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Figure 1: Some examples of large, dense crowds simulated with our technique. (a) 100,000 pilgrims moving through a campsite. (b) 80,000
people on a trade show floor. (c) 25,000 pilgrims with heterogeneous goals in a mosque.

Abstract

Large dense crowds show aggregate behavior with reduced indi-
vidual freedom of movement. We present a novel, scalable ap-
proach for simulating such crowds, using a dual representation both
as discrete agents and as a single continuous system. In the con-
tinuous setting, we introduce a novel variational constraint called
unilateral incompressibility, to model the large-scale behavior of
the crowd, and accelerate inter-agent collision avoidance in dense
scenarios. This approach makes it possible to simulate very large,
dense crowds composed of up to a hundred thousand agents at near-
interactive rates on desktop computers.
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1 Introduction

Human crowds exhibit highly complex behavior driven by individ-
ual decisions of agents with respect to their goals, environmental
obstacles, and other nearby agents. The problem of simulating vir-
tual crowds has attracted increasing attention recently, due to its use
for education and entertainment, emergency training, architectural
design, urban planning, policy making, traffic engineering, and nu-
merous other applications. Existing approaches often simplify this

∗E-mail: {narain,golas,seanc,lin}@cs.unc.edu

problem by separating global planning from local collision avoid-
ance. The local collision avoidance module requires each agent
to take into account the motion of its nearby neighbors; this step
quickly turns into a major computational bottleneck for very dense
crowds.

In this paper, we focus specifically on the problem of simulating
the inter-agent dynamics of large, dense crowds in real time. Such
crowds exhibit a low interpersonal distance and a corresponding
loss of individual freedom of motion. This observation suggests
that the behavior of such crowds may be modeled efficiently on a
coarser level, treating its motion as the flow of a single aggregate
system. Based on such an abstraction, we develop a novel inter-
agent avoidance model which decouples the computational cost of
local planning from the number of agents, allowing very large-scale
crowds consisting of hundreds of thousands of agents to be simu-
lated scalably at interactive rates.

Our method combines a Lagrangian representation of individuals
with a coarser Eulerian crowd model, thus capturing both the dis-
crete motion of each agent and the macroscopic flow of the crowd.
In dense crowds, the finite spatial extent occupied by humans be-
comes a significant factor. This effect introduces new challenges,
as the flow varies from freely compressible when the density is low
to incompressible when the agents are close together. This char-
acteristic is shared by many other dynamical systems consisting of
numerous objects of finite size, including granular materials, hair,
and dense traffic. We propose a new mathematical formulation to
model the dynamics of such aggregate systems in a principled way.

The key results of this work can be summarized as follows:

• A novel hybrid representation for large crowds with discrete
agents using both Lagrangian and Eulerian methods (§3);

• A new continuum projection method that enforces density-
dependent incompressibility to model the varying behavior of
human crowds (§4);

• A scalable crowd simulation that can model hundreds of thou-
sands of agents at interactive rates on current desktops (§5).

Fig. 1 shows some of our results for dense crowds of up to 100,000
agents closely packed in complex scenes simulated at interactive
rates with our techniques. More analysis of our system’s perfor-
mance can be found in §5.



2 Related Work

In this section, we give a brief overview of prior work related to
crowd modeling and multi-agent navigation. Crowd simulation
consists of many different components, including global planning,
local avoidance, behavioral modeling, and motion synthesis. In the
interest of space, we only touch upon the former two topics here,
which are most directly related to our work. We refer the interested
readers to the excellent surveys [Schreckenberg and Sharma 2001;
Thalmann et al. 2006; Pelechano et al. 2008; Pettré et al. 2008] for
more details.

Many different techniques have been proposed for modeling the
motion of multiple human agents in a crowd. The primary task in
this problem is to compute each agent’s path towards its goal, while
avoiding collisions with obstacles and other agents and reproduc-
ing natural human behavior. On a broad level, the problem can be
separated into global planning and local behavior.

Local models for agent behavior can be traced back to the sem-
inal work of Reynolds [1987; 1999] who demonstrated emergent
flocking and other behaviors from simple local rules. A large body
of further work has accounted for sociological factors [Musse and
Thalmann 1997], psychological effects [Pelechano et al. 2005], di-
rectional preferences [Sung et al. 2004], social forces [Helbing and
Molnár 1995; Cordeiro et al. 2005; Gayle et al. 2009; Sud et al.
2007], and other models of pedestrian behavior, including [Shao
and Terzopoulos 2007; Paris et al. 2007; Yeh et al. 2008] and many
others. Many methods have also been proposed for collision avoid-
ance between nearby agents. These include geometrically-based al-
gorithms [Fiorini and Shiller 1998; Feurtey 2000; Guy et al. 2009;
Sud et al. 2008; van den Berg et al. 2008a; van den Berg et al.
2008b; van den Berg et al. 2009], grid-based methods [Loscos et al.
2003; Lin et al. 2009], force-based methods [Heigeas et al. 2003;
Lakoba et al. 2005; Sugiyama et al. 2001; Sud et al. 2007], Bayesian
decision processes [Metoyer and Hodgins 2003], and divergence-
free flow tiles [Chenney 2004].

Local control of agents cannot properly model the behavior of
agents that aim to move towards specified goals, because of the pos-
sibility of getting stuck behind an obstacle. Therefore, local models
are often combined with global planning techniques for practical
crowd simulation. These methods typically represent the collision-
free space as a graph, and perform search to compute the path for
each agent [Funge et al. 1999; Bayazit et al. 2002; Kamphuis and
Overmars 2004; Lamarche and Donikian 2004; Pettré et al. 2005;
Sung et al. 2004; Sud et al. 2007].

Our approach is closest to some previous work on using continuum-
based models for crowd dynamics. A continuum theory for the flow
of pedestrians was proposed by Hughes [2003] and then extended
by Treuille et al. [2006]. This approach combines global and lo-
cal planning in a single optimization-based framework, and gives
compelling results for many kinds of crowds. However, Treuille
et al. state that this approach is not suited for dense crowds where
people are very closely packed and tend to come into contact.

In other areas, some approaches have used models inspired by fluid
dynamics to control large groups of robots [Shimizu et al. 2003;
Kerr and Spears 2005; Pimenta et al. 2008] and to handle colli-
sion in cloth simulation [Sifakis et al. 2008]. Our work shares
some common themes with the concurrent work of McAdams et
al. [2009], who accelerate hair simulation by coupling the motion
of individual hair strands to an incompressible Eulerian flow. Note
that our unilateral incompressibility constraint could also be applied
in their method to naturally handle hair separation.

Figure 2: The system overview of our algorithm.

3 Discrete and Continuous Crowds

Our approach is motivated by the observation that in a dense crowd,
individual agents have a reduced freedom of movement, as they are
tightly constrained by nearby agents. This observation has been ex-
ploited by previous work on continuum models for medium-density
crowds [Hughes 2003; Treuille et al. 2006], and it has been noted
that crowds at high density show behavior similar to granular flows
[Helbing et al. 2005]. We are motivated by this observation to de-
velop a crowd model that directly describes the aggregate motion
of the crowd as a whole.

Specifically, in our approach, we augment the standard representa-
tion of a crowd as a set of agents with a continuous representation,
which characterizes the crowd as a continuum fluid described by a
density and flow velocity. We map the idea of local collision avoid-
ance into the continuous domain to obtain a variational constraint
on the crowd flow, which we introduce as the unilateral incom-
pressibility constraint (UIC). This constraint acts as a large-scale
collision avoidance step to accelerate the simulation.

Our approach can be used as a local planning module in conjunc-
tion with a global planner, such as a roadmap-based algorithm or
the continuum-based optimization [Treuille et al. 2006] on a coarse
grid, for the simulation of large dense crowds. The main simulation
loop is structured as follows (Fig. 2): At every timestep, after each
agent i determines its preferred velocities ṽi using a global planner
(§3.1), the discrete set of agents is converted to a continuous rep-
resentation, yielding density ρ and velocity ṽ (§3.2). The UIC is
solved in this continuous setting to give the corrected velocity field
v (§4). Finally, agents determine their actual motion based on the
velocities sampled from v (§3.3).

In the remainder of this section, we set the background by describ-
ing the familiar discrete representation of a crowd and how it relates
to the continuous model. The projection operation to solve the UIC
in the continuous setting will then be described in §4.

3.1 Agent-Level Planning

To determine the preferred velocities for each agent, a high-level
model of agent behavior is necessary, such as a global planning
step. Typically, global planning ignores the presence of other agents
and determines a path that avoids the large static obstacles in the
scene. We use the global planner to determine the preferred veloci-
ties of agents, by taking the initial segment of the globally planned
path as the preferred direction of motion. The task of reconciling
these preferred velocities with collision avoidance among agents is
then performed by the UIC solve.



In our implementation, we used a roadmap-based approach (see e.g.
[Bayazit et al. 2002; Sud et al. 2007; Sud et al. 2008] for details).
However, our approach is entirely agnostic to the particular global
planner that is used; more complex behavioral models, a continuum
planning approach, or user-scripted goal directions could be used
instead.

3.2 Agents and the Grid

We store the continuous fields ρ and v on a staggered grid, as is
common in fluid simulation. The density ρ is stored at both cell
centers and edges, to facilitate the numerical method described in
§4. The x-component of velocity is stored on the cell edges normal
to x, and similarly for the y component.

The transfer of information from discrete agents to the grid closely
follows the particle-in-cell method of fluid simulation [Harlow
1963; Zhu and Bridson 2005] (also used for crowd planning by
[Treuille et al. 2006]). To obtain the values of density ρ and ve-
locity ṽ on the grid, we accumulate the values carried by nearby
agents, weighted by the bilinear interpolation weights wx(xi) as-
sociated with the agent position xi. That is,

ρ(x) =
∑

i

wx(xi)mi, (1)

ṽ(x) =

∑
i wx(xi)ṽi∑

i wx(xi)
(2)

We take the massmi of each agent to be unity. With this procedure,
the crowd is converted to a continuous representation, on which the
UIC projection can be performed.

3.3 Agent Motion

The UIC projection, which will be described in detail in §4, defines
a flow field through ρ and v which prevents inter-agent collision on
a macroscopic level. Here, we first describe how to use the com-
puted flow field to determine the actual velocity of each agent and
thus to execute its motion.

In dense regions, the agents are constrained by the flow of the
crowd, and we directly use the interpolated grid velocity at the
agent position v(xi) as the velocity of agent i. However, in re-
gions of low density, following the flow velocity completely would
over-constrain the agents’ motion. Accordingly, we interpolate be-
tween the continuum velocity v(xi) and the agent’s own preferred
velocity ṽi, depending on the crowd density ρ(xi) at its location:

vi = ṽi +
ρ(xi)

ρmax
(v(xi)− ṽi) . (3)

Finally, the UIC projection can only act towards enforcing separa-
tion between agents on a gross level. It is still necessary to introduce
an additional step to enforce minimum distances for each pair of in-
dividual agents. We perform this by simply moving agents apart if
they are too close to each other, following Treuille et al. [2006].
While this simple pairwise collision resolution procedure is not
guaranteed to separate all pairs exactly to the preferred distance, it
gives good results because agent overcrowding is already prevented
by the UIC. Fig. 3 illustrates that both this step and the UIC solve
are necessary to prevent inter-agent collisions.

4 The Unilateral Incompressibility Constraint

This section describes the operation that enforces volumetric con-
straints on the crowd, the primary contribution of our work. The
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Figure 3: Agents attempting to exit through a narrow doorway, (a)
with both the UIC projection and pairwise collision resolution, (b)
without UIC, and (c) without collision resolution.

role of this operation is a macroscopic counterpart to inter-agent
collision avoidance. First, we will develop this in the mathemati-
cally continuous setting, then derive the numerical method that im-
plements it on the simulation grid.

We have represented the crowd’s state and preferred motion as con-
tinuous fields of density ρ and preferred velocity ṽ. Their evolution
over time can be seen as a fluid-like system. However, it does not
correspond directly to a physical fluid, as it is neither purely in-
compressible (a crowd can easily converge or disperse, changing
its density), nor purely compressible (it is not possible to compress
it indefinitely). Instead, we treat a crowd as a new kind of “unilater-
ally incompressible” fluid, which is a hybrid of the two. We directly
impose an inequality constraint on ρ, preventing it from increasing
beyond a maximum value ρmax which corresponds to agents being
packed as closely together as possible.

We make the assumption that agents do not come closer together
than a specified distance, say dmin. This need not represent ac-
tual person-to-person contact, but simply a minimal comfortable
distance to be maintained. From a macroscopic perspective, this
constraint implies an upper bound on the number density of agents,

ρ ≤ ρmax = 2α/(
√

3d2
min), (4)

with ρmax denoting the maximum allowed density. We call this
the unilateral incompressibility constraint (UIC), following the ter-
minology from mechanics of unilateral (inequality) vs. bilateral
(equality) constraints. The constant factor α ≤ 1 is present to al-
low for the fact that perfect close packing is rarely achieved. This
kind of constraint can in fact be applied not just to crowds, but to
many other aggregate systems consisting of objects of a finite size,
including granular materials and dense traffic flows.

Now, we can choose the actual flow, defined by v, to be one which
is close to the preferred flow ṽ, while maintaining the UIC (4). This
idea is formalized in the following subsection.

4.1 Unilateral Incompressibility

Formally, we may define the problem as follows. Consider the con-
tinuous model of the crowd as a constrained dynamical system, with
an inequality-constrained state variable ρ which evolves under the
action of the field ṽ. The relationship between ρ and v follows
from the fact that the number of agents is conserved:

∂ρ

∂t
+∇ · (ρv) = 0. (5)

To ensure that the UIC (4) is maintained at all times, a correction
must be applied to ṽ so that ρ remains within the feasible space.



The issue thus is to determine the corrected velocity v which is in
some sense “close” to ṽ but maintains UIC.

We make the assumption that agents will try to make as much
progress in their desired direction as possible, subject to collision
and walking speed constraints. Then, the choice of v is determined
by maximizing

∫
ρv · ṽ, subject to some maximum walking speed,

||v|| ≤ vmax. In our implementation, vmax is a constant, but for
additional realism it can be made variable for each grid cell, de-
pending on the density or the characteristics of nearby agents.

For the above condition, it can be shown via variational calculus
that the optimal solution is of the form

v = vmax
ṽ −∇p
||ṽ −∇p|| (6)

for some scalar “pressure” p ≥ 0 satisfying

ρ < ρmax ⇒ p = 0, (7)
p > 0 ⇒ ∇ · v = 0. (8)

The interpretation of (6) is as follows. The crowd flow experiences
a nonnegative pressure p which prevents the flow from converg-
ing to a density higher than ρmax. After the effect of pressure,
agents amplify their adjusted velocity to attain the maximum al-
lowed speed vmax. Note that since (7) is also equivalent to

p > 0⇒ ρ = ρmax, (9)

there is a complementarity between the unilaterally constrained
terms ρ and p, in that either ρ = ρmax or p = 0 must hold at
any point. Intuitively, this means that pressure only acts in regions
when the density ρ is at the maximum. Where ρ < ρmax, agents
are not densely packed and exert little influence on each other, and
the crowd flows freely.

4.2 Numerical Method

Here, we develop the numerical method for performing the UIC
projection on the simulation grid.

Due to the nonlinearity of 6, we do not solve it directly. Instead, we
split it into the composition of two operations,

vmax
ṽ −∇p
||ṽ −∇p|| = renorm(psolve(ṽ)), (10)

where psolve(ṽ) = ṽ −∇p, and renorm(v̂) = vmaxv̂/||v̂||.

We note that collision avoidance is performed by psolve, while the
role of renorm is merely to speed up the flow. To make analy-
sis possible, we neglect the effect of renormalizing velocities when
solving for the pressure; this will be accounted for later.

To obtain the value of p, we start by substituting psolve(ṽ) into the
evolution equation, and find

∂ρ

∂t
= −∇ · (ρṽ) +∇ · (ρ∇p). (11)

In the discrete setting with cell size ∆x, the gradient of pressure
∇p is defined at cell edges by finite differencing the pressure at
adjacent cells. The divergence ∇ · u of some vector field u on a
cell is given by summing the flux over the cell edges,

∇ · u∆x2 ≈
∑
edges

u · n∆x. (12)

At the nth timestep, the density values ρn and pre-projection veloc-
ities ṽn are known. To the first order, the density at the (n + 1)th
timestep is then given by

ρn+1 = ρn −∇ · (ρnṽn)∆t+∇ · (ρn∇pn)∆t. (13)

With discrete timesteps, it is preferable to apply UIC to the value at
the next timestep, rather than instantaneously in differential form as
in the previous subsection. Applying the constraint (7) to ρn+1 it-
self, we obtain a linear complementarity problem (LCP). A general
LCP is of the form

z = Ax + b,

z ≥ 0, x ≥ 0, zT x = 0. (14)

With the substitution σ = ρmax−ρ, it can be seen that the problem
is equivalent to an LCP with

z = σn+1, (15)
b = σn +∇ · (ρnṽn)∆t, (16)

Ax = −∇ · (ρn∇x)∆t, (17)
x = pn. (18)

Also, because the matrix A is symmetric and positive semidefinite,
the LCP is equivalent to a bound-constrained quadratic program-
ming (QP) problem.

This problem has certain useful structure which can be exploited
in order to solve it more efficiently than general-purpose QP or
LCP solvers. In particular: it is symmetric, positive semidefinite
and sparse; an efficient preconditioner, the MIC(0) preconditioner
[Bridson and Müller-Fischer 2007], is known; and only nonneg-
ativity constraints exist on the variables. We used the algorithm
of Dostál and Schöberl [2005] which exploits these properties to
solve the UIC projection efficiently. This is an iterative algorithm
which can be warm-started with the pressure values from the previ-
ous timestep for improved performance.

After solving the LCP, we obtain the pressure-corrected velocity,
say v̂. However, because the effect of velocity renormalization was
neglected in the pressure solve, renorm(v̂) may no longer satisfy
the pressure constraint (7). As this constraint is essential for colli-
sion avoidance, we solve the pressure projection on the renormal-
ized velocities again. The final velocity, thus, is

v = psolve(renorm(psolve(ṽ))). (19)

In practice, numerical error can cause ρn to exceed ρmax for one
timestep. To prevent renorm from amplifying the transient correc-
tive motion it causes, the inner psolve projection is performed with
b clamped to nonnegative values.

4.3 Obstacles

If there are obstacles in the simulation domain, each grid cell that is
partially or totally covered by an obstacle has a smaller area avail-
able for agents to be present. Therefore, it is simply the density
constraint on that cell that has to be modified. For each grid cell,
we determine the fraction f of area not covered by obstacles. (This
can of course be precomputed for static obstacles.) Then, in the
projection step, the maximum density is scaled by f to reflect the
reduced available area. That is, we simply use σ = fρmax − ρ and
solve the LCP as usual. This simple procedure, inspired by Batty
et al. [2007], allows obstacles to be handled without grid stairstep-
ping.
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Figure 4: (a) 10,000 agents in a circle moving to diametrically opposite points. (b) UIC-driven agents (left) interacting with RVO-driven
agents (right) in the same simulation. (c) 2,000 agents evacuating a building.

With this approach, we can also mix our method with other meth-
ods for agent-based planning [Helbing and Molnár 1995; Reynolds
1999; van den Berg et al. 2008b] as well as scripted agents in the
same simulation. For each time step, we first advance the individu-
ally controlled agents, then treat them as obstacles in the continuum
model so that the crowd motion will flow around them. In Fig. 4(b)
we demonstrate this with a group of agents from our continuum
model interacting with agents directed by the reciprocal velocity
obstacle (RVO) method of van den Berg et al. [2008b].

4.4 Algorithm Summary

For clarity, here we summarize the full simulation loop.

1. At the beginning of each timestep, we know the position xi

of each agent.

2. Global planning is performed to determine the preferred ve-
locity ṽi of each agent, taking into account environmental ob-
stacles but not neighboring agents. (For efficiency, the global
planner may cache results from earlier timesteps, so that the
full planning cost is not paid at each timestep.)

3. The agent positions xi and preferred velocities ṽi are trans-
ferred to the simulation grid by (1) and (2).

4. If there are moving obstacles in the environment, the free area
f of each grid cell is recomputed.

5. The UIC solve is performed, giving the corrected velocity
field v = psolve(renorm(psolve(ṽ))).

6. Each agent determines its actual velocity vi taking the cor-
rected flow into account via (3), and updates its position for
the next timestep as xi := xi + vi∆t.

7. Finally, pairwise collision resolution is performed on the new
xi to handle inter-agent collisions.

5 Results and Discussion

We have tested our algorithm on several challenging scenes with
large, dense crowds. Our simulations show that the method can ef-
ficiently handle crowds of hundreds of thousands of agents without
a notable increase in computation time.

Figs. 4(a) and 5 show two examples that demonstrate the behavior
of our method in some idealized scenarios. In the former, 10,000
agents attempt to cross over to the opposite points of a circle and
meet in the middle, before forming a vortex to resolve the deadlock.
The latter example shows a four-way crossing of pedestrians under
sparse, medium and dense flow. With sparse flow, streams of agents

are able to pass through easily, but as the density increases, a com-
plex pattern of lanes and vortices forms to resolve the congestion.

In Figs. 1(b), 6(a), 6(b), we show a real-world scenario of 80,000
individual agents being evacuated from a trade show. Since there
are many obstacles in the scene, evacuation causes congestion and
a gradual outflow.

We also took the Hajj pilgrimage as another real example of very
large crowds. Fig. 1(a), 6(c) show a scenario based on the Plain of
Arafat campsite on the pilgrimage route. Through this large envi-
ronment, 100,000 pilgrims travel in different directions and form
lanes and vortices as they pass each other. We also simulated the
motion of pilgrims in al-Masjid al-Haram (the Grand Mosque) in
Mecca. 25,000 agents with different goal directions form a dense,
complex flow with no collisions, as shown in Fig. 1(c).

5.1 Performance

We measured the performance of our algorithm on an Intel Core
i7-965 machine at 3.2 GHz with 5.99 GB of RAM. The timing re-
sults for all our examples are shown in Table 1. Even with very
large numbers of agents, we can achieve close to interactive perfor-
mance. Our method supports general scenarios with independent,
heterogeneous agents; the number of unique goals has no effect on
the performance.

Fig. 7 shows a profile of the time spent in different stages of the
algorithm, for the circle sequence of Fig. 4(a). The computational
cost of the UIC solve is approximately linear with the number of
actively constrained cells, i.e. those at maximum density, but is in-
dependent of the actual number of agents in the scene. The other
expensive step is the pairwise collision resolution, which is an un-
avoidable per-agent cost.

One of the benefits of our UIC-based approach is that it allows a
much simpler per-agent scheme to be employed. This is evident in
Fig. 8, which shows how our algorithm scales with the number of
agents. For very large numbers of agents, the per-agent processing
cost begins to dominate the computation time, but this cost is never-
theless much lower than that of existing methods. In particular, our
method makes it possible to simulate a crowd of 1 million agents
at 3 seconds per frame on a desktop computer. For comparison, we
used the most recent publicly-available implementation of the RVO
method [van den Berg et al. 2008b], a geometrically-based collision
avoidance method, whose performance is also shown. It failed to
run on scenes containing more than 70,000 agents.

We also tested the effectiveness of our approach in performing pair-
wise collision avoidance. In our experiments, we found that moving
colliding agents to a separation somewhat larger than the minimum
intersection-free distance dmin after enforcing UIC gives smoother,
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Figure 5: A four-way crossing of pedestrians entering the scene at rates of (a) 40, (b), 80, and (c) 120 agents per second.

(a) (b) (c)

Figure 6: (a, b) Two additional views of the evacuation in Fig. 1(b). (c) A zoomed out view of the campsite in Fig. 1(a).

jitter-free motion and a better spatial distribution of agents. For ex-
perimental validation, we measured the distance of each agent to its
nearest neighbor over all frames of the circle scenario. The nearest
distances have a mean of 1.25dmin in the densest regions, and only
less than 0.12% of agents approach slightly closer than dmin over
the entire sequence.

Over the different scenes shown in Table 1, the performance varies
depending on the complexity of the scene, including static obsta-
cles and the global planning roadmap. Also, when scaling up to
a million agents, memory issues begin to be a significant factor.
Overcoming these new bottlenecks is the next challenge that has to
be addressed.

5.2 Limitations and Future Work

Since our method is based on some abstractions and approxima-
tions to the true individual-driven behavior of a crowd, it has some
limitations when these approximations are not applicable.

Firstly, the pressure projection looks only at local information, and
cannot anticipate future collisions from distant agents. Thus, two
groups of agents approaching each other will not react until they
are adjacent to each other. Since this requires non-local informa-
tion, perhaps it should be a part of a global planning step instead.
For example, our method could be used in conjunction with the po-
tential fields approach of continuum crowds [Treuille et al. 2006],
which has global lookahead but does not handle the constraints of a
dense crowd. (In their original work, agent overlaps are prevented
by pairwise collision resolution, which Fig. 3 shows to be inad-
equate for dense crowds, or by using a roughly agent-sized grid,
which is expensive.)

When defining the continuum constraint handling step, we chose
to optimize only progress in the desired direction, in order to have
a simple mathematical formulation. However, in real life human
crowds display other behavioral features; for example, there is often

Scenario Agents Grid size Time/frame
Circle (Fig. 4(a)) 10 k 40× 40 34.2 ms
Crossing (Fig. 5) 6 k 40× 40 16.5 ms
Building (Fig. 4(c)) 2 k 90× 60 16.1 ms
Trade show (Fig. 1(b)) 80 k 120× 108 806 ms
Campsite (Fig. 1(a)) 100 k 120× 90 447 ms
Mosque (Fig. 1(c)) 25 k 80× 80 88.1 ms

Table 1: The performance of our method on several scenarios.

an informal cultural convention to walk on one side of the path
to avoid oncoming pedestrian traffic. It would be worthwhile to
investigate the addition of such cultural and social behaviors to our
method to enhance the realism of the results.

We anticipate that our approach can be combined with other tech-
niques to enable a level-of-detail approach for simulating extremely
large crowds. In specific regions where detailed individual motion
is needed, such as close to the viewpoint, a more expensive agent-
based scheme could be used, while distant agents would be effi-
ciently simulated using our model on a coarser grid. Adaptively
refined grids can also be used for further control over the level of
detail. This would achieve high quality behavior where it is desired,
without sacrificing performance even for extremely large crowds.

Performing motion synthesis to map animated characters to the sim-
ulated paths is another challenge. In dense crowds, velocities fluc-
tuate and often drop near zero, which we found leaves most sim-
ple approaches inadequate and vulnerable to foot skating artifacts.
Generating more plausible character motion while remaining scal-
able to very large crowds is an open problem that we hope can be
addressed by future work in motion synthesis.
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Figure 7: (a) The simulation time per frame (top) for the circle sce-
nario, compared with the number of grid cells where the UIC con-
straint is active (bottom). The scenario contained 10,000 agents on
a 40×40 grid. The majority of the simulation cost is in the collision
resolution, which is largely constant, and the UIC solve, whose cost
increases approximately linearly with the number of active cells (b).

6 Conclusion

Dense crowds of humans present a challenging problem for crowd
simulation techniques, because of the large number of agents and
the highly constrained nature of their motion. We have presented
a hybrid continuum-based method for solving the behavior of such
crowds in a scalable fashion. By employing a new mathematical
constraint to enforce inter-agent separation in the continuous do-
main, we are able to decouple the computational cost of local colli-
sion avoidance from the actual number of agents in the scene. Our
method makes it possible for the first time to simulate very large
crowds of up to a hundred thousand agents at near-interactive rates
on desktop computers. Finally, the unilateral incompressibility con-
straint is a very general formulation for modeling large aggregates
of objects, and we anticipate its applicability to many other domains
such as animation of granular materials and traffic simulation.
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HELBING, D., AND MOLNÁR, P. 1995. Social force model for
pedestrian dynamics. Physical Review E 51 (May), 4282.

HELBING, D., BUZNA, L., JOHANSSON, A., AND WERNER, T.
2005. Self-organized pedestrian crowd dynamics: Experiments,
simulations, and design solutions. Transportation Sci. 39, 1–24.



HUGHES, R. L. 2003. The flow of human crowds. Annu. Rev.
Fluid Mech. 35, 169–182.

KAMPHUIS, A., AND OVERMARS, M. 2004. Finding paths for
coherent groups using clearance. Proc. of ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, 19–28.

KERR, W., AND SPEARS, D. 2005. Robotic simulation of gases for
a surveillance task. Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (Aug.), 2905–2910.

LAKOBA, T. I., KAUP, D. J., AND FINKELSTEIN, N. M. 2005.
Modifications of the Helbing-Molnar-Farkas-Vicsek social force
model for pedestrian evolution. SIMULATION 81, 339.

LAMARCHE, F., AND DONIKIAN, S. 2004. Crowd of virtual hu-
mans: a new approach for real-time navigation in complex and
structured environments. Computer Graphics Forum 23, 3, 509–
518.

LIN, M. C., GUY, S., NARAIN, R., SEWALL, J., PATIL, S.,
CHHUGANI, J., GOLAS, A., DEN BERG, J. V., CURTIS, S.,
WILKIE, D., MERRELL, P., KIM, C., SATISH, N., DUBEY, P.,
AND MANOCHA, D. 2009. Interactive modeling, simulation
and control of large-scale crowds and traffic. Proc. Workshop on
Motion in Games (Springer-Verlag Lecture Notes in Computer
Science Series).

LOSCOS, C., MARCHAL, D., AND MEYER, A. 2003. Intuitive
crowd behaviour in dense urban environments using local laws.
In Theory and Practice of Computer Graphics, 122–129.

MCADAMS, A., SELLE, A., WARD, K., SIFAKIS, E., AND
TERAN, J. 2009. Detail preserving continuum simulation of
straight hair. ACM Trans. Graph. 28, 3, 62.

METOYER, R. A., AND HODGINS, J. K. 2003. Reactive pedestrian
path following from examples. In Proc. 16th Int. Conf. Computer
Animation and Social Agents, 149.

MUSSE, S. R., AND THALMANN, D. 1997. A model of human
crowd behavior: Group inter-relationship and collision detection
analysis. Computer Animation and Simulation, 39–51.

PARIS, S., PETTRE, J., AND DONIKIAN, S. 2007. Pedestrian
reactive navigation for crowd simulation: a predictive approach.
Computer Graphics Forum 26, 3 (September), 665–674.

PELECHANO, N., O’BRIEN, K., SILVERMAN, B., AND BADLER,
N. 2005. Crowd simulation incorporating agent psychologi-
cal models, roles and communication. First Intl. Workshop on
Crowd Simulation.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2008.
Virtual Crowds: Methods, Simulation and Control. Morgan and
Claypool Publishers.
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