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ABSTRACT

We propose a new deformable medical image registration
method that uses a physically-based simulator and an iterative
optimizer to estimate the simulation parameters determining
the deformation field between the two images. Although a
simulation-based registration method can enforce physical
constraints exactly and considers different material proper-
ties, it requires hand adjustment of material properties, and
boundary conditions cannot be acquired directly from the
images. We treat the material properties and boundary con-
ditions as parameters for the optimizer, and integrate the
physically-based simulation into the optimization loop to
generate a physically accurate deformation automatically.

Index Terms— Non-rigid image registration, physically-
based simulation

1. INTRODUCTION

Image registration has become an integral part of image-
guided radiotherapy. In order to estimate the radiation dose
accumulated in different parts of the tissue, it is important
to find out the correspondence relating each pixel from each
image taken during treatment to its corresponding pixel in the
reference image, which is usually taken before the treatment.
Given the reference imageIf and a moving imageIm, the
goal of a deformable registration is to find a deformation field
that maps each pixel ofIm to a pixel inIf . Traditionally, the
registration is formulated as an optimization problem with
the discrete deformation field as the parameters, and some
error metric based on image similarity is minimized [1]. To
cope with the high dimensionality of the problem, some reg-
ularization terms based on smoothness of the deformation or
physically-based energy can be added to the objective func-
tion to be minimized [2]. Alternatively, the objective function
can be assessed only on some landmarks, with the deforma-
tion field interpolated for the entire domain using appropriate
basis functions [3].

Another type of method generates the deformation using a
physically-based simulation [4], given the segmented organs
in the moving image. Methods of this type enforce physical
constraints exactly and take different material properties into

account, unlike the optimization-based methods, where the
image similarity and the regularization terms need to be care-
fully balanced, and the entire domain is modeled as one mate-
rial. However, the boundary conditions (deformation vectors
or external forces on some boundary locations) and material
properties (stiffness and compressibility) for the simulation
need to be chosen to achieve the desired shapes in the refer-
ence image. When both images are segmented, boundary con-
ditions can be approximated with surface matching methods,
but there is no guarantee of quality and physical accuracy in
such a matching. The material properties are usually adjusted
by hand and can be different for each patient. A recent work
[5] uses an optimizer to find out the material properties and
boundary forces for a 2D image registration problem, but it is
only implemented on 2D images with a low resolution model.

Our method is inspired byultrasound elastography [6],
which is a non-invasive method for cancer detection, based
on the assumption that cancerous tissues tend to be stiffer
than normal ones. Elastography is done by first estimating the
deformation of each pixel by, in effect, comparing two ultra-
sound images, one taken at rest state and the other taken when
a known force is imposed. After that, the elasticities can be
computed by solving a least-squares problem or by minimiz-
ing errors in deformation field iteratively. Although the im-
age registration problem also estimates the deformation field
that maps one image to another, there are fundamental differ-
ences. First, elastography is done at the tissue level, while
the image registration is done at the multi-organ level. More-
over, the external forces are unknown in image registration,
and the deformation field cannot be obtained directly from
the images. For this reason, our method uses an iterative op-
timization framework to estimate the deformation and simu-
lation parameters (elasticity and boundary conditions) atthe
same time. In each optimization loop, a deformation field is
generated by the physically-based simulator with the current
set of parameters. An objective function based on the registra-
tion error when applying the deformation field is minimized
by updating the simulation parameters for the next iteration.
We measure registration error based on correspondence at the
boundaries of segmented organs, but a variety of measures
could be applied. In addition to matching the organ bound-
aries, the deformation generated by our method is always the



result of a 3D physically-based simulation, therefore quality
and physical accuracy are enforced.

2. METHOD

The inputs to the algorithm are two segmented images, the
reference imageIf with segmentationSf , and the moving
imageIm with segmentationSm. We assume the bones are
already aligned by a rigid transformation. Our goal is to finda
deformation fieldu that maps the moving imageIm to the ref-
erence imageIf . Each segmentation is represented as a set of
closed triangulated surfaces, one for each segmented object.
To numerically solve the constitutive equations of elasticity,
we construct a tetrahedralization of the moving image such
that each face ofSm is a face in the tetrahedralization, so that
Sm is characterized entirely by its set of nodes. Our algorithm
uses a quasi-Newton optimizer [7] to minimize an objective
function based on the registration error, and each evaluation
of the function and its gradient is essentially a simulationus-
ing the current set of parametersx = [E;F]T , which consists
of the material propertiesE (we consider only the Young’s
modulus in this paper) and boundary forcesF. In this sec-
tion we briefly present our algorithm. Interested readers are
referred to [8] for more details.

2.1. Linear elasticity model and finite element modeling

The basis of our algorithm is a physically-based simulator
that generates deformation field. Currently, we use the lin-
ear elasticity model solved with the finite element method, as
described in [4]. Assuming linear elasticity, the stress vector
σ = [σx, σy , σz, τxy, τyz, τxz]

T is a linear transformation of
the strain vectorǫ (change of shape or size), and the trans-
formation is defined by the material properties (assuming an
isotropic material, the properties are Young’s modulus and
Poisson’s ratio) of the elastic body. The strain vector is de-
fined by the derivatives of the deformationu = [u, v, w]T :
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and the simulation essentially amounts to solving the constitu-
tive equation for the deformationu, given the external forces
[fx, fy, fz]
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We solve Eq. 2 numerically using the finite element method
(FEM), which is based on the discretization of the domain

into a finite number of elements, with each element consist-
ing of several nodes. We use tetrahedra as elements, so that
each consists of four nodes. The deformation field within an
element is approximated by a linear function, based on the
nodal deformation vectorsuel

j (j = 1, 2, 3, 4),

ûel(p) =

4
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j N

el
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whereNel
j is the linear shape function that has value one at

thej-th node and zero at other nodes. The result of combining
the linear shape functions for each element is a global linear
system

Ku = F, (4)

whereK is thestiffness matrix, which contains the informa-
tion of geometry and material properties, andF is the vector
consisting of external forces on each node, which is zero ex-
cept at nodes with boundary conditions assigned.

2.2. Objective function

The objective function is defined as the distance between the
deformed moving surfaceSm and the reference surfaceSf ,

Φ(x) =
1

2

∑

vl∈Sm

‖d (vl + ul(x),Sf )‖
2
, (5)

whereu(x) is the deformation field computed by the simu-
lator with parametersx, interpreted as a displacement vec-
tor for each nodevl in the tetrahedralization. The notation
d(v,S) denotes the shortest distance vector from the surface
S to the nodev, and the sum is taken over all nodes of the
moving surface. In practice, the distance can be looked up
in a precomputed distance map of the reference surfaceSf .
The distance vectors at the boundary nodes can also serve as
the initial guess for boundary conditions of the first kind (i.e.,
assigned displacement vectors), and the initial forces canbe
computed from these boundary conditions and an initial guess
of elasticities via Eq. 4.

The gradient of the objective function is given by the
chain rule,

∇Φ(x) =
∑

vl∈Sm
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whereJ =
[

∂ui

∂xj

]

is the Jacobian matrix ofu(x). Here we use

the bracket[·] to represent a matrix and the curly braces{·}

to denote a vector. Each row of the matrix,
[
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,

is essentially the spatial derivative ofd (vl + ul,Sf ) with re-
spect to thej-th axis. The derivatives ofu with respect to
the elasticities are computed by differentiating both sides of
Eq. 4,
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and therefore the Jacobian matrix can be computed by solving

K
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u for each columnJj . Similarly, the

derivatives ofu with respect to the forces can be computed
by differentiating both sides of Eq. 4,
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whereej is thej-th coordinate vector. Since the matrixK is
independent of the forces, we haveKJj = ej . Notice that
the optimization framework can work with different physi-
cal models or numerical solvers, as long as the derivatives
[∂u/∂x] can be computed.

In practice, the gradient ofΦ is much smaller with respect
to E than with respect toF, which causes the elasticity to
converge very slowly. To accelerate the process, we use an
alternating approach: we optimize the forces while keeping
the elasticities constant forn steps, and then use the resulting
forces to optimize the elasticities forn steps, and then go back
to optimizing the forces, and so on. In our experiments,n is
set to five.

2.3. Numerical optimization

We adopt a line search scheme to minimize the objective func-
tion Φ: At the k-th iteration, a descent directionpk is com-
puted based on the gradient ofΦ, and we search for an opti-
mal step sizeλk along the direction based on the value and
slope of the functionΦ(λ) = Φ(xk + λpk), wherexk is
the current estimate of the parameters. The Newton’s method
uses the Hessian matrix to find the descent direction and has
a quadratic convergence rate. However, the Hessian is hard
to compute or even ill-conditioned in many cases. Therefore,
we use a quasi-Newton method (the limited memory BFGS
method), which uses the history of the gradient in previous
steps to estimate the curvature and compute a symmetric pos-
itive definite approximation of the Hessian matrix [7]. The
quasi-Newton method saves computation time for computing
the Hessian matrix while maintaining a super-linear conver-
gence rate.

3. EXPERIMENTS

We applied our method to three pairs of CT images of the
male pelvis, each pair taken from a different patient. The
resulting RMS errors in the segmentation boundaries for
the three pairs of images are 0.076 cm, 0.065 cm, and
0.081 cm, respectively, which are within the image reso-
lution (0.1x0.1x0.3 cm for the first two pairs of images and
0.12x0.12x0.15 cm for the third pair). One of the moving
images before and after applying our registration algorithm
is shown in Fig. 1. Notice how the organs fit the segmenta-
tion boundaries after the registration. The image intensity,
however, provides little information inside the organs since

(a)

(b)

Fig. 1: The axial and sagittal views of the moving image (a)
before and (b) after the registration using our method. The red
contours show the organ boundaries of the reference image,
and the blue contours show the boundary of the prostate in
the moving image. Notice how the organs move towards the
red contour.

the intensity is nearly constant inside. In order to validate
the correctness of the resulting deformation field, we picked
those images with bright spots in the prostate due to accu-
mulated calcium. The bright spots serve as landmarks inside
the prostate and can provide more information about the
deformation inside the organ. The resulting errors in land-
mark positions are compared against the results of a rigid
registration and two other non-rigid registration methods:
the Demons method [1] and the B-spline registration method
[2]. The Demons method is based on local intensity differ-
ences and gradients, so it has an advantage due to the high
intensity and contrast of the landmarks, while our method
relies on the segmentations and does not use any informa-
tion in image intensities. We avoid such an advantage by
replacing the prostate with its the label map: a single inten-
sity value (the average intensity inside the organ) is assigned
to the pixels occupied by the organ. The B-spline method
uses B-splines to model the free-form deformation to ensure
that the transformation is diffeomorphic (smooth and invert-
ible), and therefore the accuracy in the organ boundaries is
sometimes compromised. The resulting errors in landmark
position are shown in Table 1. The results show that while
all three methods can generate low registration error in terms
of image intensity, the quality of the deformation varies. Our
method generates the deformation field using a physically-



Rigid Transformation Demons (label map of prostate)B-Spline Registration Our Method

Patient 1 Landmark 1 0.5594 0.3449 0.3525 0.1971
Landmark 2 0.5580 0.3795 0.3295 0.2830
Landmark 3 0.5180 0.2577 0.3299 0.2294
Landmark 4 0.3585 0.2993 0.2099 0.0513

Average 0.4985 0.3204 0.3146 0.1902

Patient 2 Landmark 1 0.3336 0.1753 0.3054 0.2773

Patient 3 Landmark 1 0.2376 0.3045 0.2728 0.2198
Landmark 2 0.4000 0.2723 0.3801 0.2337
Landmark 3 0.4081 0.4264 0.3720 0.3411
Landmark 4 0.2350 0.3036 0.2708 0.2607
Landmark 5 0.1120 0.1556 0.1690 0.2215

Average 0.2785 0.2925 0.2929 0.2554

All Patients Average 0.3720 0.2919 0.3025 0.2315

Table 1: Error of landmark positions (distance in cm) inside the prostate

based simulation, therefore the quality of the deformationcan
be guaranteed, and the errors in landmark position are the
lowest overall.

4. CONCLUSIONS

We have presented a physically-based image registration
method that automatically determines material propertiesand
boundary conditions. Compared to traditional optimization-
based methods which minimizes image metrics and regular-
ization terms, our method does not require a trade-off between
image similarity and the quality of the deformation, since our
deformation field is always generated by a physically-based
simulation. Our method not only matches the segmenta-
tion boundaries, but also generates high-quality deformations
inside the organs. Our framework is general and can be mod-
ified to use different physical models easily. Furthermore,
our method does not require any tedious process of parameter
adjustment and is automatic once the segmentation of both
the moving and the reference images are given.

Since our method depends on the segmentation of the
images, the resulting elasticity values may differ while the
registration error remains low. In the future, we would like
to investigate the effect of segmentation error on the opti-
mal parameters and incorporate other image- or landmark-
based metrics to further reduce the burden and possible error
from the hand segmentation. We would also like to apply
the framework to more complicated geometric and physical
models to improve the accuracy of registration.
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