally, we would like to use more accurate
physically-based modeling algorithms to generate appropriate be-
haviors.
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