
GSOUND: INTERACTIVE SOUND PROPAGATION FOR GAMES

C. SCHISSLER, D. MANOCHA

The University of North Carolina at Chapel Hill
http://gamma.cs.unc.edu/GSOUND/

We present a sound propagation and rendering system for generating realistic environmental acoustic effects in real time for
game-like scenes. The system uses ray tracing to sample triangles that are visible to a listener at an arbitrary depth of
reflection. Sound reflection and diffraction paths from each sound source to the listener are then validated using ray-based
occlusion queries. Frame-to-frame caching of propagation paths is performed to improve the consistency and accuracy of the
output. Furthermore, we present a flexible framework, which takes a small fraction of CPU cycles for time-critical scenarios.
To the best of our knowledge, this is the first practical approach that can generate realistic sound and auralization for games
on current platforms.

1 Introduction

 Auditory displays and sound rendering are frequently
used to enhance the sense of immersion in computer
games and related applications. Aural cues can be
combined with visual cues to improve realism and the
user’s experience. In practice, aural cues are frequently
used to create various emotions including fear,
apprehension and horror. Games constantly improve the
realism of graphics and AI but little work is done to
enhance sound within games. Current sound systems use
precomputed reverberation filters for specific locations to
enhance the player's sense of space. While this approach
is often a good enough approximation, these methods may
not work well in dynamic scenes. More importantly, the
effects of sound occlusion are often critical to how
players perceive sound within a game. However, these
phenomena are rarely modeled. In practice, realistic
sound occlusion and propagation computation is regarded
as a difficult problem. This is one of the main goals of
sound propagation: to accurately simulate how sound
interacts with an environment and is heard by a listener.
 While sound propagation solutions exist, they are
either too slow or not appropriate for dynamic scenes.
This is the largest challenge in developing such a system
for games. A sound propagation system for games must
be able to produce reasonable output while consuming a
minimum of CPU time and memory. In this paper, we
present a novel sound propagation system that uses
backwards ray tracing and propagation path caching to
improve on existing work in this area.

2 Components of Sound Propagation

 Sound propagation is usually modeled as a
combination of several different phenomena. Any sound

received by a listener can be split into 3 components:
direct sound, early reflections and late reverberation.
Direct sound is transmitted directly from a sound source
to a listener.
 Early reflections comprise the first echoes of a sound
that reach a listener after direct sound arrives. These
contributions can be produced by specular reflection off
of surfaces in the scene, diffuse reflections, and
diffraction about edges. Early reflections give auditory
cues to a listener about the size of the environment and
any salient features.
 Late reverberation is the last component heard by a
listener. It consists of many thousands of higher-order
reflections that sum to produce a decaying reverb tail.
Though we have a solution for reverb estimation we will
focus on the early reflection and diffraction portions of
our sound propagation system in this paper.

3 Prior Work

 Much work has been done in the past on simulating
realistic sound propagation in virtual environments. The
earliest of these systems were developed as aids to
architectural acousticians. These systems used ray tracing
to estimate the acoustic qualities of concert halls and
other rooms [Krokstadetal.1968; Vorländer 1989]. From
this point, two classes of sound propagation methods
emerged: numeric and geometric.
 Numeric methods are accurate and produce true-to-
life results but are generally too slow to be used in real-
time systems. FDTD methods are very accurate but
require enormous amounts of time and memory to
simulate and therefore cannot be used in any real time
system [Botteldooren 1995]. ARD makes improvements
on FDTD methods by subdividing a complex
environment into rectangular subdivisions in order to

reduce the simulation time. However, this method still
requires significant time and resources [Raghuvanshi et
al. 2009]. Direct-to-Indirect Acoustic Radiance Transfer
borrows from radiosity ideas in graphics to perform
simulation of diffuse reflection at real-time rates.
However, this method still requires a large memory
footprint and a long preprocessing step. In addition, scene
geometry must be static, causing the approach to loose
realism in situations with dynamic geometry [Antani et al.
2010].
 Geometric methods generally use algorithms from
graphics to model how sound propagates in an
environment. These methods are generally more tractable
than numeric simulation because they usually allow for
moving sources, listeners, and dynamic scene geometry.
This makes geometric sound propagation attractive for
interactive game applications. The most accurate
geometric approach is the image source method where
sound sources are recursively reflected over every triangle
in a scene to form images of the source positions.
Reflection paths from the listener to the source are then
validated in reverse via occlusion queries. While accurate,
the image source method is extremely slow: the running
time increases exponentially with the reflection depth
[Allen and Berkley 1979].
 Other geometric approaches use scene sampling to
find potentially valid propagation paths. In beam tracing,
rectangular beams are traced from sound sources through
the scene to see if the listener is contained in any beams
and therefore hears the sound [Funkhouser et al. 1998;
Laine et al. 2009]. Frustum tracing is another method
similar to beam tracing that uses rectangular frusta instead
of beams to perform sound propagation [Chandak et al.
2008]. While these methods work well, they suffer from
performance issues due to the geometric complexity
inherent in tracing volumes through an environment.
Neither method is fast enough to be practical in an
interactive application. Other methods have been
proposed such as RESound that uses a hybrid of ray and
frustum tracing [Taylor et al. 2009b]. However, these
methods still do not meet real-time requirements.

3.1 Ray-Tracing Sound Propagation: iSound

 Ray tracing for sound propagation has several
advantages over other numeric and geometric simulation
techniques: it can easily handle dynamic scenes, requires
less preprocessing, and is much more amenable to real-
time simulation. Due to the simplicity of ray tracing, it
can also be implemented on the GPU, improving
simulation times
 The most recent prior system, iSound, uses a forward
ray-tracing algorithm on the GPU to perform sound
propagation at real-time rates [Taylor et al. 2010]. In this
approach, a random spherical sampling of rays is cast
from each sound source in a scene. These rays are then

propagated through the environment via specular
reflection and diffraction to an arbitrary user-defined
recursion depth. Diffraction is performed whenever a ray
touches a triangle which as been previously marked as
having a diffracting edge as part of a preprocessing step
[Taylor et al. 2009a]. The ray is tested to see if the
barycentric coordinates of its intersection point lie closer
to the edge than some threshold value. If so, secondary
rays are cast throughout the shadow region bounded by
the adjacent triangle. These rays are then propagated
through the scene as described above.
 This initial ray propagation is used to determine sets
of geometry visible to sound sources at each recursion
depth. As each ray is cast, it is checked for intersection
with a sphere of user-defined radius centered at the
listener's position. If so, the set of triangles that the ray
has interacted with as it was propagated is added to a list
of potentially valid propagation paths from the sound
source to the listener.
 After all visibility rays have been traced from every
sound source in the scene, the algorithm validates all
potential propagation paths in order to determine a final
set of contributions of each sound source detected by the
listener. An image-source method is performed to validate
each path [Allen and Berkley 1979]. The position of the
sound source is recursively reflected over each triangle in
the propagation path to produce a series of source image
positions. If a path contains diffraction, the image source
position at that depth is defined on the diffraction edge by
the UTD formation for edge diffraction [Kouyoumjian
and Pathak 1974]. Occlusion query rays are then traced
from the listener backwards to the most recent source
image. If the ray reaches the triangle in question without
intersecting any other geometry, an intersection point is
calculated and the process is repeated until the source is
reached. If there is occlusion, the propagation path in
question is marked as invalid and removed from the list of
propagation paths.
 At this point, all paths left in the list will be valid.
Additional data needed for sound rendering is then
calculated for each path: the total distance from the source
to the listener, the direction from the listener to the first
source image, and a frequency-dependent attenuation
value caused by interaction with materials in the scene at
each depth of recursion. The UTD formulation for edge
diffraction is used to determine attenuation coefficients
for diffraction interaction along the path.

4 Fast Sound Propagation for Games

 Our new algorithm builds upon the work in iSound
by modifying the algorithm to avoid issues encountered
and to achieve the fastest performance possible for game-
like scenes. The primary differences of our approach
include backward ray tracing from the listener in the
visibility determination step and propagation path caching

for better frame coherence.

4.1 Backward Sound Propagation

 In our algorithm, we chose to shoot visibility rays
from the listener, rather than from each sound source.
This decision was made based upon the following
observation: the early reflections and diffractions that are
perceptually important tend to come from geometry in the
vicinity of the listener. Thus, it is advantageous to cast
more rays from the listener's position. When casting rays
from each sound source, only a few may reach the listener
and these may not be the most perceptually important
paths, requiring more rays to be cast in order to get all
necessary propagation paths. Our method tries to get as
many of the important paths as possible while shooting
fewer rays than other techniques. This strategy has the
added benefit that the amount of rays no longer scales
linearly with the number of sound sources.
 The algorithm begins by casting a random spherical
sampling of rays from the listener. These rays are
propagated through the scene as with iSound. Rays are
specularly reflected by triangles they intersect up to a
user-defined maximum recursion depth. The algorithm
maintains a hash table of visited propagation paths for
each depth of reflection. All paths with one reflection are
kept in one table, all paths with two reflections are kept in
another, and so on. At each depth of reflection, the hash
table for the current depth is queried to see if it contains
the ordered sequence of triangles previously visited by the
current visibility ray. If so, the algorithm continues
propagating that ray to the next depth of reflection. If the
triangle sequence has not been visited, it is added to the
hash table and any valid propagation paths are found. The
hash table keeps the algorithm from producing duplicate
propagation paths and is crucial for frame-to-frame path
caching. It is analogous to the visibility sets kept by
iSound.
 When a new triangle sequence is visited, the listener's
position is reflected over each triangle in the sequence,
creating a series of listener image positions (versus
iSound's source image positions). Each sound source in
the scene is then tested to see if there is a valid reflection
path back to the listener using a variation of the image
source validation method from iSound. If any edge of the
most recent triangle has been previously marked as a
diffraction edge, diffraction paths over that edge from
source positions to the listener image position are found.
The algorithm considers only sound sources that lie in the
diffraction shadow region from the listener's perspective.
This approach is valid because the geometry of UTD
diffraction is symmetrical [Kouyoumjian and Pathak
1974]. Like iSound, we use the UTD diffraction
formulation to determine the point on the edge at which
diffraction occurs and then perform path validation back
to the listener as with reflection paths.

 For each valid propagation path, the system
calculates the same output as iSound: the total distance
along the path, the direction of the path from the listener,
and the total frequency-dependent material attenuation
along the path. In addition to these values, our algorithm
also calculates the relative speed along the propagation
path of the source and listener. This allows the sound
renderer to perform more accurate delay interpolation by
using physically correct doppler shifting to guide the
interpolation.

4.2 Propagation Path Caching

 Given the random nature of the rays used for
visibility determination, visible triangle sequences are
often inconsistent from frame to frame. This results in
propagation paths that drop in and out, even when neither
source nor listener are moving. This problem is solved in
our approach by using the visibility hash tables as
persistent caches. At the beginning of each frame, all
triangle sequences in the hash tables are checked to see if
propagation paths exist from the current source positions
to the listener. If a previously valid path is invalidated in
this step, these triangle sequences are removed from the
hash table. Otherwise, the triangle sequences remain in
the hash table.
 This approach has the effect that once paths are
found, they are kept and updated until they become
invalid. This avoids the frame coherency issues that
plague other ray-sampling algorithms. Perhaps the
greatest benefit of the caching is that far fewer visibility
rays need to be cast each frame. The visibility sets are
iteratively refined over many frames, resulting in a higher
overall frame rate and lower latency for real time
applications. For example, casting 1000 rays per frame
over 10 frames has a similar time cost and output to
casting 10000 rays in a single frame. The former is far
more preferable for applications like games where lower
latency is critical for the user.

5 Analysis

 In order to evaluate our system we used several
benchmarks that tested a variety of situations relevant to
games and real time virtual simulation. The first
benchmark is an indoor scene from the Gamebryo game
engine with 1556 triangles. This scene is representative of
simple indoor environments common in some games. The
second scene is an outdoor desert environment from the
Gamebryo game engine with 11642 triangles. This scene
is similarly representative of common outdoor game
environments consisting of a heightfield terrain with
scattered buildings. The final scene used was a model of
the Sibenik cathedral with 76088 triangles. This scene
was chosen because it is of a higher complexity than most
game scenes and shows how the system's performance

degrades with high-resolution environments. All
benchmarks were performed on a single-core 2.16 GHz
consumer laptop.

5.1 Performance

 Detailed performance benchmarks were gathered for
the indoor scene that show how the time per frame varies
based on the number of visibility rays. Figure 1 shows
this relationship for three different propagation
configurations: 4th-order reflection with 1st-order
diffraction, 4th-order reflection, and 2nd-order reflection.
We observed the expected linear time relationship
between the time per frame and number of visibility rays.
There is also a linear correlation with the reflection depth:
4th order reflection is nearly twice as slow as 2nd order
reflection. First-order diffraction adds only a small
overhead to the system.
 We find that the performance of our system is
sufficient to meet the demands of real-time applications
like games. With 1000 visibility rays, 4 orders of
reflection and 1 order of diffraction, our system runs at
over 30 frames per second on a single consumer CPU
core. We believe that this frame rate is sufficient to
provide a low-latency experience in modern fast-paced
video games. Our system can also be tuned to run even
faster with minimal quality decrease as shown in section
5.3.

Figure 1: A plot of the time per frame for the indoor scene

versus the number of visibility rays for each trial.
Diffraction incurs minimal additional cost while the total

time is linear with respect to the number of rays and
reflection depth.

5.2 Accuracy

 The same indoor scene and propagation
configurations were used to perform benchmarks that
show how the simulation quality changes with the number
of visibility rays and depth of reflection. We measure the
simulation quality by calculating the average number of
propagation paths per frame for the entire benchmark

demo. See figure 2 for a graph showing this relationship.
 Perhaps the largest advantage of our sound
propagation algorithm is that the number of propagation
paths that it detects is less sensitive to the number of
visibility rays. For all three scenarios in the graph, we
observed an almost constant number of paths detected
when more than 500 rays were cast. Below 500 rays, the
number of paths drops off slowly. In fact, for 4th order
reflections, 125 visibility rays were able to detect 84% of
the paths detected by 500 rays. Of further interest is how
lower-order reflections are even less susceptible to quality
degradation with very small numbers of rays. When
performing 2nd order reflection, just 125 rays is able to
find 97% of the paths found with 500 rays.
 The figure also shows how enabling diffraction can
result in a significantly higher number of paths. 4th order
reflection with diffraction produces 25-30% more paths
than 4th order reflection without diffraction.

Figure 2: A plot of the average number of propagation

paths per frame for the indoor scene versus the number of
visibility rays for each trial. Our system maintains

accuracy when shooting even a very small number of
rays.

5.3 Performance & Accuracy Tuning For Games

 Most modern video games have very stringent CPU
budgets. This is even worse on game consoles where
resources are limited. Some games allocate as little as 5 to
10% of the CPU budget for sound. Thus, it is important
for any practical sound propagation system to be highly
performant. We believe our system to be highly tunable
such that it can fit within these CPU budgets while still
providing a significant increase in aural realism over
current non-physically-based methods.
 The primary ways that our system allows for
performance tuning is by changing the number of
visibility rays, the depth of reflection and whether or not
diffraction is enabled. Given that the time complexity of
our system is linear with respect to both the number of
visibility rays and the reflection depth, and that the
accuracy of the simulation is not very sensitive to the

0!

10!

20!

30!

40!

50!

60!

0! 250! 500! 750! 1000! 1250! 1500! 1750! 2000!

Ti
m

e
pe

r F
ra

m
e

(m
s)
!

Visibility Rays!

4R + 1D!
4R!
2R!

5!

10!

15!

20!

25!

0! 250! 500! 750! 1000! 1250! 1500! 1750! 2000!

Av
er

ag
e

N
um

be
r o

f P
at

hs
!

Visibility Rays!

4R + 1D!
4R!
2R!

number of rays except at higher depths of reflection, the
system can be easily optimized for any given
environment. For the indoor scene discussed in this
section, the optimum number of visibility rays is around
500. Above this point there is minimal benefit from
shooting more rays and below this point the simulation's
accuracy decreases more noticeably. This performance
point is scene dependent: the nature of the algorithm
causes more rays to be necessary when the scene
complexity is higher. Table 1 shows the performance and
number of propagation paths for the other benchmark
scenes.

Scene # of

Triangles
Time Per
Frame (ms)

Average #
of Paths

Indoor 1566 26 21.4
Outdoor 11642 27 4.4
Cathedral 76088 108 6.6

Table 1: Benchmarks for various scenes. Data was
gathered with 1000 visibility rays, 4 orders of reflection

and 1 order of diffraction.

6 Comparisons

 To our knowledge, the fastest geometric sound
propagation system up to this point is iSound. Since both
systems were tested using 3 of the same benchmarks, the
results can be directly compared. For the indoor scene,
our system achieves similar performance to iSound when
using 500 visibility rays. Our system finds fewer
propagation paths for the outdoor and cathedral scenes but
achieves similar performance for these scenes with 1000
visibility rays [Taylor et al. 2010]. This is due primarily to
the increasing complexity of these scenes that necessitates
more visibility rays. While iSound performs well in these
scenes, it is a GPU-based sound propagation system and
this makes it impractical for real-time graphics-heavy
applications like video games. In these situations, a fast
CPU-based sound propagation system is necessary.
 When compared to other CPU-based geometric
propagation algorithms such as RESound, ADFrustum,
and the CPU version of iSound, our algorithm is by far
the fastest. For the Sibenik cathedral scene, our system is
at least 30 times faster than RESound for 3 orders of
reflection and 1 order of diffraction [Chandak et al. 2008].
ADFrustum performs similarly to RESound for the same
cathedral scene [Taylor et al. 2009b]. In addition, both of
the benchmarks for these systems were performed using 7
threads on a multicore CPU, while our system was tested
using a single core. While CPU timings for iSound are not
publicly available, we estimate our system to be at least
10 times faster for similar scenes because iSound must
shoot many more rays per frame to find the same
propagation paths.
 We are able to achieve these performance numbers

primarily because our system uses path caching to reduce
the number of rays needed for each frame. Since ray
casting is the slowest part of ray tracing propagation
algorithms, it is advantageous to design an algorithm that
requires less rays to meet a give standard of accuracy. We
believe our algorithm meets this goal and is perhaps the
first geometric sound propagation algorithm that is
practical enough to be used in games.

7 Conclusions & Limitations

 We have presented a novel geometric sound
propagation algorithm that maintains the accuracy of prior
methods but is also able to meet the stringent time
requirements of games and other interactive systems. We
have integrated our sound propagation and rendering
system into the Gamebryo game engine in order to
demonstrate that it is very acceptable for these
applications. Our system executes on a single CPU core
and has a small memory footprint, making it practical for
resource-intensive games. We are able to achieve these
results using a ray-tracing algorithm due to our use of
propagation path caching and backwards ray tracing.
These contributions allow our system to maintain
accuracy with very small numbers of visibility rays versus
other existing algorithms.
 While our algorithm performs well, there are still
many improvements that could be made. In the future, we
would like to focus on both algorithmic improvements
and optimization. Our algorithm doesn't support diffuse
reflection or higher order diffraction. Solving these
problems would produce even more accurate results.
However, initial investigations show that higher order
diffraction seems to be very difficult to do at interactive
rates. In addition, the ray tracer that is used by our system
is simple and doesn't make use of the SIMD instructions
present on modern processors. Implementing this
improvement could provide a sizable speed increase.
Finally, we would like to do more work with integrating
our sound propagation system into game engines in order
to evaluate the algorithm's performance on real-world
environments.

8 Acknowledgments

This work was supported in part by Army Research
Office, RDECOM and National Science Foundation.

References

TAYLOR, M., CHANDAK, A., MO, Q.,
LAUTERBACH, C., SCHISSLER, C., MANOCHA, D.,
2010. iSound: Interactive GPU-base Sound Auralization
in Dynamic Scenes, Tech Report TR10-006, Department
of Computer Science, UNC Chapel Hill

ALLEN, J. B., AND BERKLEY, D. A. 1979. Image
method for efficiently simulating small-room acoustics.
The Journal of the Acoustical Society of America 65, 4
(April), 943–950.

CHANDAK, A., LAUTERBACH, C., TAYLOR, M.,
REN, Z., AND MANOCHA, D. 2008. AD-Frustum:
Adaptive Frustum Tracing for Interactive Sound
Propagation. IEEE Transactions on Visualization and
Computer Graphics 14, 6 (Nov.-Dec.), 1707–1722.

DALENBA ̈ CK, B.-I. L. 1996. Room acoustic prediction
based on a unified treatment of diffuse and specular
reflection. The Journal of the Acoustical Society of
America 100, 2, 899–909.

FUNKHOUSER, T., CARLBOM, I., ELKO, G.,
PINGALI, G., SONDHI, M., AND WEST, J. 1998. A
beam tracing approach to acoustic modeling for
interactive virtual environments. In Proc. of ACM
SIGGRAPH, 21–32.

FUNKHOUSER, T., TSINGOS, N., CARLBOM, I.,
ELKO, G., SONDHI, M., WEST, J., PINGALI, G., MIN,
P., AND NGAN, A. 2004. A beam tracing method for
interactive architectural acoustics. Journal of the
Acoustical Society of America 115, 2 (February), 739–
756.

KOUYOUMJIAN, R. G., AND PATHAK, P. H. 1974. A
uniform geometrical theory of diffraction for an edge in a
perfectly conducting surface. Proc. of IEEE 62 (Nov.),
1448–1461.

KROKSTAD, A., STROM, S., AND SORSDAL, S.
1968. Calculating the acoustical room response by the use
of a ray tracing technique. Journal of Sound and Vibration
8, 1 (July), 118–125.

LAINE, S., SILTANEN, S., LOKKI, T., AND SAVIOJA,
L. 2009. Accelerated beam tracing algorithm. Applied
Acoustic 70, 1, 172–181.

LENTZ, T., SCHRODER, D., VORLA N̈DER, M., AND
ASSENMACHER, I. 2007. Virtual reality system with
integrated sound field simulation and reproduction.
EURASIP Journal on Advances in Signal Processing.
Article ID 70540, 19 pages.

PIERCE, A. D. 1974. Diffraction of sound around corners
and over wide barriers. The Journal of the Acoustical
Society of America 55, 5, 941–955.

SCHRO D̈ER, D., AND LENTZ, T. 2006. Real-Time
Processing of Image Sources Using Binary Space
Partitioning. Journal of the Audio Engineering Society

(JAES) 54, 7/8 (July), 604–619.

TAYLOR, M., CHANDAK, A., ANTANI, L., AND
MANOCHA, D. 2009. Resound: interactive sound
rendering for dynamic virtual environments. In MM ’09:
Proceedings of the seventeen ACM international
conference on Multimedia, ACM, New York, NY, USA,
271–280.

TSINGOS, N., FUNKHOUSER, T., NGAN, A., AND
CARLBOM, I. 2001. Modeling acoustics in virtual
environments using the uniform theory of diffraction. In
SIGGRAPH 2001, Computer Graphics Proceedings, 545–
552.

TSINGOS, N. 2009. Pre-computing geometry-based
reverberation effects for games. 35th AES Conference on
Audio for Games.

VORLA N̈DER, M. 1989. Simulation of the transient and
steady-state sound propagation in rooms using a new
combined ray-tracing/image-source algorithm. The
Journal of the Acoustical Society of America 86, 1, 172–
178.

BOTTELDOOREN, D. 1995. Finite-difference time-
domain simulation of low-frequency room acoustic
problems. Acoustical Society of America Journal 98
(December), 3302–3308.

RAGHUVANSHI, N., NARAIN, R., AND LIN, M. C.
2009. Efficient and accurate sound propagation using
adaptive rectangular decomposition. IEEE Transactions
on Visualization and Computer Graphics 15, 5, 789–801.

ANTANI, L., CHANDAK, A., TAYLOR M. AND
MANOCHA, D. 2010. Direct-to-Indirect Acoustic
Radiance Transfer, Tech Report TR10-002, Department
of Computer Science, UNC Chapel Hill

