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ABSTRACT account, unlike the optimization-based methods, where the

We propose a new deformable medical image registratiotﬁ]age similarity and the regularization terms need to be-car

method that uses a physically-based simulator and anivterat rialxlly E?)l\?vg(\i?’ tir;,\dthSne dn;'rregoonrgﬁ;gri %%?g:ﬁqdazzgr\]/;?:te'
optimizer to estimate the simulation parameters detenygini ) ’ y (

the deformation field between the two images. Although or external forces on some boundary locations) and material

simulation-based registration method can enforce physicg ro%etrtlebs (s:\n‘fnesst andh(.:omr;;]es(s;blllnyzjforr] the s!m::a f
constraints exactly and considers different material prop need o be chosen to achieve the desired shapes in the reter-

ties, it requires hand adjustment of material properties, a ence image. When bo_th Images are segmented, _boundary con-
ditions can be approximated with surface matching methods,

boundary conditions cannot be acquired directly from th?ﬁ)Ut there is no quarantee of quality and phvsical accuracy in
images. We treat the material properties and boundary con- 9 q Y phy y

uch a matching. The material properties are usually astjust
y hand and can be different for each patient. A recent work
[5] uses an optimizer to find out the material properties and
boundary forces for a 2D image registration problem, bt it i
Index Terms— Non-rigid image registration, physically- only implemented on 2D images with a low resolution model.
based simulation Our method is inspired bultrasound elastography [6],
which is a non-invasive method for cancer detection, based
1. INTRODUCTION on the assumption that cancerous tissues tend to be stiffer
than normal ones. Elastography is done by first estimatiag th
Image registration has become an integral part of imagedeformation of each pixel by, in effect, comparing two ultra
guided radiotherapy. In order to estimate the radiatioredossound images, one taken at rest state and the other taken when
accumulated in different parts of the tissue, it is impartana known force is imposed. After that, the elasticities can be
to find out the correspondence relating each pixel from eacbomputed by solving a least-squares problem or by minimiz-
image taken during treatment to its corresponding pixdién t ing errors in deformation field iteratively. Although the-im
reference image, which is usually taken before the treatmenage registration problem also estimates the deformatith fie
Given the reference imagk and a moving imag€,,, the  that maps one image to another, there are fundamental-differ
goal of a deformable registration is to find a deformatiordfiel ences. First, elastography is done at the tissue levelewhil
that maps each pixel df,, to a pixel in/;. Traditionally, the  the image registration is done at the multi-organ level. &or
registration is formulated as an optimization problem withover, the external forces are unknown in image registration
the discrete deformation field as the parameters, and sonaad the deformation field cannot be obtained directly from
error metric based on image similarity is minimized [1]. Tothe images. For this reason, our method uses an iterative op-
cope with the high dimensionality of the problem, some regtimization framework to estimate the deformation and simu-
ularization terms based on smoothness of the deformation tation parameters (elasticity and boundary conditionghat
physically-based energy can be added to the objective funsame time. In each optimization loop, a deformation field is
tion to be minimized [2]. Alternatively, the objective fuien  generated by the physically-based simulator with the ciirre
can be assessed only on some landmarks, with the deformset of parameters. An objective function based on the regist
tion field interpolated for the entire domain using appraf@ai tion error when applying the deformation field is minimized
basis functions [3]. by updating the simulation parameters for the next itematio
Another type of method generates the deformation using We measure registration error based on correspondena at th
physically-based simulation [4], given the segmented msga boundaries of segmented organs, but a variety of measures
in the moving image. Methods of this type enforce physicatould be applied. In addition to matching the organ bound-
constraints exactly and take different material propsiito  aries, the deformation generated by our method is always the

ditions as parameters for the optimizer, and integrate th%
physically-based simulation into the optimization loop to
generate a physically accurate deformation automatically



result of a 3D physically-based simulation, therefore ijyal into a finite number of elements, with each element consist-
and physical accuracy are enforced. ing of several nodes. We use tetrahedra as elements, so that
each consists of four nodes. The deformation field within an
element is approximated by a linear function, based on the

2. METHOD nodal deformation vectons;jl (j=1,2,3,4),
The inputs to the algorithm are two segmented images, the 4
reference imagd; with segmentatior8;, and the moving a(p) = Zule;l (p), ()
imagel,, with segmentatiors,,,. We assume the bones are =1

already aligned by a rigid transformation. Our goal is to ind ] . )
deformation fieldx that maps the moving image, to the ref- whereN;l is the linear shape function that has value one_at
erence imagé,. Each segmentation is represented as a set df€;j-th node and zero at other nodes. The result of combining
closed triangulated surfaces, one for each segmentedtobje@e linear shape functions for each element is a globaldinea
To numerically solve the constitutive equations of eldistic SYStém
we construct a tetrahedralization of the moving image such Ku=F, 4
that each face @, is a face in the tetrahedralization, so thatwhereK is the stiffness matrix, which contains the informa-
S. is characterized entirely by its set of nodes. Our algorithmion of geometry and material properties, dnds the vector
uses a quasi-Newton optimizer [7] to minimize an objectiveconsisting of external forces on each node, which is zero ex-
function based on the registration error, and each evaluati cept at nodes with boundary conditions assigned.
of the function and its gradient is essentially a simulatisn
ing the current set of parameters= [E_; F]”, which consists 5 5 Objective function
of the material propertieE (we consider only the Young’s
modulus in this paper) and boundary ford@s In this sec- The objective function is defined as the distance between the
tion we briefly present our algorithm. Interested readees ardeformed moving surface,, and the reference surfagg,
referred to [8] for more details. 1

O(x) =3 > ldvi+w(x),85)]%, (5)

ViESH

2.1. Linear elasticity model and finite element modeling
. . . . _ whereu(x) is the deformation field computed by the simu-
The basis of our algorlthm IS a physically-based S'mUIat,ofator with parameters, interpreted as a displacement vec-
that generates deformation field. Currently, we use the IIn'Eor for each nodev; in the tetrahedralization. The notation

gar eI%st:jc[ty Z]Odsl solvgd Vl\('th the If|n|t.e.eler;]1ent methsd, ad(v, S) denotes the shortest distance vector from the surface
escribed in [4]. Assuming linear elasticity, the stresstoe S to the nodev, and the sum is taken over all nodes of the

. T . . .
;1_ EGI.’ Gy’ai’”y’gyz’”z]f 'ia linear Fransfor??r?ors Of moving surface. In practice, the distance can be looked up

€ strain vector (change of s ape or 5|ze)_, and the transs, 5 precomputed distance map of the reference suSace
formation is defined by the material properties (assuming a

) . . . . he distance vectors at the boundary nodes can also serve as
isotropic material, the properties are Young’s modulus an

Poi . o) of the elastic body. Th ) s d he initial guess for boundary conditions of the first kine (i
0I1SSon's ratlo)_o t e elastic body. 1€ strain vectTor S eassigned displacement vectors), and the initial forcesbean
fined by the derivatives of the deformatian= [u, v, w]*:

computed from these boundary conditions and an initialgues
of elasticities via Eq. 4.
The gradient of the objective function is given by the

~[O0u Ov Ow Ou Ov Ov  Ow Ou aw]TLu
7 chain rule,

““\ow oy o0y "2 9: 9y 0: 0z

1)
and the simulation essentially amounts to solving the ¢irst 7 [0d(vi+w;,Sy)
. . . : ?(x) = JH | ————"—|d ,S
tive equation for the deformatiam, given the external forces Ve(x) gs: [ ou (vi +w(x),85)
Vi m
[fas fys 21T (6)
9o or or whereJ = [g%} is the Jacobian matrix af(x). Here we use
x Ty Tz _ J
Oz dy + EP Tl =0 the brackef:] to represent a matrix and the curly bradep
01wy  Ooy, N o7y PP to denote a vector. Each row of the matr{ﬂd(%‘j”’sf) ,
Ox Oy 0z v is essentially the spatial derivativedfv; + u;, S¢) with re-
0Tz, 0Ty, Oo, B 5 spect to thej-th axis. The derivatives ofi with respect to
or dy + Oz tf =0 (2) the elasticities are computed by differentiating both side
Eq. 4,
We solve Eq. 2 numerically using the finite element method 0K ou )| 7
(FEM), which is based on the discretization of the domain OE; K OE; | 0, 7



and therefore the Jacobian matrix can be computed by solvin

K {aa—gj} = [g—g} u for each columnJ;. Similarly, the
derivatives ofu with respect to the forces can be computed

by differentiating both sides of Eq. 4,

0K du
{3Fj]u+K{3Fj}_e” ®)
wheree; is thej-th coordinate vector. Since the matikis
independent of the forces, we hal&J; = e;. Notice that
the optimization framework can work with different physi-
cal models or numerical solvers, as long as the derivative &
[0u/0x] can be computed.

In practice, the gradient @ is much smaller with respect
to E than with respect t&, which causes the elasticity to
converge very slowly. To accelerate the process, we use o
alternating approach: we optimize the forces while keeping
the elasticities constant farsteps, and then use the resulting
forces to optimize the elasticities farsteps, and then go back
to optimizing the forces, and so on. In our experimentss
set to five.

in

[

(b)

2.3. Numerical optimization Fig. 1: The axial and sagitt_al vigws of_ the moving image (a)

before and (b) after the registration using our method. €de r
We adopt a line search scheme to minimize the objective fun@ontours show the organ boundaries of the reference image,
tion ®: At the k-th iteration, a descent directigsy, is com-  and the blue contours show the boundary of the prostate in
puted based on the gradient®f and we search for an opti- the moving image. Notice how the organs move towards the
mal step size\; along the direction based on the value andred contour.
slope of the functionP(\) = ®(x; + Apk), wherexy, is
the current estimate of the parameters. The Newton's methqle intensity is nearly constant inside. In order to vabidat

uses the Hessian matrix to find the descent direction and h?ﬁe correctness of the resulting deformation field, we micke

a quadratic convergence ra_lt_e. Ho_vvever, the Hessian is hafflyse images with bright spots in the prostate due to accu-
to compute or even ill-conditioned in many cases. Thereforg, ,jateq calcium. The bright spots serve as landmarks inside
we use a quasi-Newton method (the limited memory BFGS3p,g rostate and can provide more information about the
method), which uses the history of the gradient in previougjeformation inside the organ. The resulting errors in land-

fsf[eps to_e;tlmate the_ curyature and compute aSYmmet“C PQ¥ark positions are compared against the results of a rigid
itve (_jeﬂmte approximation of the Hes_5|an_ matrix [7]. Th_e registration and two other non-rigid registration methods
quasi-Newton method saves computation time for computing,e pemons method [1] and the B-spline registration method
the Hessian matrix while maintaining a super-linear conver[2]_ The Demons method is based on local intensity differ-
gence rate. ences and gradients, so it has an advantage due to the high
intensity and contrast of the landmarks, while our method
3. EXPERIMENTS relies on the segmentations and does not use any informa-
tion in image intensities. We avoid such an advantage by
We applied our method to three pairs of CT images of theeplacing the prostate with its the label map: a single inten
male pelvis, each pair taken from a different patient. Thesity value (the average intensity inside the organ) is asslg
resulting RMS errors in the segmentation boundaries foto the pixels occupied by the organ. The B-spline method
the three pairs of images are 0.076 cm, 0.065 cm, andses B-splines to model the free-form deformation to ensure
0.081 cm, respectively, which are within the image resothat the transformation is diffeomorphic (smooth and itwer
lution (0.1x0.1x0.3 cm for the first two pairs of images andible), and therefore the accuracy in the organ boundaries is
0.12x0.12x0.15 cm for the third pair). One of the movingsometimes compromised. The resulting errors in landmark
images before and after applying our registration algorith position are shown in Table 1. The results show that while
is shown in Fig. 1. Notice how the organs fit the segmentaall three methods can generate low registration error mger
tion boundaries after the registration. The image intgnsit of image intensity, the quality of the deformation variesirO
however, provides little information inside the organscsin  method generates the deformation field using a physically-



| | Rigid Transformation| Demons (label map of prostate)B-Spline Registratiof Our Method |

Patient1 | Landmark 1 0.5594 0.3449 0.3525 0.1971
Landmark 2 0.5580 0.3795 0.3295 0.2830
Landmark 3 0.5180 0.2577 0.3299 0.2294
Landmark 4 0.3585 0.2993 0.2099 0.0513
Average 0.4985 0.3204 0.3146 0.1902
| Patient2 | Landmark 1] 0.3336 | 0.1753 0.3054 | 0.2773 |
Patient3 | Landmark 1 0.2376 0.3045 0.2728 0.2198
Landmark 2 0.4000 0.2723 0.3801 0.2337
Landmark 3 0.4081 0.4264 0.3720 0.3411
Landmark 4 0.2350 0.3036 0.2708 0.2607
Landmark 5 0.1120 0.1556 0.1690 0.2215
Average 0.2785 0.2925 0.2929 0.2554
| All Patients| Average | 0.3720 | 0.2919 | 0.3025 | 0.2315 |

Table 1: Error of landmark positions (distance in cm) inside thespate

based simulation, therefore the quality of the deformatzm

[2] M. Holden,

“A review of geometric transformations

be guaranteed, and the errors in landmark position are the for nonrigid body registration, Medical Imaging, |IEEE

lowest overall.

4. CONCLUSIONS

We have presented a physically-based image registration

method that automatically determines material propeaties
boundary conditions. Compared to traditional optimizatio

Transactionson, vol. 27, no. 1, pp. 111-128, 2008.

K. Rohr, H.S. Stiehl, R. Sprengel, T.M. Buzug, J. Weese,
and M.H. Kuhn, “Landmark-based elastic registration us-
ing approximating thin-plate splinesMedical Imaging,
|EEE Transactions on, vol. 20, no. 6, pp. 526-534, June
2001.

based methods which minimizes image metrics and regulat4] J. M. Hensel, C. Menard, P. W. M. Chung, M. F. Milose-

ization terms, our method does not require a trade-off betwe

image similarity and the quality of the deformation, since o

deformation field is always generated by a physically-based
Our method not only matches the segmenta-

simulation.
tion boundaries, but also generates high-quality defdomat

inside the organs. Our framework is general and can be mod-
ified to use different physical models easily. Furthermor
our method does not require any tedious process of parame
adjustment and is automatic once the segmentation of both

the moving and the reference images are given.

Since our method depends on the segmentation of the
images, the resulting elasticity values may differ while th
registration error remains low. In the future, we would like[6]
to investigate the effect of segmentation error on the opti-
mal parameters and incorporate other image- or landmark-
based metrics to further reduce the burden and possible erro

vic, A. Kirilova, J. L. Moseley, M. A. Haider, and K. K.
Brock, “Development of multiorgan finite element-based
prostate deformation model enabling registration of en-
dorectal coil magnetic resonance imaging for radiother-
apy planning,’Int. J. Radiation Oncology Bio. Phys., vol.

68, no. 5, pp. 1522-1528, 2007.

R Alterovitz, K Goldberg, J Pouliot, ICJ Hsu, Y Kim, SM
Noworolski, and J Kurhanewicz, “Registration of MR
prostate images with biomechanical modeling and non-
linear parameter estimationMedical Physics, vol. 33,

pp. 446, 2006.

F Kallel and M Bertrand, “Tissue elasticity reconstruc-
tion using linear perturbation methodyledical Imaging,
|EEE Transactions on, vol. 15, no. 3, pp. 299-313, 1996.

from the hand segmentation. We would also like to apphl?] J Nocedal and SJ Wright, Numerical Optimization,

the framework to more complicated geometric and physical

models to improve the accuracy of registration.
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