
GPUTeraSort: High Performance Graphics Co­processor
Sorting for Large Database Management

Naga K. Govindaraju ∗ Jim Gray † Ritesh Kumar ∗ Dinesh Manocha ∗

{naga,ritesh,dm}@cs.unc.edu, Jim.Gray@microsoft.com

http://gamma.cs.unc.edu/GPUTERASORT

ABSTRACT

We present a new algorithm, GPUTeraSort, to sort billion-
record wide-key databases using a graphics processing unit
(GPU) Our algorithm uses the data and task parallelism
on the GPU to perform memory-intensive and compute-
intensive tasks while the CPU is used to perform I/O and
resource management. We therefore exploit both the high-
bandwidth GPU memory interface and the lower-bandwidth
CPU main memory interface and achieve higher memory
bandwidth than purely CPU-based algorithms. GPUTera-
Sort is a two-phase task pipeline: (1) read disk, build keys,
sort using the GPU, generate runs, write disk, and (2) read,
merge, write. It also pipelines disk transfers and achieves
near-peak I/O performance. We have tested the perfor-
mance of GPUTeraSort on billion-record files using the stan-
dard Sort benchmark. In practice, a 3 GHz Pentium IV
PC with $265 NVIDIA 7800 GT GPU is significantly faster
than optimized CPU-based algorithms on much faster pro-
cessors, sorting 60GB for a penny; the best reported Pen-
nySort price-performance. These results suggest that a GPU
co-processor can significantly improve performance on large
data processing tasks.

1. INTRODUCTION
Huge sort tasks arise in many different applications in-

cluding web indexing engines, geographic information sys-
tems, data mining, and supercomputing. Sorting is also
a proxy for any sequential I/O intensive database work-
load. This article considers the problem of sorting very large
datasets consisting of billions of records with wide keys.

The problem of external memory sorting has been stud-
ied for more than five decades, starting with Friend [16].
The dramatic improvements in the speed of sorting algo-
rithms are largely due to advances in computer architec-
ture and software parallelism. Recent algorithms utilize
simultaneous multi-threading, symmetric multi-processors,

∗University of North Carolina at Chapel Hill
†Microsoft Research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1­59593­256­9/06/0006 ...$5.00.

advanced memory units, and multi-processors to improve
sorting performance. The current Indy PennySort record
benchmark1, sorts a 40 GB database in 1541 seconds on a
$614 Linux/AMD system.

However, current external memory sort performance is
limited by the traditional Von Neumann style architecture
of the CPU. Computer architects use data caches to amelio-
rate the CPU and the main memory bottleneck; but, CPU-
based sorting algorithms incur significant cache misses on
large datasets.

This article shows how to use a commodity graphics pro-
cessing unit (GPU) as a co-processor to sort large datasets.
GPUs are programmable parallel architectures designed for
real-time rasterization of geometric primitives - but they
are also highly parallel vector co-processors. Current GPUs
have 10x higher main memory bandwidth and use data par-
allelism to achieve 10x more operations per second than
CPUs. Furthermore, GPU performance has improved faster
than Moore’s Law over the last decade - so the GPU-CPU
performance gap is widening. GPUs have recently been used
for different scientific, geometric and database applications,
as well as in-memory sorting [20, 22, 35]. However, previ-
ous GPU-based sorting algorithms were not able to handle
gigabyte-sized databases with wide keys and could not keep
up with modern disk IO systems.

Main Results: We present GPUTeraSort that uses a GPU
as a co-processor to sort databases with billions of records.
Our algorithm is general and can handle long records with
wide keys. This hybrid sorting architecture offloads compute-
intensive and memory-intensive tasks to the GPU to achieve
higher I/O performance and better main memory perfor-
mance. We map a bitonic sorting network to GPU rasteriza-
tion operations and use the GPU’s programmable hardware
and high bandwidth memory interface. Our novel data rep-
resentation improves GPU cache efficiency and minimizes
data transfers between the CPU and the GPU. In practice,
we achieve nearly 50 giga-byte per second memory band-
width and 14 giga-operations per second on a current GPU.
These numbers are 10x what we can achieve on the CPU.

We implemented GPUTeraSort on an inexpensive 3 GHz
Pentium IV EE CPU with a $265 NVIDIA 7800 GT GPU.
GPUTeraSort running the SortBenchmark on this inexpen-
sive computer has performance comparable to an “expen-
sive” $2,200 3.6 GHz Dual Xeon server. Our experimental
results show a 4 times performance improvement over the
2005 Daytona PennySort benchmark record and 1.4 times

1http://research.microsoft.com/barc/SortBenchmark

improvement over the 2003 Indy PennySort benchmark record.
Some of the novel contributions of our work include:

• An external sorting architecture that distributes the
work between the CPU and GPU.

• An in-memory GPU-based sorting algorithm which is
up to 10 times faster than prior CPU-based and GPU-
based in-memory sorting algorithms.

• Peak I/O performance on an inexpensive PC and near
peak memory bandwidth on the GPU.

• A scalable approach to sorting massive databases by
efficiently sorting large data partitions.

In combination, these features allow an inexpensive PC
with a mid-range GPU to outperform much more expen-
sive CPU-only PennySort systems. The rest of the paper
is organized as follows. Section 2 reviews related work on
sorting, hardware accelerated database queries, and GPU-
based algorithms. Section 3 highlights some of the limita-
tions of CPU-based external sorting algorithms and gives an
overview of GPUTeraSort. Section 4 presents the GPUTera-
Sort algorithm and Section 5 describes its implementation.
Section 6 compares its performance with prior CPU-based
algorithms.

2. RELATED WORK
This section briefly surveys related work in sorting and the

use of GPUs to accelerate data management computations.

2.1 Sorting
Sorting is a key problem in database and scientific ap-

plications. It has also been well studied in the theory of
algorithms [23]. Many optimized sorting algorithms, such
as quicksort, are widely available and many variants have
been described in the database literature [2]. However, the
CPU performance of sorting algorithms is governed by cache
misses [17, 24, 32] and instruction dependencies [45]. To
address these memory and CPU limits, many parallel al-
gorithms and sorting systems have been proposed in the
database and high performance computing literature [11,
14, 25, 38, 44].

The Sort Benchmark, introduced in 1985 was commonly
used to evaluate the sorting algorithms [15]. As the original
benchmark became trivial, it evolved to the MinuteSort [32]
and the PennySort benchmarks [33]. Nyberg et al. [32] use a
combination of quicksort and selection-tree mergesort in the
AlphaSort algorithm. In practice, AlphaSort’s performance
varied considerably based on the cache sizes. The NOW-
SORT algorithm [8] used a cluster of workstations to sort
large databases. Recently, Garcia and Korth [17] used fea-
tures of SMT (simultaneous multi-threading) to accelerate
in-memory sort performance.

2.2 Optimizing Multi­Level Memory Accesses
Many algorithms have been proposed to improve the per-

formance of database operations using multi-level memory
hierarchies that include disks, main memories, and several
levels of processor caches. Ailamaki gives a recent survey on
these techniques [4]. Over the last few years, database archi-
tectures have used massive main memory to reduce or elim-
inate I/O; but the resulting applications still have very high

clocks per instruction (CPI). Memory stalls due to cache
misses can lead to increased query execution times [6, 27].
There is considerable recent work on redesigning database
and data mining algorithms to make full use of hardware
resources and minimize the memory stalls and branch mis-
predictions. These techniques can also improve the perfor-
mance of sorting algorithms [5, 12, 26, 28, 36, 37, 39, 45].

2.3 GPUs and Data Parallelism
Many special processor architectures have been proposed

that employ data parallelism for data intensive computa-
tions. Graphics processing units (GPUs) are common ex-
amples of this, but there are many others. The Clear-
Speed CSX600 processor [1] is an embedded, low power,
data parallel co-processor that provides up to 25 GFLOPS
of floating point performance. The Physics Processing Unit
(PPU) uses data parallelism and high memory bandwidth
in order to achieve high throughput for Physical simulation.
Many other co-processors accelerate performance through
data parallelism.

This paper focuses on using a GPU as a co-processor for
sorting, because GPUs are commodity processors. A high
performance mid-range GPU costs less than $300. Current
GPUs have about 10× the memory bandwidth and process-
ing power of the CPU and this gap is widening. Commodity
GPUs are increasingly used for different applications includ-
ing numerical linear algebra, scientific, and geometric com-
putations [34]. GPUs have also been used as co-processors to
speedup database queries [9, 18, 19, 40] and data streaming
[20, 29, 41].
Sorting on GPUs: Many researchers have proposed GPU-
based sorting algorithms. Purcell et al. [35] describe a
bitonic sort using a fragment program where each stage of
the sorting algorithm is performed as one rendering pass.
Kipfer et al. [22] improve bitonic sort by simplifying the
fragment program; but the algorithm still requires ∼ 10
fragment instructions. Govindaraju et al. [20] present a
sorting algorithm based on a periodic balanced sorting net-
work (PBSN) and use texture mapping and blending oper-
ations. However, prior GPU-based algorithms have certain
limitations for large databases. These include:

• Database size: Previous algorithms were limited to
databases that fit in GPU memory (i.e. 512MB on
current GPUs).

• Limit on key size: The sort keys were limited to 32-bit
floating point operands.

• Efficiency: Previous algorithms were not fast enough
to match the disk array IO bandwidth.

Our GPUTeraSort algorithm uses the GPU as a co-processor
in ways that overcome these limitations.

3. OVERVIEW
This section reviews external memory sorting algorithms,

analyzing how these algorithms use processors, caches, mem-
ory interfaces, and input/output (I/O) devices. Then we
present our GPUTeraSort algorithm.

3.1 External Memory Sorting
External memory sorting algorithms are used to reorga-

nize large datasets. They typically perform two phases. The

first phase produces a set of files; the second phase processes
these files to produce a totally ordered permutation of the
input data file. External memory sorting algorithms can be
classified into two broad categories [42]:

• Distribution-Based Sorting: The first phase par-
titions the input data file using (S-1) partition keys
and generates S disjoint buckets such that the elements
in one bucket precede the elements in the remaining
buckets [23]. In the second phase, each bucket is sorted
independently. The concatenated sorted buckets are
the output file.

• Merge-Based Sorting: The first phase partitions
the input data into data chunks of approximately equal
size, sorts these data chunks in main memory and
writes the “runs” to disk. The second phase merges
the runs in main memory and writes the sorted output
to the disk.

External memory sorting performance is often limited by
I/O performance. Disk I/O bandwidth is significantly lower
than main memory bandwidth. Therefore, it is important to
minimize the amount of data written to and read from disks.
Large files will not fit in RAM so we must sort the data in at
least two passes but two passes are enough to sort huge files.
Each pass reads and writes to the disk. Hence, the two-pass
sort throughput is at most 1

4
the throughput of the disks.

For example, a PC with 8 SATA disks each with a peak I/O
bandwidth of 50 MBps per disk can achieve at most 400
MBps disk bandwidth. So a p-pass algorithm will have a
throughput of 400

2p
since each pass must read as well as write

the data. In particular, a two-pass sort achieves at most 100
MBps throughput on this PC. Single pass algorithms only
work on databases that fit entirely in main memory.

External memory sort algorithms can operate in two passes
if the Phase 1 partitions fit in main memory. The parallel
disk model (PDM) [43] captures disk system performance
properties. PDM models the number of I/O operations, disk
usage and CPU time. Vitter [42] analyzed the practical ap-
plicability of PDM model to common I/O operations such
as scanning the items in a file, sorting a file, etc. In this
model, the average and worst case I/O performance of ex-
ternal memory sorting algorithms is ≈ n

D
logmn where n is

the input size, m is the internal memory size, D is the num-
ber of disks and logmn denotes the number of passes when
the data partition size in the Phase 1 is ≈ m [3, 30]. Based
on the PDM model, an external memory sorting algorithm
can achieve good I/O performance on large databases when
the data partition sizes are comparable to the main mem-
ory size. Salzberg et al. [38] present a similar analysis of
merge based sorting memory requirements. The analysis
is as follows. If N is the file size, M is the main memory
size and R is the run size in phase 1 then typically: (1)
R ≈ M

3
because of the memory required to simultaneously

pipeline reading the input, sorting, and writing the output.
The number of runs generated in phase 1 is runs ≈ N

R
. If

T is the I/O read size per run in phase 2, and then since
at least one buffer for each run must fit in memory and a
few more buffers are needed for prefetch and postwrite: (2)
M ≈ T × runs ≈ T × N

R
. Combining equations (1) and (2)

gives (3) M2 ≈ T × N

3
or, ignoring the constant term (4)

M ≈
√

TN .
Since a two-pass sort’s RAM requirements (M) increase

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200
Partition Size (in KB)

Total Time (in Sec)

Phase II

I/O Bandwidth (MB/s)

Phase II Time (in Sec)

Figure 1: Performance of an optimized merge-based
external memory sorting algorithm on a Dual 3.6
GHz Xeon processor system. Observe that the
speed of Phase 2 increases nearly linearly with the
partition size. As the data partition sizes in Phase
I fit well in the L2 cache sizes, the Phase 1 time
remains nearly constant.

as the square root of the input file size, multi-GB RAM ma-
chines can two-pass sort terabyte files. In particular, if T=2
MB to reduce disk seek overhead, and N is 100 GB, then
R ∼ 230 MB. In practice, phase 1 partitions are hundreds
of megabytes on current PCs. However, current algorithms
running on commodity CPUs, referred to as CPU-based al-
gorithms, cannot achieve high sorting performance on such
large partitions because:

• Cache Misses: CPU-based sorting algorithms incur
significant cache misses on data sets that do not fit
in the L1, L2 or L3 data caches [32]. Therefore, it is
not efficient to sort partitions comparable to the size
of main memory. This results in a tradeoff between
disk I/O performance (as described above) and CPU
computation time spent in sorting the partitions. For
example, in merge-based external sorting algorithms,
the time spent in Phase 1 can be reduced by choosing
run sizes comparable to the CPU cache sizes. However,
this choice increases the time spent in Phase 2 to merge
a large number of small runs. Figure 1 illustrates the
performance of an optimized commercial CPU based
algorithm [31] on a dual Xeon configuration for varying
Phase 1 run sizes. Observe that the elapsed time de-
creases as the run size increases. However, increasing
the run size beyond the CPU data cache sizes can de-
grade the sorting performance during Phase 1 [24]. As
explained in Section 4, GPUs have a high bandwidth
memory interface that can achieve higher performance
on larger runs.

• I/O Performance: I/O operations have relatively
low CPU overhead. However, CPU-based sorting al-
gorithms can be compute-intensive [24] and may not
be able to achieve high I/O performance. Figure 13
highlights the I/O performance of Nsort [31] on sys-
tems with a peak I/O throughput of 200 MBps. The
I/O throughput obtained by the CPU-based sorting al-
gorithm is around 147 MBps for a single processor and

Figure 2: This figure highlights the high data par-
allelism and memory bandwidth inside a GPU.
GPUTeraSort uses the vector processing function-
alities to implement a highly parallel bitonic sort-
ing network. It outperforms prior CPU-based and
GPU-based algorithms by 3-10 times.

around 200 MBps with a dual processor. This suggests
that the overall I/O performance can be improved by
offloading computation to an additional processor or
co-processor.

• Memory Interfaces: Some recent external sorting
algorithms use simultaneous multi-threading (SMT)
and chip multi-processor (CMP) architectures to im-
prove performance. However, the interface to main
memory on current SMT and CMP architectures sig-
nificantly limits the memory bandwidth available to
each thread when data does not fit in processor caches
[17]. It is possible to achieve higher performance by
running the sorting algorithm on co-processors with
dedicated memory interfaces.

3.2 Sorting with a Graphics Processor
This section gives a brief overview of graphics processors

(GPUs) highlighting features that make them useful for ex-
ternal memory sorting. GPUs are designed to execute geo-
metric transformations on a rectangular pixel array. Each
transformation generates a data stream of display pixels.
Each incoming data element has a color and a set of texture
coordinates that reference a 2D texture array. The data
stream is processed by a user specified program executing
on multiple fragment processors. The output is written to
the memory. GPUs have the following capabilities useful for
data-intensive computations.

• Data Parallelism: GPUs are highly data parallel
- both partition parallelism and pipeline parallelism.
They use many fragment processors for partition par-
allelism. Each fragment processor is a pipeline-parallel
vector processor that performs four concurrent vector
operations such as multiply-and-add (MAD) instruc-
tions on the texture coordinates or the color compo-
nents of the incoming data stream. Current CPUs of-
fer similar data parallelism using instructions such as
SSE2 on Intel processors or AltiVec operations on Pow-
erPC processors. However, CPU data parallelism is

relatively modest by comparison. In case of sorting, a
high-end Pentium IV processor can execute four SSE2
comparisons per clock cycle while a NVIDIA GeForce
7800 GTX GPU-based sorting algorithm can perform
96 comparisons per clock cycle.

• Instruction-level Parallelism: In addition to the
SIMD and vector processing capabilities, each frag-
ment processor can also exploit instruction-level paral-
lelism, evaluating multiple instructions simultaneously
using different ALUs. As a result, GPUs can achieve
higher performance than CPUs. For example, the peak
computational performance of a high-end dual core
Pentium IV processor is 25.6 GFLOPS, whereas the
peak performance of NVIDIA GeForce 7800 GTX is
313 GFLOPS. GPU instruction-level parallelism sig-
nificantly improves sort performance, overlapping sort-
key comparisons operations while fetching the pointers
associated with the keys to achieve near-peak compu-
tational performance.

• Dedicated Memory Interface: The GPU’s mem-
ory controller is designed for high bandwidth data stream-
ing between main memory and the GPU’s onboard
memory. GPUs have a wider memory interface than
the CPU. For example, current high-end PCs have
8-byte main memory interface with a peak memory
bandwidth of 6.4 GB per second, whereas, a NVIDIA
7900 GTX has a 64-byte memory interface to the GPU
video memory and can achieve a peak memory band-
width of 56 GB per second.

• Low Memory Latency: GPUs have lower computa-
tional clock rates (∼ 690MHz) than memory clock
rates (∼ 1.8 GHz) but reduce the memory latency
by accessing the data sequentially thereby allowing
prefetch and pipelining. In contrast, CPUs have higher
computational clock rates (∼ 4 GHz) than main mem-
ory speeds (∼ 533 MHz) but suffer from memory stalls
both because the memory bandwidth is inadequate
and because they lack a data-stream approach to data
access.

Many GPU-based sorting algorithms have been designed
to exploit one or more of these capabilities [20, 22, 35].
However, those algorithms do not handle large, wide-key
databases and have other limitations, highlighted in Section
2.

In summary, GPUs offer 10× more memory bandwidth
and processing power than CPUs; and this gap is widening.
GPUs present an opportunity for anyone who can use them
for tasks beyond graphics [34].

3.3 Hybrid Sorting Architecture
This section gives an overview of GPUTeraSort. The next

section describes the use of the GPU in detail. Our goal is to
design a sorting architecture to efficiently utilize the compu-
tational processors, I/O and memory resources. GPUTera-
Sort has five stages that can be executed sequentially; but,
some stages can be executed using multi-buffered pipeline-
parallel independent threads:

• Reader: The reader asynchronously reads the input
file into a (approximately 100 MB) main memory buffer
(zero-copy direct IO). Read bandwidth is improved by

Disks

…
RAM

RAMCPU

RAM GPU
Video

RAM

RAMCPU

DMA
Disks

…

High Bandwidth

(40GBPS)

Reader

Key-Pointer Gen.

Sorter

Reorder

Writer

Figure 3: Flow Diagram of Phase 1 of GPUTeraSort
Architecture using GPUs and CPUs.

striping the input file across all disks so the data is
transferred from all disks in parallel. The I/O band-
width and the CPU usage of the reader depend on
the number of overlapping asynchronous I/O requests,
the stripe size, and the number of disks in the stripe.
The reader thread requires less than 10% of a CPU to
achieve near-peak I/O performance.

• Key-Generator: The Key-Generator computes the
(key, record-pointer) pairs from the input buffer. In
practice, this stage is not computationally intensive
but can be memory-intensive, reading each key from
main memory. It sequentially writes a stream of key-
pointer pairs to main memory.

• Sorter: The Sorter reads and sorts the key-pointer
pairs. This stage is computationally intensive and
memory-intensive on large buffers with wide keys (e.g.
of size 10 bytes or more). For example, the through-
put of an SSE-optimized CPU-based quicksort on a 3.4
GHz Pentium IV sorting 1 million floating point keys
is much less than the throughput of the other external
memory sorting stages and is the bottleneck. This is
shown by Figure 11 and by the quicksort performance
in Figure 8.

• Reorder: The reorder stage rearranges the input buffer
based on the sorted key-pointer pairs to generate a
sorted output buffer (a run). On large databases, re-
order is expensive because it randomly reads and writes
long records from the input buffer and so has many
memory stalls (Figure 11).

• Writer: The writer asynchronously writes the run to
the disk. Striping a run across many disks is not effi-
cient for Phase 2 reads[42]; therefore GPUTerasStort
cyclically writes the Phase 1 runs to individual disks
in very large transfers. The writer thread requires less
than 10% of the CPU to achieve near-peak I/O per-
formance.

Figure 3 shows GPUTeraSort’s pipeline flow. In order to
efficiently pipeline these stages, GPUTeraSort uses a GPU

as a co-processor to perform the key-pointer sorter task. The
new sorting architecture

• Performs the key-pointer sorting on the GPU and frees
CPU cycles to achieve higher I/O performance and
throughput.

• Reduces the memory contention by using the dedicated
GPU memory for sorting.

4. LARGE SORTS USING GPUS
This section describes GPUTeraSort’s sorting algorithm

to sort wide keys and pointers on GPUs using a novel data
representation. The algorithm improves cache efficiency and
minimizes data transfer overheads between the CPU and
GPU. A theoretical and experimental analysis of GPUTera-
Sort’s data transfer rate and memory bandwidth require-
ments compares the performance with prior algorithms.

4.1 Bitonic Sorting on GPUs
GPU-based algorithms perform computations on 2D ar-

rays of 32-bit floating point data values known as textures.
Each array element corresponds to a pixel. Pixels are trans-
formed by programmable fragment processors, each execut-
ing the same fragment program on each pixel. the multiple
GPU fragment processors perform data parallel computa-
tions on different pixel arrays simultaneously. This sim-
ple data-parallel architecture avoids write-after-read haz-
ards while performing parallel computations.

At high-level GPU-based sorting algorithms read values
from an input array or texture, perform data-independent
comparisons using a fragment program, and write the out-
put to another array. The output array is then swapped
with the input array, and the comparisons are iteratively
performed until the whole array is sorted. These sorting
network algorithms map well to GPUs.

The bitonic sorting network [10] sorts bitonic sequences
in multiple merge steps. A bitonic sequence is a monotonic
ascending or descending sequence.

Given an input array a = (a0, a1, . . . , an), the bitonic
sorting algorithm proceeds bottom-up, merging bitonic se-
quences of equal sizes at each stage. It first constructs
bitonic sequences of size 2 by merging pairs of adjacent
data elements (a2i, a2i+1) where i = 0, 1, . . . , n

2
− 1. Then

bitonic sequences of size 4 are formed in stage 2 by merging
pairs of bitonic sequences (a2i, a2i+1) and (a2i+2, a2i+3), i =
0, 1, . . . , n

2
− 2. The output of each stage is the input to the

next stage. The size of the bitonic sequence pairs doubles
at every stage. The final stage forms a sorted sequence by
merging bitonic sequences (a0, a1, ., a n

2
), (a n

2
+1, a n

2
+2, . . . , an)

(see Figure 4).
Specifically, stage k is used to merge two bitonic sequences,

each of size 2k−1 and generates a new bitonic sequence of
length 2k. The overall algorithm requires logn stages. In
stage k, we perform k steps in the order k to 1. In each
step, the input array is conceptually divided into chunks of
equal sizes (size d = 2j−1 for step j) and each elements in
one chunk is compared against the corresponding element
in its adjacent chunks i.e., an element ai in a chunk is com-
pared with the element at distance d (ai+d or ai−d). The
minimum is stored in one data chunk and the maximum is
stored in the other data chunk. Figure 4 shows a bitonic
sorting network on 8 data values. Each data chunk in a
step is color coded and elements in adjacent data chunks

1

3

2

4

7

6

8

5

1

2

3

4

5

6

7

8

2

3

1

4

8

6

7

5

3

2

4

1

5

7

6

8

3

7

4

8

5

2

6

1

3

7

4

8

6

1

5

2

3

4

7

8

1

6

5

2

MIN

MAX Data Chunk

Step 1

Stage 1

Step 2

Stage 2

Step 1

Stage 2

Step 3

Stage 3

Step 2

Stage 3

Step 1

Stage 3

Figure 4: This figure illustrates a bitonic sorting
network on 8 data values. The sorting algorithm
proceeds in 3 stages. The output of each stage is
the input to the next stage. In each stage, the ar-
ray is conceptually divided into sorted data chunks
or regions highlighted in green and red. Elements
of adjacent chunks are merged as indicated by ar-
rows. The minimum element is moved to the green
region and the maximum is stored in the red colored
regions producing larger sorted chunk.

are compared. The minimum is stored in the green colored
region and the maximum is stored in the red colored region.
For further details on the bitonic sorting algorithm refer to
[13].

In a GPU, each bitonic sort step corresponds to map-
ping values from one chunk in the input texture to another
chunk in the input texture using the GPU’s texture map-
ping hardware as shown in Figure 5. The texture mapping
hardware fetches data values at a fixed distance from the
current pixel and compares against the current pixel value
and may replace the value based on the comparison. The
texturing hardware works as follows. First, a 2D array is
specified to fetch the data values. Then, a 2D quadrilateral
is specified with lookup co-ordinates for vertices. For every
pixel in the 2D quadrilateral, the texturing hardware per-
forms a bilinear interpolation of the lookup co-ordinates of
the vertices. The interpolated coordinate is used to perform
a 2D array lookup by the fragment processor. This results
in the larger and smaller values being written to the higher
and lower target pixels. The left Figure 5 illustrates the
use of texture mapping for sorting. In this example, 1-D
lines are specified for data chunks with appropriate lookup
co-ordinates. For example, the first line segment (0, 1) is
specified with the vertex lookup co-ordinates (2, 3). Then,
the texture mapping hardware is used to directly fetch val-
ues a2, a3 and compare them against a0 and a1 respectively
within the fragment processor.

As GPUs are primarily optimized for 2D arrays, we map
the 1D array onto a 2D array as shown in Figure 5. The re-
sulting data chunks are 2D data chunks that are either row-
aligned (as shown in the right side of Figure 5) or column-
aligned. The resulting algorithm maps well to GPUs. The
pseudo-code for the algorithm is shown in Routine 4.1.

Data

Chunk

3

2

4

1

5

7

6

8

Step 2

Stage 3

3

4

8

6

7

5

Texture

m apping

2

1

3

4

8

6

7

5

2

1

Output of

Step 2,

Stage 3

MIN

MAX

3

4

7

8

3

7

4

8

6

1

5

23

4

7

8

1

6

5

2

MIN

MAX Data Chunk

Step 1

Stage 1

Step 2

Stage 2

Step 1

Stage 2

1

2

5

6

Figure 5: The left figure shows the 1-D mapping
of comparisons among array elements in step 2 and
stage 3 of Figure 4. The mapping is implemented us-
ing GPU texturing hardware. For each data chunk,
we pass the element indices (or vertex locations of a
1-D line) of the corresponding data chunk for com-
parisons. The texturing hardware fetches the data
values at the corresponding locations for each pixel,
and a single-instruction fragment program computes
the minimum or maximum in parallel on multiple
pixels simultaneously using the fragment processors.
The right figure shows the 2D-representation of the
1-D array of size 8 shown in Figure 4. In this ex-
ample, the width of the 2D array is 2 and height
is 4. Observe that the data chunks now correspond
to row-aligned quads and the sorting network maps
well to the GPU 2D texturing hardware.

4.2 Improved Algorithm
GPUTeraSort uses an efficient data representation on GPUs

to sort key-pointer pairs. Current GPUs support 32-bit
floating point numbers. GPUTeraSort represents the bytes
of the keys as 32-bit floating point 2D arrays (or textures).
Each element in the texture is associated with four color
channels - red, blue, green and alpha. Given a texture of
width W and height H, there are two possible representa-
tions for designing a data-parallel bitonic sorting algorithm:

• Single-array representation: Each texture is rep-
resented as a stretched 2D array and each texel in the
array is replaced with its four channels. Therefore, a
texture of width W and height H can be represented
as a stretched 2D array of width 4W and height H.

• Four-array representation: In this representation,
each texture is composed of four subarrays and each
subarray corresponds to a single channel. Therefore, a
texture of width W and height H can be represented
using four independent arrays of width W and H.
These four arrays can be sorted simultaneously using
SIMD instructions [20]. Finally, a merge operation is
performed to generate the sorted array of key-pointers.

In each of these representations, the keys and the point-
ers associated with the keys are stored in two separate tex-
tures: a key texture and a pointer texture. The single-array

0

1

2

3

4

5

6

0 1000000 2000000 3000000 4000000 5000000

Number of Records

T
im

e
 (

in
 s

e
c
)

BitonicSort

(Purcell et al. 2003)

BitonicSort

(Kipfer et al. 2005)

PBSN

(Govindaraju et al. 2005)

GPUTeraSort

Figure 6: Comparison of GPUTeraSort’s bitonic
sort with other GPU-based algorithms indicates a 3-
7 fold performance advantage over prior GPU-based
bitonic sort and PBSN algorithms (Kipfer et al. [23],
Govindaraju et al. [20], and Purcell et al. [36]).

BitonicSort(tex, W,H)

1 n = numValues to be sorted = W*H*4 /* single array repre-

sentation*/

2 for i=1 to logn /* for each stage*/

3 for j=i to 1

4 Quad size B = 2j−1

5 Draw Textured Quads of size B

6 Copy from frame buffer to tex

7 end for

8 end for

ROUTINE 4.1: Bitonic Sorting Network Algorithm: We use
this routine to sort a floating point input sequence of length n.
Next, we perform log n stages on the input sequence and dur-
ing each stage, perform i steps with quad sizes (width × height)
varying from 2i−1 to 1 (line 4). The overall algorithm requires

O(nlg2n

2
) comparisons and maps well to GPUs.

representation, as opposed to the four-array representation
proposed by Govindaraju et al. [20], has the following ad-
vantages:

• Mapping: The data transfer operation from the CPU
to the GPU directly maps to the single-array represen-
tation while the four-array representation does not.

• Efficient sorting: The single-array representation has
better performance than four-array representation as it
reduces the memory accesses in early algorithm steps.
For example, steps 1 and 2 of each stage in the algo-
rithm compute bitonic sequences of size 4. In a single-
array representation, the four values are stored in a
single element of the texture, fetched using a single
memory fetch and sorted within the registers of the
fragment processor. This is not possible in the four-
array representation.

Data is transferred to the GPU using a DMA on a dedi-
cated PCI-Express bus at up to 4 GBps. To improve cache-
efficiency, GPUTeraSort lowers memory latency by overlap-
ping pointer and fragment processor memory accesses. This
significantly improves performance.

GPUTeraSort(n)

1 b = number of bytes in key

2 W = width(tex) = 2⌊
logn

2
⌋, H = height(tex) = 2⌈

logn
2

⌉

3 sorted = false

4 currBytes = Most significant four bytes of keys

5 SortLists = Input Array of Key-Pointers

6 While (!sorted)

7 For each array in sortedLists

8 Transfer the pointerTexture and keyTexture of currBytes

to the GPU

9 Perform HybridBitonicSort(pointerTexture,keyTexture,n)

10 Readback the pointers

11 SortedLists = Lists of contiguous arrays with equal keys

in currBytes

12 If (sizeof(SortedLists)=0 or currBytes = b-4) sorted =

true

13 else currBytes = nextfourBytes

14 end for

ROUTINE 4.2: GPUTeraSort: This routine is used to sort
an input sequence of length n and b byte keys. The input se-
quence is copied into a 2D-texture, whose width and height is set
to a power-of-2 that is closest to

√
n (line 2). The sorting algo-

rithm starts using the first four bytes (Line 4). Next, it performs

at most b
4

scans on a subset of the input sequence and during

each stage, performing a fast bitonic radix sort on the GPU (line
9). Then it reads back the pointers and computes contiguous
portions of the array to be sorted. These contiguous unsorted
portions consist of the same key till the value of currBytes and
are processed further based on the remaining bytes (Line 13).

4.3 Handling Wide Keys
GPUTeraSort uses a hybrid radix-bitonic sort algorithm.

It uses bitonic sort on the first few bytes of the keys as the
initial radix for sorting. In order to handle string compar-
isons using 32-bit floating point hardware, it is important
to encode data on the GPU but avoid special IEEE float-
ing point values such as NaN,∞, etc. by masking the two
most significant bits (MSB) to “10”. The key encoding to
GPU floating point representations handles any data type,
including ASCII strings with lexicographic comparisons. Af-
ter the GPU orders the key-pointer array based on the first
few bytes, GPUTeraSort scans the array to identify con-
tiguous portions of the array with equal keys. It sorts these
portions based on the second set of bytes on the GPU. It
repeats the process till the entire array is sorted or all the
key bytes have been compared. Routine 4.2 gives a pseudo-
code for GPUTeraSort’s hybrid radix-bitonic sort using the
GPU.

We implemented three prior GPU-based sorting algorithms
[20, 22, 35] and compared their performance to GPUTera-
Sort. Figure 6 shows the comparison - GPUTeraSort bitonic
sort has a 3x to 6x advantage over previous GPU sorting al-
gorithms.

4.4 Cache­Efficient Sorting on GPUs
In this section, we investigate the cache-performance of

the fragment processors while performing each step in the
bitonic sorting algorithm. Suppose the width of the input
array is W and the height is H, and the block size is B ×
B. In each step, each pixel is compared against one other
pixel. Therefore, there are atleast ncompulsory = W×H

B2 cache
misses. Our goal is to reduce the total number of cache

0

10

20

30

40

50

60

NV40 G70 G71

G
B

/s
e
c

Peak

Measured

Figure 7: GPUTeraSort performs cache-efficient
computations to achieve almost peak memory per-
formance. This graph highlights the peak mem-
ory performance and the measured memory band-
width on three high-end GPUs released in successive
generations. Observe that the measured memory
bandwidth is over 90% of the peak bandwidth on
NVIDIA 7800 (G70) and 7900 GPUs (G71).

misses to a value close to ncompulsory in each step.
As described in Section 4.1, each step renders either row-

aligned or column-aligned quadrilaterals in order to perform
comparisons. Furthermore, the elements in these regions
access fixed-distance elements in adjacent row-aligned or
column-aligned regions respectively for comparisons. With-
out loss of generality, assume it is rendering a row-aligned
quad of height h and width W . Then, each rendering oper-
ation fetches nblocks = W×h

B2 blocks. If these blocks are not
in the cache, they cause cache misses. The cache analysis
has two cases based on the height of the row-aligned quad.
Case 1: h ≥ B. In this case, cache misses in rendering the
quad are unavoidable. Therefore, in these steps, we do not
modify our algorithm presented in section 4.1.
Case 2: h < B. In this case, many cache misses occur
if nblocks do not fit in the cache because the cache blocks
fetched at the beginning of the quad are mostly evicted by
the end of the quad. We use a technique similar to blocking
to minimize cache misses. We decompose each quad into
multiple quads of width B and height h. We then perform
computation on all the quads lying within the B ×B block.
The block decomposition effectively reduces the cache misses
and achieves close-to-peak memory performance (see Fig.7).

Further details on our caching algorithm are available in
[21].

4.5 Analysis
This section presents a theoretical and experimental anal-

ysis of GPUTeraSort performance and compares it to other
CPU-based and GPU-based sorting algorithms.

4.5.1 Computational Performance

Theoretically, GPUTeraSort has a computational com-

plexity of O(nlog2n

2
) and has better performance than pe-

riodic balanced sorting network (PBSN) [20]. In practice,
on a NVIDIA 7900 GTX GPU GPUTeraSort achieves 14
GOPs/sec processor performance and a memory bandwidth

0

0.5

1

1.5

2

2.5

3

0M 2M 4M 6M 8M
Number of Records

T
im

e
 (

in
 s

e
c
)

Intel Pentium D 840

Intel P4 Extreme Edition with HT

Optimized High-end CPU-based Sorting

vs. GPUTeraSORT

NVIDIA 7900 GTX

AMD Athlon X2 4800+

Figure 8: Comparison of GPUTeraSort perfor-
mance to a hand-optimized CPU-based Quicksort
implementation on high-end multi-core CPUs. The
CPU-based sorting algorithm has 90% usage for
performing key-pointer sorting alone. GPUTera-
Sort offloads the CPU computations to a GPU
and achieves comparable performance to highly-
optimized CPU-based sorting algorithms running on
expensive CPUs.

of 49 GB/s. This is close to the peak memory bandwidth
(56 GB/s) on the NVIDIA 7900 GTX GPU. We measured
the performance on different GPUs, CPUs and compared it
against prior sorting algorithms. Figure 6 highlights the
performance improvement obtained using GPUTeraSort’s
hybrid bitonic sorting algorithm against three prior GPU-
based algorithms [20, 22, 35] in sorting 32-bit floating point
key-pointer pairs on NVIDIA 7800 GTX GPU. The graph
indicates at least a 3 times speedup over previous GPU-
based algorithms. We also compared the performance of
GPUTeraSort with hand-optimized CPU-based algorithms.
Figure 8 highlights GPUTeraSort’s performance against op-
timized implementation of QuickSort algorithms on high-
end CPUs for varying data sizes. The graph indicates that
GPUTeraSort running on an NVIDIA 7900 GTX GPU per-
forms comparably to the optimized CPU-based implemen-
tation on an expensive CPU.

4.5.2 Bandwidth Requirements

GPUTeraSort also has relatively low bandwidth require-
ments. Given n data values, it transfers the data to and
from the GPU once. The overall main memory bandwidth
requirement of O(n) is significantly lower than the total com-
putational cost i.e., O(nlog2n). In practice, we observed
that the data transfer time is less than 10% of the total
sorting time, and indicates that GPUTeraSort is not band-
width limited (see Figure 9).

4.5.3 Performance and Memory Growth

GPUTeraSort uses the rasterization capabilities of the
GPUs to efficiently perform sorting. Therefore, the per-
formance growth rate of GPUTeraSort is directly related to
the performance growth rate of GPUs. Fig. 10 indicates
the computational time, measured memory bandwidth and
performance in sec, GB/sec and GOPs/sec on three succes-
sive generation high-end NVIDIA GPUs. The performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000000 2000000 3000000 4000000
Number of Records

T
im

e
 (

in
 s

e
c

)

GPUTeraSort

Total Time

GPUTeraSort

Data Transfer

Time

Figure 9: The time taken by GPUTeraSort on an
NVIDIA 7800 GTX GPU to sort key-pointers with
32-bit floating point keys including the data transfer
overhead. Observe that the algorithm has very low
data transfer overhead. In practice, the data trans-
fer cost is less than 10% of the total computational
time.

of GPUTeraSort is improving nearly twice a year.

5. PERFORMANCE
We implemented GPUTeraSort on an inexpensive PC (Ta-

ble 1) and benchmarked it using the SortBenchmark [7]
with the following GPUs: NVIDIA GeForce 6800, NVIDIA
GeForce 6800 Ultra, and NVIDIA GeForce 7800 GT. We
also tested the performance of optimized CPU-based algo-
rithms on a high-end Dual Xeon server. Specifically, we
compared against nsort [31], a commercial CPU-based sort-
ing algorithm with high I/O performance.

5.1 SortBenchmark
The SortBenchmark is designed to measure the IO power

and price performance of modern computers [7] based on
the sort time as well as the cost of the underlying hardware.
The Sort input is a disk file of 100-byte records. The first 10
bytes of each record is a random key value. The sort creates
an output file which is a key-ascending permutation of the
input file.

The PennySort benchmark measures price/performance.
Specifically, the PennySort benchmark measures how many
records can be sorted for a penny, assuming the system is
depreciated over three years. The PennySort benchmark is
further classified into Indy and Daytona categories to mea-
sure specially built and general-purpose hardware and soft-
ware - can the system sort arbitrary files or is it only able
to sort files with 10-byte keys in 100-byte records? GPUT-
eraSort is a general-purpose sorter that qualifies for both
categories.

We measured GPUTeraSort’s performance on a 3 GHz
Pentium IV processor, 2 GB PC5400 main memory, a Su-
perMicro Marvel MV8 SATA controller connecting 8 West-
ern Digital Caviar SATA disks running Windows XP SP2,
and a wide range of commodity GPUs costing less than $300
and used OpenGL to program the GPUs.

Table 1 presents the costs associated with different PC
components and the performance obtained using these com-

0

5

10

15

20

25

30

35

40

45

50

Time (in sec) GB/sec GOP/sec

NV40 (8/2004)

G70 (7/2005)

G71 (3/2006)

3.8x/yr

1.8x/yr

1.8x/yr

3.8x/yr

Super-Moore's Law

Figure 10: Super-Moore’s law performance of
GPUTeraSort: This graph shows the memory and
performance growth rate of GPUTeraSort in sorting
8M key-pointer pairs on three successive generation
high-end GPUs. We observe that the performance
of GPUs is improving nearly twice a year.

ponents in a PC. Observe that a commodity PC with an
NVIDIA 7800 GT GPU is able to sort 60GB of data in 648
seconds, this outperforms the current PennySort benchmark
in both the Indy (40GB) and Daytona (15GB) categories.

Figure 11 shows the time spent in the different stages of
GPUTeraSort Phase 1 on the NVIDIA 6800, 6800 Ultra and
7800 GT GPUs. We configured four SATA disks as the in-
put RAID0 disks and four SATA disks as temporary storage
disks and measured the performance on a 100GB data file.
Observe that a 7800 GT is able to achieve an almost peak
read performance of 220 MB/sec, a write performance of
200 MB/sec and an overall Phase 1 sort performance of 200
MB/s on Phase 1 of a 100MB sort. The 6800 Ultra and 6800
GPUs achieve 185 MB/sec and 147 MB/s respectively dur-
ing Phase 1. Figure 11 indicates that peak I/O performance
can be achieved by co-processing on GPUs. The graph also
indicates that time spent in ordering key-pointers (the GPU
processing time) is significantly lower than the other stages
for the 7800GT GPU. It is possible to achieve higher perfor-
mance by improving the I/O performance using more disks
and a faster main memory.

5.2 Database Sizes
The performance of any external sorting algorithm is largely

dependent on its I/O performance, in both Phases 1 and 2.
The I/O performance of phase 2 is dependent on the data
partition size and layout generated in Phase 1.

We measured the performance of GPUTeraSort and nsort
Phase 1 by varying the sort file sizes from 20GB to 100GB
12. Both systems used 4 input/output disks and 4 tempo-
rary disks in a RAID0 plus JBOD configuration. We mea-
sured the performance of nsort on a 3 GHz Pentium IV
and 3.6 GHz Dual Xeon CPUs. We measured GPUTeraSort
on the same (slow) 3 GHz Pentium IV with NVIDIA 6800,
6800 Ultra and 7800 GT GPUs. The graph indicates that
the 7800 GT is able to sort 100 MB files faster than a Dual
Xeon processor. As a result, GPUTeraSort will be able to
handle larger databases when it has a powerful GPU.

Figure 13 measures GPUTeraSort’s I/O performance in

PC Components Price (in $)

Super Micro PDSGE motherboard 220

OCZ Corsair PC 5400 RAM 164

Pentium IV CPU 177

9 Western Digital 80 GB disks 477

Power Supply 75

Case 70

SuperMicro SATA Controller 95

System Cost (without GPU) 1,278

GPU Model 6800 6800 Ultra 7800 GT

GPU Cost ($) 120 280 265

Total PC Cost

(with GPU)($) 1,398 1,558 1,543

PennySort time limit 715 sec 641 sec 648 sec

GPUTeraSort 56 GB 58 GB 60 GB

Table 1: GPUTeraSort PennySort benchmark record:

the pricing of the components used in the PennySort

benchmarks. The three system prices give three time

budgets and 3 results. The best result is 60 GB using

an NVIDIA 7800 GT GPU. GPUTeraSort averages 185

MB/s during each of Phases 1 and 2. This performance

is comparable to the performance obtained using dual

3.6 GHz Xeon processors costing $2200.

Phase I on different GPUs and the Phase 1 I/O performance
of nsort (labeled “Pentium 4” in the graph) as a function of
the number of input and temporary disks. The input disks
are configured RAID0 and the temporary disks are config-
ured as just a bunch of disks (JBOD). The figure indicates
that nsort-Pentium IV achieves a peak I/O performance of
150 MB/s while nsort on dual Xeons and GPUTeraSort on
slow CPUs achieve peak I/O performance. It shows that
GPUs can improve I/O performance for external memory
sorting. The graph also indicates that GPUTeraSort is able
to achieve higher I/O performance on RAID0 configurations
with 2 and 3 input disks than high-end dual Xeon proces-
sors.

Figure 14 shows the GPUTeraSort elapsed time for vari-
ous input data sizes. The 7800 GT outperforms the Xeon
processors as the size of the database increases, mainly be-
cause the 7800 GT GPU is able to efficiently partition the
input file into large data chunks in Phase 1, thereby improv-
ing the I/O performance in Phase 2.

6. ANALYSIS
GPUTeraSort’s performance depends on several factors:

• Hardware performance: The performance of GPUT-
eraSort is dependent on the performance of the under-
lying hardware. As illustrated in Fig. 11, the overall
performance of the algorithm depends not only on I/O
performance, but also the performance of the GPU, the
CPU, the memory, and the performance of the inter-
connects among the different system components.

• Load Balancing: The sorting algorithm uses task
parallelism to perform I/O, memory, and sorting op-
erations efficiently and concurrently. Therefore, the
performance of the overall algorithm is based on the
pipeline load-balancing and effective scheduling of the
pipeline stages and using all the memory bandwidth
of.

Figure 11: Performance breakdown of the different
stages in the phase I of GPUTeraSort algorithm on
three GPUs - NVIDIA 6800, NVIDIA 6800 Ultra
and NVIDIA 7800 GT. The graphs indicate almost
peak I/O performance using an NVIDIA 7800 GT
GPU. Observe that I/O is the pipeline bottleneck
for the 7800; performance would improve with more
disks and faster RAM.

• Key sizes: GPUTeraSort is based on a hybrid bitonic-
radix sort. In the worst-case, it may need to perform
multiple sorting operations on the entire array based
on the distribution of the keys. Specifically, it achieves
a worst-case performance when all the input keys are
equal.

• Database sizes: GPUTeraSort’s performance depends
on the input data size and the time taken to transfer
the data to the GPU. In practice, the data transfer
time is significantly lower than the computation time
with the exception of very small databases.

• Partition sizes: GPUTeraSort’s performance varies
as a function of the run sizes chosen in Phase 1 as is
the case with all sorting algorithms.

7. LIMITATIONS
GPUTeraSort has many limitations. These include

• Variable-sized keys: GPUTeraSort’s is based on radix
sort and works well for keys with fixed number of bytes.
It works correctly on variable-sized keys.

• Almost sorted databases: GPUTeraSort does not
benefit if the input data file is almost sorted, while
databases, adaptive sorting algorithms work better on
such data.

• Programmable GPUs: GPUTeraSort requires pro-
grammable GPUs with fragment processors. Most desk-
top and laptop GPUs manufactured after 2003 have
these capabilities. However, some low-end GPUs (for
PDAs or mobile phones) may not have these capabili-
ties.

• Memory sizes: Due to the pipelined design of Phase
1 of GPUTeraSort’s run size of Phase 1 is limited to
1/5 of the total main memory size.

0

100

200

300

400

500

600

700

800

20G 40G 60G 80G 100G

Data Size

T
im

e
 (

in
 s

e
c

o
n

d
s

)

6800

Pentium 4

Xeon
7800 GT

6800 Ultra

Figure 12: GPUTeraSort and nsort (solid lines)
Phase 1 performance vs file size. GPUTeraSort runs
are 100MB while nsort runs are less than 25MB in
order to fit the key-pointers in the CPU L2 cache.
GPUTeraSort on a 7800 GT GPU has performance
comparable to an expensive 3.6 GHz Dual Xeon
server.

Figure 13: I/O Performance on different input
and temporary disk counts: GPUTeraSort using a
7800GT GPU achieves near-peak I/O performance
on all disk configurations.

8. CONCLUSIONS AND FUTURE WORK
We presented GPUTeraSort, a novel sorting architecture

that quickly sorts billion-record datasets. It uses GPUs to
handle wide keys, long records, many data types, and input
sizes. It handles databases that do not fit in the GPU video
memory or in the main memory.

We evaluated GPUTeraSort on various benchmarks and
compared its performance with optimized CPU-based algo-
rithms. The results indicate that graphics co-processors can
significantly improve the I/O performance and scale well on
massive databases. The overall performance of GPUTera-
Sort with a mid-range GPU (costing around $300) is com-
parable to that of a CPU-based algorithm running on a high-
end dual Xeon processors (costing around $2,200). In prac-
tice, GPUTeraSort achieves a good price-performance and
outperforms the current PennySort benchmarks.

There are several avenues for future work. We are in-

200

300

400

500

600

700

800

20G 40G 53G 60G
Data Size

T
im

e
 (

in
 s

e
c
o

n
d

s
)

7800 GT

6800 Ultra

Xeon

Pentium 4

6800

Figure 14: Total sort time for GPUTeraSort and
nsort (Pentium 4) shows the performance of GPUT-
eraSort on different mid-range GPUs and nsort on
high-end dual Xeon processors. Observe that GPU-
assisted sorts are competitive with CPU-only sorts
for larger databases – yet the hardware is much less
expensive.

terested in extending GPUTeraSort to clusters of PCs with
multiple GPUs. Another interesting avenue is to accelerate
the performance of Phase 2 of the algorithm using GPUs.
It is worth considering integrating GPUTeraSort with SQL
systems and data streaming algorithms.

Current processors and disks have high power require-
ments and generate considerable amount of heat. High tem-
peratures can affect the stability of the systems and require
effective cooling solutions. Furthermore, power can be a
limiting factor to the system performance and can be ex-
pensive over time. An interesting avenue is to design power-
and temperature-efficient algorithms using GPUs.

Acknowledgements

This work is supported in part by ARO Contracts DAAD19-
02-1-0390 and W911NF-04-1-0088, NSF awards 0400134 and
0118743, DARPA/RDECOM Contract N61339-04-C-0043,
ONR Contract N00014-01-1-0496 and Intel. Thanks to Chris
Nyberg for his help in understanding how to configure nsort
and much advice on IO configuration for sorting. We would
like to thank Craig Peeper, Peter-Pike Sloan, Jingren Zhou,
and David Blythe for their useful feedback. Thanks to David
Tuft and other members of UNC GAMMA group for their
useful suggestions and support.

9. REFERENCES

[1] Clearspeed technology. (http://www.clearspeed.com), 2005.
[2] Ramesh C. Agarwal. A super scalar sort algorithm for

RISC processors. SIGMOD Record (ACM Special Interest
Group on Management of Data), 25(2):240–246, June 1996.

[3] Alok Aggarwal and S. Vitter Jeffrey. The input/output
complexity of sorting and related problems. Commun.
ACM, 31(9):1116–1127, 1988.

[4] A. Ailamaki. Database architectures for new hardware.
VLDB Tutorial Notes, 2004.

[5] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and
Marios Skounakis. Weaving relations for cache
performance. In Proceedings of the Twenty-seventh

International Conference on Very Large Data Bases, pages
169–180, 2001.

[6] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and
David A. Wood. DBMSs on a modern processor: Where
does time go? In The VLDB Journal, pages 266–277, 1999.

[7] Anon. et al. A measure of transaction processing power.
Datamation, page 112, 1 1985.

[8] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
David E. Culler, Joseph M. Hellerstein, and David A.
Patterson. High-performance sorting on networks of
workstations. SIGMOD Record (ACM Special Interest
Group on Management of Data), 26(2):243–254, June 1997.

[9] N. Bandi, C. Sun, D. Agrawal, and A. El Abbadi.
Hardware acceleration in commercial databases: A case
study of spatial operations. VLDB, 2004.

[10] K.E. Batcher. Sorting networks and their applications. In
AFIPS Spring Joint Computer Conference, 1968.

[11] B. Baugsto, J. Griepsland, and J. Kamerbeck. Sorting large
data files on poma. Proc. of COMPAR-90 VAPPIV, pages
536–547, 1990.

[12] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten.
Database architecture optimized for the new bottleneck:
Memory access. In Proceedings of the Twenty-fifth
International Conference on Very Large Databases, pages
54–65, 1999.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, Cambridge, MA,
2nd edition, 2001.

[14] D. Dewitt, J. Naughton, and D. Schneider. Parallel sorting
on a shared-nothing architecture using probabilistic
splitting. Proc. of International Conference on Parallel and
Distributed Information Systems, 1991.

[15] Anonymous et al. A measure of transaction processing
power. Datamation, 31(7):112–118, 1985.

[16] E. Friend. Sorting on electronic computer systems. Journal
of the ACM, 3(3):134–168, 1956.

[17] P. Garcia and H. F. Korth. Multithreaded architectures and
the sort benchmark. Proc. of First International Workshop
on the Data Management on New Hardware, 2005.

[18] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations
using graphics processors. Proc. of ACM SIGMOD, 2004.

[19] N. Govindaraju and D. Manocha. Efficient relational
database management on graphics processors. Proc. of
ACM Workshop on Data Management on New Hardware,
2005.

[20] N. Govindaraju, N. Raghuvanshi, and D. Manocha. Fast
and approximate stream mining of quantiles and
frequencies using graphics processors. Proc. of ACM
SIGMOD, 2005.

[21] Naga K. Govindaraju, Jim Gray, and Dinesh Manocha.
Cache-efficient general purpose algorithms on GPUs.
Technical report, Microsoft Research, December 2005.

[22] P. Kipfer, M. Segal, and R. Westermann. Uberflow: A
gpu-based particle engine. SIGGRAPH/Eurographics
Workshop on Graphics Hardware, 2004.

[23] D. E. Knuth. Sorting and Searching, volume 3 of The Art
of Computer Programming. Addison-Wesley, Reading, MA,
1973.

[24] A. LaMarca and R. Ladner. The influence of caches on the
performance of sorting. Proc. of SODA, pages 370–379,
1997.

[25] X. Li, G. Linoff, S. Smith, C. Stanfill, and K. Thearling. A
practical external ort for shared disk mpps. Proc. of
SuperComputing, pages 666–675, 1993.

[26] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten.
What happens during a join? Dissecting CPU and memory
optimization effects. In VLDB 2000, Proceedings of 26th
International Conference on Very Large Data Bases, pages
339–350, 2000.

[27] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten.

Generic database cost models for hierarchical memory
systems. In VLDB 2002: proceedings of the Twenty-Eighth
International Conference on Very Large Data Bases, pages
191–202, 2002.

[28] Shintaro Meki and Yahiko Kambayashi. Acceleration of
relational database operations on vector processors.
Systems and Computers in Japan, 31(8):79–88, August
2000.

[29] S. Muthukrishnan. Data streams: Algorithms and
applications. Proc. of 14th ACM-SIAM Symposium on
Discrete Algorithms, 2003.
http://athos.rutgers.edu/ muthu/stream-1-1.ps.

[30] M. H. Nodine and J. S. Vitter. Greed sort: An optimal
sorting algorithm for multiple disks. Journal of the ACM,
42(4):919–933, July 1995.

[31] Nsort: Fast parallel sorting. http://www.ordinal.com/.
[32] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and

D. Lomet. Alphasort: A risc machine sort. SIGMOD, pages
233–242, 1994.

[33] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim Gray,
and David B. Lomet. AlphaSort: A cache-sensitive parallel
external sort. VLDB Journal: Very Large Data Bases,
4(4):603–627, 1995.

[34] J. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Kruger, A. Lefohn, and T. Purcell. A survey of
general-purpose computation on graphics hardware. 2005.

[35] T. Purcell, C. Donner, M. Cammarano, H. Jensen, and
P. Hanrahan. Photon mapping on programmable graphics
hardware. ACM SIGGRAPH/Eurographics Conference on
Graphics Hardware, pages 41–50, 2003.

[36] Jun Rao and Kenneth A. Ross. Cache conscious indexing
for decision-support in main memory. In Proceedings of the
Twenty-fifth International Conference on Very Large
Databases, pages 78–89, 1999.

[37] Kenneth A. Ross. Conjunctive selection conditions in main
memory. In ACM, editor, Proceedings of the Twenty-First
ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems: PODS 2002: Madison,
Wisconsin, June 3–5, 2002, pages 109–120, New York, NY
10036, USA, 2002. ACM Press. ACM order number 475021.

[38] Betty Salzberg, Alex Tsukerman, Jim Gray, Michael
Stuewart, Susan Uren, and Bonnie Vaughan. FastSort: A
distributed single-input single-output external sort.
SIGMOD Record (ACM Special Interest Group on
Management of Data), 19(2):94–101, June 1990.

[39] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton.
Cache conscious algorithms for relational query processing.
In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo,
editors, 20th International Conference on Very Large Data
Bases, September 12–15, 1994, Santiago, Chile
proceedings, pages 510–521, Los Altos, CA 94022, USA,
1994. Morgan Kaufmann Publishers.

[40] C. Sun, D. Agrawal, and A. El Abbadi. Hardware
acceleration for spatial selections and joins. SIGMOD, 2003.

[41] S. Venkatasubramanian. The graphics card as a stream
computer. Workshop on Management and Processing of
Data Streams, 2003.

[42] J. Vitter. External memory algorithms and data structures:
Dealing with massive data. ACM Computing Surveys,
pages 209–271, 2001.

[43] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel
memory II: Hierarchical multilevel memories. Algorithmica,
12:148–169, 1994.

[44] M. Zagha and G. Blelloch. Radix sort for vector
multiprocessors. Proc. of SuperComputing, 1991.

[45] Jingren Zhou and Kenneth A. Ross. Implementing
database operations using SIMD instructions. In Michael
Franklin, Bongki Moon, and Anastassia Ailamaki, editors,
Proceedings of the ACM SIGMOD International
Conference on Management of Data, June 3–6, 2002,
Madison, WI, USA, pages 145–156, New York, NY 10036,
USA, 2002. ACM Press. ACM order number 475020.

