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Abstract

We present a new algorithm for encoding low dynamic range im-
ages into fixed-rate texture compression formats. Our approach
provides orders of magnitude improvements in speed over exist-
ing publicly-available compressors, while generating high quality
results. The algorithm is applicable to any fixed-rate texture en-
coding scheme based on Block Truncation Coding and we use it to
compress images into the OpenGL BPTC format. The underlying
technique uses an axis-aligned bounding box to estimate the proper
partitioning of a texel block and performs a generalized cluster fit
to compute the endpoint approximation. This approximation can be
further refined using simulated annealing. The algorithm is inher-
ently parallel and scales with the number of processor cores. We
highlight its performance on low-frequency game textures and the
high frequency Kodak Test Image Suite.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Bitmap and framebuffer operations I.3.4 [Computer
Graphics]: Graphics Utilities—Application Packages;

Keywords: Texture compression, Content pipeline, GPU hardware

1 Introduction

In modern day real-time graphics applications, textures are heav-
ily used to increase the fidelity of synthesized images. To achieve
this fidelity, a large amount of video memory must be devoted to
storing these textures. Furthermore, accessing texture memory at
runtime comes at a high performance cost. The need for ever in-
creasing realism in today’s games drives a constant requirement for
more and higher resolution art assets. As a result, rendering from
a compressed representation of the image has become a key tech-
nique for both reducing memory footprint and increasing texture
access bandwidth [Beers et al. 1996] [Fenney 2003].

One key aspect of using compressed textures for rendering is the
notion that fast encoding speed is useful but not necessary [Beers
et al. 1996] [Fenney 2003]. However, modern-day games use hun-
dreds, if not thousands, of textures for everything from lightmaps
to character albedo maps. Additionally, the game development pro-
cess relies heavily on constant iteration over all included assets.
These requirements make development of fast, high-quality texture
compression methods important.

The state of the art in texture compression formats apply a variety
of techniques to compress data. In order to provide random-access
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Figure 1: The Bootcamp demo from Unity3D1using uncompressed
textures (top) and using textures compressed with FasTC-64 (bot-
tom). The visual quality of the scene is only slightly altered and
no visible artifacts appear. The scene uses 156 textures which were
compressed in a total of 8.75 minutes by our method. The same tex-
tures are compressed by the BC7 Compressor in the NVIDIA Tex-
ture Tools in a total of 13.27 hours.

pixel lookup and cache coherency, each format encodes a fixed size
block of texels separately. The size of this block combined with the
size of its encoding determines the compression ratio of the format.
For low dynamic range images, the texels in each block are treated
as lattice points in three or four dimensional color space [Iourcha
et al. 1999] [OpenGL 2010] [Nystad et al. 2012]. For example, six-
teen points on a 2563 lattice represent a 4×4 texel block of RGB
data at eight bits per channel. These points are encoded by a line
segment whose endpoints reside on a much sparser lattice and are
recovered using linear interpolation. Furthermore, recent encod-
ing formats allow data points to be partitioned into separate subsets
that each have their own interpolating line segment. Additionally,
methods for high dynamic range images (HDR) have also been pro-
posed [Munkberg et al. 2008] [Roimela et al. 2006].

Encoding for texture compression formats is usually performed of-
fline. Algorithms for encoding textures vary on the spectrum of
quality versus performance. Some publicly available and widely
used compressors for older formats use cluster analysis techniques
to achieve good compression quality [Brown 2006] [Donovan
2010]. Others attempt to compress the image even further using
a lossless codec in addition to the one supported by hardware [Gel-
dreich 2012] [Strom and Wennersten 2011]. However, the simplic-
ity of these formats restricts the quality of the compressed image.

1Unity3D engine vailable at http://www.unity3d.com/. Bootcamp demo
available through the Unity Asset Store.
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Newer formats use the same kind of analysis to achieve the quality
available by the format but result in long compression times for the
best quality [Nystad et al. 2012]. It is not uncommon for current
high quality texture encoders to take hours to compress hundreds
of textures for a single scene (see Figure 1).

Main Results: We present a new algorithm, FasTC, for generat-
ing texture encodings that provide orders of magnitude improve-
ments in speed over existing compression methods while maintain-
ing comparable visual quality. Our approach is applicable to low
dynamic range formats that support partitioning by using a coarse
approximation scheme to estimate the best partition. Due to the
quantization artifacts in the compressed data, this coarse approxi-
mation gives a substantial increase in speed while avoiding a severe
penalty in quality. Next, we use a generalized cluster-fit [Brown
2006] to find the best encoding for the partition. The benefit of this
approach is that we perform linear regression in the quantized space
rather than in the continuous or even discrete RGB space. Option-
ally, we allow the user to refine the data using simulated anneal-
ing which provides the ability to set the speed versus quality ratio
within a single algorithm. We test our algorithm on low-frequency
game textures and the canonical high-frequency Kodak Test Im-
age Suite [1999] against popular compressors provided by both
NVIDIA [Donovan 2010] and Microsoft [2010]. Our method per-
forms orders of magnitude faster than these methods while main-
taining visually similar results. Furthermore, we demonstrate par-
allel scalability with the number of processor cores.

The rest of the paper is organized as follows: In Section 2 we re-
view relevant texture compression formats and various methods to
encode them. Section 3 gives an overview of the problem that we
are trying to solve and presents the details of FasTC. Section 4 com-
pares compression results against known methods in terms of speed
and quality.

2 Related Work
The texture encoding schemes most used in today’s formats follow
the Block Truncation Coding (BTC) scheme introduced by Delp
and Michell [1979] for compressing eight-bit grayscale images. In
this format, 4×4 grayscale blocks are encoded using two eight-bit
grayscale values and a bit for each texel denoting which value to
use resulting in two bits per pixel (bpp). Various generalizations of
this idea have been proposed [Nasrabadi et al. 1990] [Fränti et al.
1994].

Campbell et al [1986] extended the idea of BTC to include color
by introducing a 256-value color palette instead of grayscale val-
ues. This compresses textures up to 2 bpp but requires an addi-
tional memory lookup making it inferior to formats that provide
hardware-supported pixel decompression with a single texture ac-
cess. Knittel et al [1996] proposed improvements to this method by
adding hardware support and a texturing system, but ultimately was
too slow for real-time graphics applications.

The most popular rendition of the BTC idea was introduced by
Iourcha et al [1999] as S3TC/DXT1. In S3TC, 4×4 RGB blocks
are encoded with two RGB565 endpoints and a two-bit index for
each texel. Based on its index, each texel is reconstructed by map-
ping to one of four points along the line segment in RGB color
space defined by the endpoints. Although many popular offline
encoders exist for S3TC [Bloom 2009] [Donovan 2010] [AMD
2008] [Brown 2006], real-time compression algorithms have also
been developed [Waveren 2006] [Castaño 2007]. Our approach dif-
fers by focusing on formats with partitioning and variable encoding
precision. Recently algorithms have been developed that extend
the efficiency of S3TC by either cleverly using the compression
format [Mavridis and Papaioannou 2012] or by weighing the im-
portance of endpoints based on the input [Krause 2010].

A popular format used in mobile devices is the PACKMAN for-
mat introduced by Ström and Akenine-Möller [2004]. In this for-
mat, 2×4 texel blocks are encoded by storing a single chrominance
value and then indexing into a table of luminance offsets to produce
the final color. The format has been expanded upon by introduc-
ing iPACKMAN, or ETC1, in which two PACKMAN blocks are
stored per 4×4 texel block by choosing either vertical or horizon-
tal partitioning [Ström and Akenine-Möller 2005]. ETC2 further
expands upon this format by introducing new chrominance options
for blocks with large variation [Ström and Pettersson 2007].

Recently, many formats that support both low dynamic
range (LDR) and high dynamic range (HDR) images have
emerged [OpenGL 2010] [Nystad et al. 2012]. BPTC [OpenGL
2010] compresses 8-bit per channel LDR images by encoding 4×4
texels of data down to 128 bits (8 bpp). A separate mode that also
operates on 4×4 texel blocks is used to compress HDR images.
ASTC [2012] also compresses both HDR and LDR blocks of texels
down to 128 bits, but provides different modes that vary the size of
the compressed block anywhere from 4×4 texels (8 bpp) to 12×12
(0.89 bpp). This technique was presented alongside an encoder
that has various parameters that provide different tradeoffs for
speed versus quality. Both BPTC- and ASTC-encoded blocks have
control information that specify the partitioning, index precision,
and endpoint precision of the compressed block. In ASTC, these
options are specified independently on a per-block basis, while
BPTC supports eight different modes that have predetermined
values for each of these options.

Of the eight modes that are supported by BPTC, numbered from
zero to seven, five support partitioning the block. Modes zero and
two partition the block into three subsets, and modes one, three,
and seven partition the block into two subsets where each partition
is specified by a four or six bit partition index [OpenGL 2010]. In
ASTC, partitions are specified using a ten bit partition ID, and are
determined by evaluating a function that takes this ID, the num-
ber of partitions, and the texel location as arguments [Nystad et al.
2012]. In this paper, we introduce ways to improve upon the speed
of compression algorithms that encode textures into these newer
formats.

3 Texture Encoding

The main consideration for a texture compression algorithm is to
efficiently produce a stream of bits, or encoding, that when decom-
pressed recreates the original image as accurately as possible. In
this section, we formally define the problem of compressing low-
dynamic range data for popular fixed-rate texture compression for-
mats. We split the problem into three parts: partition selection, end-
point estimation, and endpoint refinement. We present an algorithm
that selects partitions using the real-time technique described by
Waveren [2006] and uses a generalized cluster fit along with simu-
lated annealing to determine the optimal endpoint selection [Brown
2006] [Kirkpatrick et al. 1983]. In the following sections, we as-
sume that all textures are encoded using eight-bit RGB channels,
although the precision of the input may vary.

3.1 Background

Currently, the most popular texture compression formats, includ-
ing S3TC, BPTC, and ASTC, encode RGB data by defining a line
segment in RGB space and assigning an index value to each texel.
This index is used to interpolate between the endpoints of the line
segment in order to reproduce the original color value. The formats
require the compressor to accurately select values for the endpoints
given a block of texels, as shown in Figure 3. Since low dynamic
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Figure 2: Overview of FasTC. It is applicable to all fixed-rate compression formats that support partitioning.
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Figure 3: (right) A 4×4 block of texels. (left) The texels approxi-
mated with two-bit indices. The texels are interpreted as points on
a lattice defined by the precision of the source texture (red). The
endpoints approximating the texels are on a sparse lattice (blue)
and the interpolation points are in green. For two bits per index we
have 22 = 4 interpolation points. Note: The internal interpolation
points do not lie on the line segment due to quantization.

range color values are usually described with eight-bit color chan-
nels, they can be interpreted as points along a 2563 lattice. The
endpoints for each set of texels are usually encoded with a lower
per-channel precision, meaning that they exist on a sparse lattice
overlaid on the original. The goal of a compression algorithm is to
compute the best points that lie on this lattice and per-texel indices
that together reconstruct the original texel values.

Since S3TC is the most popular compression format, it has also
been extensively investigated in terms of endpoint compression.
S3TC operates on blocks of size 4×4, and stores compressed data
with a single line segment whose endpoints use 5, 6, and 5 bits for
red, green and blue respectively with two bits per index. Simon
Brown’s libsquish [2006] uses a method known as a cluster-fit. In
this method, the 16 texel values pi are first ordered along their prin-
cipal axis; then each 4-clustering that preserves this ordering is used
to solve the following least-squares problem

min
a,b
|(αia + βib)− pi|

where (αi, βi) are determined by the cluster that pi belongs to:

(αi, βi) ∈
{

(1, 0), ( 1
3
, 2
3
), ( 2

3
, 1
3
), (0, 1)

}
The endpoints a and b are then snapped to the lattice induced by
the endpoint precision, and the result with the smallest error, as
described in Section 3.2, is chosen. This algorithm is also the basis
of Castaño’s real-time GPU implementation [Castaño 2007].

A CPU-based real-time algorithm was first introduced by J.M.P.
Van Waveren that computes the diagonal of the axis-aligned bound-
ing box (AABB) of the texels in color space, and uses the resulting
diagonal as endpoints [Waveren 2006]. Although this algorithm
does not produce results as high in quality as the NVIDIA Texture
Tools [2010], it is fast enough to support compression of textures
generated at run-time, such as the frame buffer. Our approach ex-

pands upon these ideas in order to allow content pipeline designers
to compress textures at a higher quality.

3.2 Problem Formulation

Formally, a compression method for endpoint-based texture com-
pression takes as input n texels pi =

(
pri , p

g
i , p

b
i

)
, a triplet ζ =

(ζr, ζb, ζg) that denotes the number of bits per channel in the com-
pressed endpoint data, and an integer I specifying the number of
bits per index. The output of the compression method is a pair of
endpoints (pa,pb) and n index values di, with 0 ≤ di < 2I. Here
pka and pkb , with k ∈ {r, g, b}, are specified with ζk bits. The goal
of a compression method is to minimize the total error of the com-
pressed texels, i.e.

min
pa,pb

Φ(pa,pb),

where Φ(pa,pb) is the endpoint compression error defined as

Φ(pa,pb) =

 n∑
i=0

∑
k∈{r,g,b}

∣∣∣∣∣pka
(
2I − di − 1

)
+ pkbdi

2I − 1
− pki

∣∣∣∣∣
 .

The values of di are inferred from the given endpoints pa and pb

and the input data {pi} by assigning each input value to the closest
interpolation point between pa and pb. This minimization problem
is a special case of the quadratic integer programming problem,
and it can be reduced to computing the shortest vector on a lattice
(SVP). SVP is known to be NP-Hard [van Emde Boas 1981] [Ajtai
1998] and most techniques approximate the optimal solution. We
refer to this specific instance of the problem outlined above as the
endpoint optimization problem. The triplet ζ is known as the end-
point precision, and pa, pb, and {di} are collectively known as
a palette. The number of bits per index I is known as the index
precision.

3.3 Overview

FasTC operates on the BPTC format. We have chosen this format
because of the availability of compressors and hardware support
for decompression in current GPUs. We expect all of the methods
described in this paper to be equally applicable to other block-based
compression formats such as ASTC. Figure 2 gives an overview of
our algorithm.

We consider the input to be a square block of texels. The first step
of the algorithm is to check whether or not all of the texels are
uniform or transparent. If not, we estimate the best partitioning for
the block as described in Section 3.4. Next, for each subset in the
partition, we perform another uniformity check and approximate
the best endpoints to use (Section 3.5). We discuss an optional
refinement step that searches for better solutions using simulated
annealing (Section 3.6).

For a given index and endpoint precision, most eight-bit values can
be compressed with an index value of one. For example, with six-
bit endpoint precision and two-bit index precision, the value 73 is
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exactly encoded as the first index between endpoints (64, 92) af-
ter integer truncation. For a uniform block, if we assume that each
texel will have an index value of one, we can find the optimal end-
points for this block by saving the optimal endpoints per channel in
a lookup table with 256 entries. In this manner, we can effectively
discard uniform blocks and partitions. This procedure corresponds
to the uniform and transparency checks in Figure 2

3.4 Choosing a Partitioning

As mentioned in Section 2, some modern texture compression for-
mats support partitioning the texels into subsets. Since saving parti-
tioning information for each individual texel would incur too much
overhead, formats that support partitioning supply a predetermined
list of common partitionings called shapes. Each shape partitions
the block into subsets as illustrated in Figure 4.

15

1

2

3

4

5
6

7

8

9

10

11
12

13

14

16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 1615

12

3

4

5
6

7

8

9

10

11

12

13

14

16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 4: A 4×4 block partitioned by different shapes into two
subsets from the BPTC format. Shape partitioning is determined
based on a lookup into a table of common partitionings. The texels
marked with a pink background belong to one subset and the un-
marked texels belong to another. Each subset is approximated with
its own line segment (in green). (left) Shape #31 (right) Shape #4

The quality of a shape with respect to the block’s texels is deter-
mined by the interrelationships of the texels in each subset and the
input parameters to the compression algorithm. If we ignore end-
point precision, the best shapes are those whose subsets provide
clusterings of the data that line up along interpolation points on a
line segment. Mathematically, the collinearity of the texels in RGB
space would be a good measurement of their ability to be approxi-
mated in this way. Collinearity of a point cloud is measured by tak-
ing the eigenvalues {λi} of the covariance matrix and comparing
the first and second maximal eigenvalues. If the second eigenvalue
is small in comparison to the first, then the variation from the prin-
cipal axis of the point cloud is minimal. Based on this observation,
we can posit that the best shape estimation would be one whose
average ratio λ1/λ0 is small for each subset, where λ0 and λ1

are the first and second largest eigenvalues, respectively. However,
this method for shape estimation has the disadvantage that we must
compute eigenvalues for each of the hundreds of possible shapes
in our compression format for each block. As we demonstrate in
Section 4, this eigenvalue method incurs significant performance
penalties and may not provide good estimates due to quantization
artifacts.

A modification of this approach is to calculate the Euclidean dis-
tance from points to the principal axis. Instead of computing the
first and second eigenvalues of the covariance matrix, one only
needs to compute the principal eigenvector, define a line segment
with the extremes of the points projected onto this axis, and use
this segment as an estimated solution to the endpoint optimization
problem for each subset. In fact, some encoders, such as NVIDIA’s
compressor, perform this step in order to estimate the quality of a
given shape [Donovan 2010].

Due to the discrete nature of endpoint optimization, any approxi-
mation that relies on the continuity of the domain may introduce
inaccuracies. Instead of performing principal component analysis,
we propose an approximation to each subset to be the amount of

error it would create if it were encoded using the real-time CPU
based method introduced by Waveren [2006], which we will refer
to as bounding-box estimation. Bounding box estimation uses the
diagonal of the axis-aligned bounding box (AABB) as an estimate
for the line segment that solves the endpoint optimization problem.
It also provides an efficient check for uniformity by measuring the
length of the diagonal. We present the following metric for approx-
imating the quality of a given shape:

e ({pi}) = Φ (ψ+ ({pi}) , ψ− ({pi}))

where

ψ+ ({pi}) =
(

max
i

(pri ),max
i

(pgi ),max
i

(pbi )
)
,

ψ− ({pi}) =
(

min
i

(pri ),min
i

(pgi ),min
i

(pbi )
)

The index precision I and endpoint precision ζ which influence the
value of Φ should be chosen based on the encoding format. In our
implementation, we use ζ = (8, 8, 8) and I = 2 for three-subset
shapes and I = 3 for two-subset shapes. This approximation pro-
vides the main speed-up for our algorithm. For each block it must
be performed twice per each of the 64 shapes in BPTC (once for
two-subset shapes, and once for three-subset shapes). The ramifi-
cations of this approximation, with respect to compression quality
and speed, are given in Section 4.

3.5 Endpoint Estimation

There are currently two main compression algorithms that are
widely used to solve the endpoint optimization problem with re-
spect to S3TC. One is AMD’s Compressonator [2008], which does
not have any released source code. The other has been incorpo-
rated from Simon Brown’s libsquish [2006] into NVIDIA’s texture
tools [2010]. As described in Section 3.1, Brown’s cluster-fit algo-
rithm searches over all 4-point clusterings that preserve the points’
ordering along the principal axis. The core of Brown’s algorithm
is to assign each texel of a cluster to an interpolation point along
the line segment. In this way, we present the generalized cluster fit:
Given n texels pi and index precision I, compute indices di and 2I

clusters with centers at ck such that

‖cdi − pi‖ ≤ ‖ck − pi‖

for all 0 ≤ k < 2I and 0 ≤ i < n. We approximate the solution
to the endpoint optimization problem as the pair (pa,pb) that best
approximates the overdetermined system of n equations αipa +
βipb = pi where

(αi, βi) =

(
2I − di − 1

2I − 1
,

di
2I − 1

)
In S3TC, there are only two bits per index giving

(
16+22−1

22−1

)
=(

19
3

)
= 969 possible clusterings. In BPTC, the texels can be en-

coded with up to four bits per index. This produces a total of(
16+24−1

24−1

)
=
(
31
15

)
≈ 3 × 109 possible 16-clusters making an

exhaustive search infeasible. Charles Bloom presents an alterna-
tive method for S3TC that only uses a 2-means clustering along
the principal axis instead of iterating through each possible cluster-
ing [Bloom 2009]. Similarly, we assume the best clustering to be
along the direction of the principal axis. In FasTC, instead of iter-
ating through all possible clusterings, we compute an appropriate
k-means clustering where k = 2I. As shown in Algorithm 1, we
initially project all points onto the principal axis. Then we generate
2I − 2 equally spaced points along the axis between the extremes
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of the projection. We use these points as a seed to Lloyd’s [1982]
algorithm to compute a final clustering. Once we solve the least
squares problem in R3, we choose the closest lattice endpoints as
our approximation. Instead of projecting points onto the principal
axis, we could take the bounding box diagonal as we did during
shape estimation in Section 3.4. However, both the difference in
quality and speed are negligible using this method.

Algorithm 1 FasTC-0: Generalized cluster fit for estimating a so-
lution to the endpoint optimization problem
Input:

Texels pi ∈ Z3, 0 ≤ i < n
Index Precision I

Output:
Endpoints pa and pb, and indices di s.t. 0 ≤ di < 2I

v← ComputePrincipalDirection(pi)
m← 1

n

∑
pi

// Initialize the endpoints as extremes along the principal axis
(qa, qb)← (max [(pi −m) · v] ,min [(pi −m) · v])
(pa,pb)← (m + qav,m + qbv)

// Initialize cluster centers as the points along the segment

C←
{
c0, ..., c2I−1

}
, ck =

(2I−k−1)pa+kpb

2I−1

// Compute an initial clustering
di ← k s.t. ‖ck − pi‖ ≤ ‖cj − pi‖ ∀ j 6= k ∀ i

// Perform k-means clustering to achieve a final clustering {di}
({di},C)← Lloyd({di},C)

// Setup and solve overdetermined system of linear equations
(αi, βi)←

(
2I−di−1

2I−1
, di
2I−1

)
∀ i

(pa,pb)← (a,b) s.t. ∀a0,b0 ∈ R3 and 0 ≤ i < n

‖αia + βib− pdi‖ < ‖αia0 + βib0 − pdi‖

3.6 Endpoint Refinement

After estimating the endpoints for a given block of texels, we have
introduced errors due to quantization. The endpoint estimation al-
gorithm mentioned in Section 3.5 must clamp the final endpoints to
the sparse lattice defined by the endpoint precision ζ. Nearby lattice
points to these endpoints can provide better approximations to the
endpoint optimization problem. However, the initial approximation
usually lands within a local minimum of Φ rendering methods that
involve gradient descent ineffective. Furthermore, due to the high
frequency nature of Φ, it is difficult to locate global minima for a
given subset. Most compressors include a localized search around
the estimated endpoints to improve their approximation. The size
of this search space proves to be another limiting factor in the speed
of compression algorithms.

Instead of using a local exhaustive search as in NVIDIA’s
tool [2010], we use simulated annealing to do a local search for
the best endpoints in each subset [Kirkpatrick et al. 1983]. Simu-
lated annealing is particularly well suited for this problem due to
the size and discrete nature of the search space. Furthermore, the
lack of known structure in the search space gives an advantage to
a stochastically-based process. For each step of simulated anneal-
ing, we choose neighboring lattice points q′a,q

′
b for each of the

two endpoints. If the approximation to the endpoint optimization
problem Φ(q′a,q

′
b) is better than the initial approximation, then

we restart the annealing process with the improved approximation.
Otherwise, if the approximation is close enough to the one we cal-
culated in the previous annealing step, we continue the annealing
with this approximation. In this situation, close enough is mea-
sured by some function Accept whose value depends on how far
along we are in the annealing process.

Special consideration should be taken when implementing the
Accept function. In general, if this function is too restrictive, then
there is a high chance that the annealing process will get stuck in a
local minimum. Conversely, if the function is too permissive, the
annealing might go in directions that have a catastrophically large
amount of error. In our studies, we have selected a function with
exponential decay:

Accept(ε, ε′, τ) = e
ε−ε′
10τ

For the remainder of the paper, we will refer to our compressor as
FasTC-k, where k is the number of steps used for the simulated an-
nealing portion of our endpoint refinement. We implement at least
k steps of annealing for each subset for which we solve the end-
point optimization problem. Since we run the optimization on each
block, this incurs a fairly large cost on the run-time efficiency of
the total algorithm. However, if we assume that the initial approx-
imation is close to the optimal solution, low values of k should be
sufficient for generating high quality images.

3.7 Multi-Core Parallelization

Since fixed-rate formats specify texture encoding on a block by
block basis, they are inherently parallel. The most common ap-
proach is to spawn as many threads as the host machine has cores
and divide the number of blocks evenly across all threads. However,
the algorithm that we have presented uses uniformity checks and
other tests to attempt to resolve the encoding of a block as quickly
as possible. An application parallelized in this way will thus not
have every thread finish its work at the same time. For example,
one such scenario is for a texture atlas that contains subtextures for
a character or scene. In this case, all of the clothing, face, arm and
leg textures for a character may contain areas of uniform texture
values to separate the components.

In order to fully utilize the multiple CPU cores, we use a worker
queue for processing textures. In this scheme, we spawn as many
threads as we have cores, but for each thread we only process as
many blocks as will fit in L1 cache. In practice, this approach re-
sults in faster performance on processors with a large number of
cores. Using this method, we obtain parallel scaling proportional to
the number of CPU cores.

4 Results
In order to test all acceleration features, we use the BPTC for-
mat due to its availability in both hardware and existing toolsets.
For this format the two compressors that were tested were the
one developed by Walt Donovan provided with NVIDIA’s Texture
Tools [Donovan 2010], which we will refer to as NVTC, and the
one distributed with the June 2010 release of Microsoft’s DirectX
SDK [2010], which we will refer to as DX-CPU. The tests were
performed using both game textures and the standard Kodak Test
Image suite [1999] where each texture is 512×768 pixels. Most
game textures, such as character maps, are not as high frequency
as the images in this test suite and generally are more amenable
to compression. We use the Kodak Test Image Suite in order to
provide a worst-case scenario in terms of compression quality.

In our comparisons, we assume NVTC to be the baseline for BPTC.
We make this assumption because this tool exhaustively explores
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kodim13 atlas small-char big-char
512×768 512×512 512×512 1024×1024

Peak Signal to Noise Ratio
Image FasTC-0 FasTC-256 DX CPU NVTC
kodim13 41.53 41.68 40.27 42.27
atlas 45.16 45.34 43.77 46.32
small-char 47.84 48.03 46.20 49.38
big-char 47.10 47.37 45.02 48.05

Compression Speed in Seconds
Image FasTC-0 FasTC-256 DX CPU NVTC
kodim13 5.2 48.8 264.4 783.0
atlas 2.7 25.2 118.5 381.7
small-char 3.2 29.4 145.6 376.5
big-char 13.4 125.6 544.1 1760.8

Table 1: Average compression speed for various compression algo-
rithms. We use a selection of both low and high frequency textures.
FasTC easily outperforms all of the other algorithms in terms of
speed while maintaining comparible quality. Tests were performed
using a 3.0 GHz quad-core Intel Core i7 workstation.

an extremely large portion of the solution space, and in general
produces very high quality results. Although a good metric for
overall perceptible compression quality is the structural similarity
metric introduced by Wang et al [2004], the fixed-rate nature of
compression formats will always introduce block artifacts in com-
pressed images which artificially skew this metric. Instead, we use
the canonical metric of Peak Signal to Noise Ratio (PSNR), using
the following formula given by Ström and Petterson [2007]

PSNR = 10 log10

(
3× 2553 × w × h∑

x,y

(
∆R2

xy + ∆G2
xy + ∆B2

xy

))

As we can see in Figure 5 our algorithm provides competitive re-
sults in terms of quality even without simulated annealing. More-
over, it provides better quality than DX-CPU. As a commonly ac-
cepted rule of thumb, 0.25 dB of difference in PSNR is notice-
able to the human eye. Although our results average less than
one decibel worse in quality over NVTC, the relatively high val-
ues of PSNR make even this difficult to notice. The performance
gains achieved with our method are deomonstrated in Table 1. We
observe order-of-magnitude increases in speed over previous im-
plementations without simulated annealing. Figure 6 displays a
closeup of the areas that produce the highest error in our algorithm
for various images.

4.1 Shape Selection

In Section 3.4 we discussed various different methods for estimat-
ing the proper shape to choose when encoding a block. One of
those methods was to compare the magnitude of the first and second
eigenvalues of the covariance matrix and use their ratio as a mea-
surement of linearity. Figure 7 compares the difference in PSNR be-
tween using this method and using bounding box estimation. From
this figure, we can see the effect quantization has on shape esti-
mation. Furthermore, the speed of image compression using this
method without simulated annealing was 10.7 seconds slower on
average.
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Figure 5: Peak Signal to Noise Ratio for various compression al-
gorithms. NVTC, the tool provided with NVIDIA’s Texture Tools
(green). FasTC-0, our algorithm without simulated annealing
(blue). DX CPU, the tool provided with Microsoft’s DirectX SDK
(red). Our algorithm (FasTC-0) provides similar quality to existing
implementations.

Context Original NVTC FasTC-50

Figure 6: Detailed investigation of areas with high noise in the
Kodak Test Images that produce lowest PSNR. We notice that the
visual quality of FasTC is comparable to NVTC and close to the
original texture.

In order to further demonstrate the effects of quantization on shape
selection, Figure 8 shows the difference in NVTC when we use
bounding box estimation versus measuring distance from the prin-
cipal axis. The average compression time of a single texture from
the Kodak Test Image Suite reduces to 181.3 seconds from 1384.6
seconds. Moreover, the minimal difference in compression quality
suggests that the largest gain in quality comes from an exhaustive
search around the coarse approximation to the endpoint selection.
This reinforces the assumption that taking a better approximation
to the endpoints as outlined in Section 3.5 will accelerate texture
encoding by reducing the need for this kind of search.

4.2 Simulated Annealing

We discussed simulated annealing in Section 3.6 as an alternative to
an exhaustive search of the neighboring area. As expected, we ob-
serve a linear increase in compression time with respect to the num-
ber of annealing steps. Figure 9 demonstrates the increase in quality
from using simulated annealing. In general, we see a sublinear in-
crease in compression quality as more steps of simulated annealing
are applied. This means that small amounts of simulated annealing
are beneficial, but because of the nature of the search space, exces-
sive application of the annealing process does not produce better
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Figure 7: Peak Signal to Noise Ratio for FasTC-0 using bounding
box estimation (blue) and eigenvalue comparison (red). In this ex-
periment, we replaced the shape estimation technique from FasTC-
0 with one that uses the ratio of the first and second eigenvalues of
the covariance matrix. We can see that due to quantization errors,
using bounding box estimation produces better results.
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Figure 8: We compare the compression quality of the original
NVTC (green) with a modified version that measures shape qual-
ity using bounding box estimation (red). In general, the difference
in PSNR is very small, but we avoid a costly eigenvector compu-
tation during shape estimation giving us up to 10x in performance
gains.

results. The cause of such tapering is twofold. First, if the sim-
ulated annealing takes place over a long period of time, it allows
the procedure’s endpoint approximations to wander away from the
optimum early on due to the loose restrictions of the Accept func-
tion. Second, once the annealing process passes a certain point, the
Accept function will only accept errors that are very close to the
best error, causing the algorithm to loop in a local minimum. We
recommend no more than 64 steps of annealing to achieve the best
ratio between performance and quality.

4.3 Parallelization

Each compression format that supports fixed-rate encoding oper-
ates on separate blocks of data independently making compressors
inherently parallelizable. Our compression method is no different
and observes speedups that scale proportionally to the number of
cores in a machine. This massive amount of parallelization lends it-
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Figure 9: Average increase in Peak Signal to Noise ratio for the
images in the Kodak Test Image suite for various different amounts
of simulated annealing. The increase in quality is sublinear due to
the nature of the solution space.
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Figure 10: Compression time in seconds for FasTC-0 of a 20482

sized texture on different multi-core configurations using different
numbers of threads. Tests were run on a Single-Core 3.00 GHz Pen-
tium 4 running 32-bit Ubuntu Linux 11.10 (red), Quad-Core 3.50
GHz Intel Core i7 running 64-bit Windows 7 (blue) and 40-Core
2.40 GHz Intel Xeon running 64-bit Ubuntu Linux 11.04 (green).
We observe a linear speedup with the number of cores.

self to high end work-stations in content pipelines, and likely GPU
optimization. Moreover, the relatively small amount of data that
must be read for each block means that the entirety of the com-
putation is cache resident and hence scales with computing power.
Figure 10 represents the gains in compression speed for various
configurations.

5 Closing Remarks

Limitations: The approximations we have presented use heuris-
tics that have not been fully explored. In the simulated annealing
step of the optimization, instead of choosing neighbors randomly, it
would be better to weigh neighbors that are likely to produce better
endpoints. Also, if we are in a sufficiently severe local minimum
then we will cycle through all of the nearby endpoints without pro-
ceeding. Furthermore, the generalized cluster fit is based off of a
continuous representation. There may be methods that operate in
the discrete solution space that could avoid quantization errors and
be leveraged to require fewer annealing steps.

Future Work: We believe that there is room to build upon the
methods introduced in this paper. First and foremost, the massively
parallelizable aspect of block truncation coding lends itself to both
SIMD and GPU implementation. We believe that with these en-
hancements such implementations would be able to achieve rates
that are viable for real-time encoding. Second, the only methods
that were introduced for shape estimation were localized to the
block that they were operating on. Due to the fact that shapes are
known prior to encoding, the optimal shape for a neighboring block
may indicate what a likely shape is for a block adjacent to it. In this
way we could split up the block estimation step to be a subset of
all total blocks and subsequently only search a much smaller sub-
set for the remaining blocks. Finally, we believe that the methods
presented here are applicable to compressing HDR textures as well.

Conclusion: We have presented a new method, FasTC, for the ac-
celeration of encoding textures for formats that employ variations
of Block Truncation Coding. FasTC offers up to orders of magni-
tude increases in compression speed while maintaining high com-
pression quality in terms of PSNR. Moreover, we present a flexible
paradigm that gives the content pipeline designer a mechanism to
choose between encoding time and compression quality.
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