
Independent Navigation of Multiple Mobile Robots
with Hybrid Reciprocal Velocity Obstacles

Jamie Snape, Student Member, IEEE, Jur van den Berg, Stephen J. Guy, and Dinesh Manocha

Abstract—We present an approach for smooth and collision-
free navigation of multiple mobile robots amongst each other.
Each robot senses its surroundings and acts independently
without central coordination or communication with other
robots. Our approach uses both the current position and the
velocity of other robots to predict their future trajectory in
order to avoid collisions. Moreover, our approach is reciprocal
and avoids oscillations by explicitly taking into account that
the other robots also sense their surroundings and change
their trajectories accordingly. We build on prior work related
to velocity obstacles and reciprocal velocity obstacles and
introduce the concept of hybrid reciprocal velocity obstacles for
collision avoidance that takes into account the kinematics of the
robots and uncertainty in sensor data. We apply our approach
to a set of iRobot Create robots using centralized sensing and
show natural, direct, and collision-free navigation in several
challenging scenarios.

I. INTRODUCTION

As mobile robots become ubiquitous in everyday life,
the need arises for smooth and collision-free navigation of
these robots amongst each other. Each robot should sense its
surroundings and act independently without communication
with other robots or centralized coordination, just as humans
do when they move amongst each other.
Many works in robotics have addressed the problem of

collision-free navigation of a robot in dynamic environments
with moving obstacles [1], [2], [3], [4], [5]. Most approaches
predict where the moving obstacles might be in the future by
extrapolating their current velocities, and let the robot avoid
collisions accordingly. However, such an approach does not
suffice when the robot encounters other robots, because
treating the other robots as (passively) moving obstacles
overlooks the reciprocity between robots, i.e. the fact that
the other robots react to you in the same way as you react
to them. Hence, the future trajectories of other robots cannot
be estimated by extrapolating their current velocities, and
doing so could inherently cause undesirable oscillations in
the motion of the robots [6], [7].
In this paper, we introduce the concept of hybrid recipro-

cal velocity obstacles for collision avoidance amongst robots
that specifically considers this reciprocity. Informally speak-
ing, reciprocity lets a robot take half of the responsibility of
avoiding collisions with another robot and assumes that the

This work was supported in part by ARO contracts DAAD19-02-1-0390
and W911NF-04-1-0088, NSF awards 0400134, 0429583, and 0404088,
DARPA/RDECOM contract N61339-04-C-0043, and Intel.
The authors are with the Department of Computer Science, Univer-

sity of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Email: {snape, berg, sjguy, dm}@cs.unc.edu. Website (with videos):
http://gamma.cs.unc.edu/HRVO/.

Fig. 1. Four iRobot Create mobile robots in our experimentation setting.

other robot takes care of the other half. Each robot executes
an independent continuous cycle of sensing and acting, in
which a robot chooses its new velocity based on observa-
tions of the positions and velocities of the other robots. In
principle, our method allows each robot to observe its own
surroundings, however, for ease of implementation, we use
centralized sensing. The robots do not communicate with
each other, but implicitly assume that the other robots use the
same collision-avoidance strategy. Our overall approach can
also deal with moving obstacles and we make no assumptions
on their motion.
Our formulation is an extension of the concept of recip-

rocal velocity obstacles [6] that was introduced to address
similar issues in multi-agent and crowd simulation. However,
this formulation has some limitations, particularly that it
frequently causes agents to end up in a “reciprocal dance” as
they cannot find agreement on which side to pass each other.
To overcome this limitation, our formulation combines the
reciprocal velocity obstacle with the original velocity obsta-
cle concept [1]. In addition, our approach takes into account
both the kinematics of a robot and sensor uncertainty, which
makes it specifically suitable for navigation of mobile robots.
We have implemented our approach and applied it to a set

of iRobot Create robots moving in an indoor environment
(see Fig. 1). The robots are controlled through a Bluetooth
connection, and use localization data obtained from an
overhead camera. Our experiments with several challenging
scenarios show that our approach achieves natural, direct,
and collision-free navigation even when sensor uncertainty
and control signal latency are artificially increased.
The rest of this paper is organized as follows. We begin

by summarizing related work in Section II. In Section III,
we introduce our formulation of hybrid reciprocal velocity
obstacles that we use for collision avoidance. In Section IV,
we use this formulation for navigation of multiple mobile
robots and take into account the kinematics of the robots as

(a) (b) (c) (d)

Fig. 2. (a) A configuration of two disc-shaped robots A and B in the plane with radii rA and rB , positions pA and pB , and velocities vA and vB ,
respectively. (b) The velocity obstacle V OA|B for A induced by B. (c) The reciprocal velocity obstacle RV OA|B for A induced by B. (d) The hybrid
reciprocal velocity obstacle HRV OA|B for A induced by B. Note that vA is right of the centerline (dashed) of RV OA|B , so the apex of HRV OA|B
is the intersection point of the right side of RV OA|B and the left side of V OA|B .

well as sensor uncertainty. We discuss actual implementation
and highlight the experimental results in Section V.

II. PREVIOUS WORK

In this section, we give a brief overview of prior work
on navigating in dynamic environments amongst moving
obstacles, multi-robot planning, and existing variations of the
velocity obstacle concept.
Previous work has addressed the issue of a single robot

navigating amongst multiple (passive) moving obstacles [2],
[3], [4], [5]. A particularly successful concept is velocity
obstacles [1], [8], which has been used in practice for real-
world robots, for example, navigating robotic wheelchairs
through crowded public environments [9], automated cars
[10], and mission planning for unmanned aerial vehicles
(UAVs) [11].
Several variations of the velocity obstacle formulation

have been proposed for multi-robot systems, generally by
attempting to incorporate the reactive behavior of the other
entities in the environment. Variations such as reciprocal
velocity obstacles [6], [12], recursive probabilistic velocity
obstacles [13], [14], and common velocity obstacles [15] use
various means to handle reciprocity, but each have their own
shortcomings. Specifically, the approach of [14] may fail to
converge, while other concepts [6], [15] are limited to dealing
with only two robots.
Other work has focused mainly on follow-the-leader be-

havior when navigating robots in real-world settings [16],
[17]. Also, there is a large body of work on centrally
coordinating the motions of multiple robots [18]. However, to
the best of our knowledge, there is little work on navigation
of multiple independent robots to arbitrary goals in real-
world settings while taking into account the reactive behavior
of other robots.

III. COLLISION AVOIDANCE

In this section, we describe how robots avoid collisions
with each other. We briefly review the concepts of velocity
obstacles [1] and reciprocal velocity obstacles [6], and
then introduce our formulation of hybrid reciprocal velocity
obstacles that we use for multi-robot navigation.

A. Velocity Obstacles
The concept of velocity obstacles was introduced for

navigating a robot amongst moving obstacles [1]. It is defined
as follows. Let A be a robot and let B be an obstacle moving
in the plane R2. For simplicity, we assume A and B are discs
with radii rA and rB , respectively. Let pA and pB denote
the current positions of the centers of A and B, respectively,
and let vB be the velocity of B (see Fig. 2(a)). Then, the
velocity obstacle for A induced by B, denoted V OA|B , is
the set of all velocities of A that will result in a collision
between A and B at some moment in time, assuming that B
maintains its velocity vB . More formally, let D(p, r) denote
an open disc of radius r centered at p, then

V OA|B = {v | ∃t > 0 :: t(v−vB) ∈ D(pB−pA, rA+rB)}.

It follows that if A chooses a velocity inside V OA|B ,
then A and B will collide at some point in time. If the
velocity chosen is outside V OA|B , such a collision will never
occur. Fig. 2(b) shows a geometric interpretation of velocity
obstacles.
The principle of velocity obstacles has been successfully

applied to navigate one robot in the presence of moving ob-
stacles by having the robot select a velocity in each time step
that is outside any of the velocity obstacles induced by the
moving obstacles [1], [9], [13]. Unfortunately, the velocity
obstacle concept cannot be applied to multi-robot navigation,
since it fails to take into account that the other robots
are not (passive) moving obstacles, but active decision-
making entities that similarly adapt their velocities to their
surroundings. If all robots were to use the velocity obstacle
concept to choose a new velocity, this would inherently result
in oscillations. This is because if any pair of robots select
new velocities outside each other’s velocity obstacles, then
their old velocities will be valid with respect to the velocity
obstacles based on the new velocities. Hence, the robots will
oscillate between these two velocities, as shown in [6].

B. Reciprocal Velocity Obstacles
The reciprocal velocity obstacle formulation introduced in

[6] addresses the problem of oscillations by incorporating
the reaction of other robots. Instead of having to take 100%
of the responsibility for avoiding collisions, as is the case

with velocity obstacles, the reciprocal approach lets a robot
take only 50% of the responsibility of avoiding a collision,
while assuming the other robot involved takes care of the
other half. More precisely, when selecting the new velocity of
robot A, the average is taken of its current velocity, vA, and
a velocity outside the velocity obstacle V OA|B induced by
the other robot B. The reciprocal velocity obstacle RV OA|B

for robot A induced by B is defined accordingly as

RV OA|B = {v | 2v − vA ∈ V OA|B}.

Fig. 2(c) illustrates that the velocity obstacle is effectively
translated such that its apex is at (vA + vB)/2.
The reciprocal velocity obstacle formulation gives the fol-

lowing theoretical guarantee: If each robot selects a velocity
outside the reciprocal velocity obstacle induced by the other,
and both robots choose to pass each other on the same
side, i.e. either on the right side of each other, or on the
left side, then the trajectories of both robots will be free
of collisions and oscillations. If the free velocity is selected
that is closest to the robot’s current velocity, then the robots
automatically pass each other on the same side. However, this
only holds when there is only one other robot. In practice,
each robot is also required to select the velocity closest to
its preferred velocity (rather than its current velocity) to
make progress towards its goal. Unfortunately, this means
that robots may not necessarily choose the same side to
pass, which may result in oscillations known as “reciprocal
dances” [7]. Even though reciprocal dances are common in
natural human motion, they are undesirable for multi-robot
navigation as robots are unable to resolve them.

C. Hybrid Reciprocal Velocity Obstacles
To remedy this situation, we introduce the concept of the

hybrid reciprocal velocity obstacle, as shown in Fig. 2(d). For
two robots, A and B, if vA is to the right of the centerline of
RV OA|B , which implies by symmetry that vB is to the right
of the centerline of RV OB|A, we wish A to choose a velocity
to the right of RV OA|B . To encourage this, the reciprocal
velocity obstacle is enlarged by replacing the edge on the
side we do not wish the robots to pass (in this instance the
left side) by the edge of the velocity obstacle V OA|B . The
apex of the resulting obstacle is then the point of intersection
between the right side of RV OA|B and the left side of
V OA|B . If vA is to the left of the centerline, we mirror
the procedure, exchanging left and right. As a hybrid of a
reciprocal velocity obstacle and a velocity obstacle, we call
the result a hybrid reciprocal velocity obstacle, and denote
it HRV OA|B .
The hybrid formulation has the consequence that if robot

A attempts to pass on the wrong side of robot B, perhaps
because of the presence of other robots, then it has to give
full priority to robot B, in accordance with the velocity
obstacle concept. However, if it does choose the correct side,
then it can assume the cooperation of robot B and retains
equal priority, as for the reciprocal velocity obstacle concept.
This distinction greatly reduces the amount of oscillations,
while not overconstraining the motion of each robot.

Fig. 3. Schematic overview of the continuous cycle of sensing and acting
that each robot executes independently.

IV. MULTI-ROBOT NAVIGATION
In this section, we show how we apply the hybrid re-

ciprocal velocity obstacle formulation to the navigation of
multiple mobile robots. We begin by sketching the global
approach, and then explain how to take into account the
kinematics and sensor uncertainty of the robot.

A. Global Approach
Let there be a set of mobile robots sharing an environment.

Each robot A has a current position pA, a current velocity
vA, and a radius rA. These parameters are part of the robot’s
external state, i.e. they can be sensed or measured by other
robots. Furthermore, each robot has a preferred velocity
v

pref
A , which is the velocity directed towards its goal with
a magnitude equal to its preferred speed, and is the velocity
the robot would have selected had no other robots been in its
way. We consider the preferred velocity part of the internal
state of the robot, therefore the other robots cannot sense or
measure it.
The overall approach is as follows. Each robot A inde-

pendently performs a continuous cycle of sensing and acting
(see Fig. 3 for a schematic overview). In the sensing phase,
the robot acquires its own position and velocity, and those
of the surrounding robots. Based on this information, the
robot infers for each of its neighboring robots B the hybrid
reciprocal velocity obstacle HRV OA|B , and selects a new
velocity vnew

A for itself that is closest to its preferred velocity
vpref

A amongst all velocities outside the union of the hybrid
velocity obstacles induced by the neighboring robots:

vnew
A = argmin

v !∈
S

B !=A
HRV OA|B

‖v − v
pref
A ‖. (1)

We use the efficient geometric algorithm of [12] to find this
velocity.
While the robot should assume this new velocity vnew

A , this
may not be directly possible due to its kinematic constraints.
Therefore, the velocity vnew

A is transformed into a control
input for the robot that will let the robot assume velocity
vnew

A “as soon as possible.” In Section IV-B, we detail how
to do this for the case of a differential-drive robot.
After this, the robot starts a new cycle of sensing and

acting, and continues doing so indefinitely. Note that the
above process does not require the robots to communicate
with each other. Robots only use information they can sense
independently.

Fig. 4. The kinematic model of a differential-drive robot. Each wheel is
attached to a separate motor and may assume a different speed. Note that
the robot can spin in place and follow any continuous path.

B. Kinematics

We consider a simple differential-drive robot (see Fig. 4),
whose kinematics are applicable to many contemporary
mobile robotic systems. It has two main wheels, fixed in
orientation, each attached to its own motor such they can be
driven at different speeds.
The configuration of our differential-drive robot is given

by its position (x, y) and its orientation θ. If the distance
between the two wheels of the robot is L, and the left
and right wheel speeds are vl and vr, respectively, then the
configuration transition equations are

ẋ =
vl + vr

2
cos θ, (2)

ẏ =
vl + vr

2
sin θ, (3)

θ̇ =
vr − vl

L
. (4)

Furthermore, the wheel speeds are bounded to a given
maximum vmax, such that

−vmax ≤ vl ≤ vmax, −vmax ≤ vr ≤ vmax. (5)

The speeds of the wheels are the control input of the robot.
When vl = vr > 0, the robot will move straight forwards;
when vl > vr > 0, it will arc right; and when vl = −vr &= 0,
it will spin in place. In fact, the center of the robot is able
to follow any continuous path within the environment [18].
For our approach, the task is to transform the velocity vnew

A

as given by (1) to a pair of wheel speeds vl and vr, given the
current orientation θ of the robot. Ignoring effects of inertia,
we choose to set vl and vr such that the velocity vnew

A is
obtained precisely after a preset amount of time τ to ensure
smooth motion. More specifically, suppose that vnew

A =
(vx, vy). Then, the target orientation is θ′ = arctan(vy/vx)
and the target speed is ‖vnew

A ‖. The difference between the
target orientation and the current orientation is ∆θ = θ′− θ,
such that∆θ ∈ [−π, π]. To move from the current orientation
θ to the target orientation θ′ in τ time, it follows directly from
(4) that

vr − vl =
L∆θ

τ
. (6)

To obtain the target speed, it follows from (2) and (3) that

vr + vl = 2‖vnew
A ‖. (7)

Fig. 5. The velocity obstacle V O∗
A|B adjusted to account for uncertainty

in positions pA and pB and uncertainty in velocity vB .

The desired values of vl and vr can now be solved from the
system of equations formed by (6) and (7).
Unfortunately, the constraints of (5) may invalidate the

computed values of vl and vr. In this case, we first attempt to
move vl and vr into the interval [−vmax, vmax] while keeping
vr − vl constant, such that the target orientation is obtained
after τ time. If this also fails, in which case |vr−vl| > 2vmax,
then vl and vr are clamped to the extremes of the interval,
such that the robot maximally rotates in place.
The choice of τ must be sufficiently small to allow the

robot to quickly react to other robots in its path. However,
if set too low, i.e. lower than the duration ∆t of each sens-
ing/acting cycle, the robot overshoots its target orientation,
leading to oscillations. In addition, a low value of τ may
result in less smooth paths, since the robot may frequently
have to rotate in place to achieve its target orientation. Our
experiments indicated that a value of τ = 3∆t gives good
results.

C. Sensor Uncertainty

To calculate the hybrid reciprocal velocity obstacles, each
robot requires the current position and velocity of every
robot. Because this data is obtained using sensors, it in-
evitably contains uncertainty. This may jeopardize the correct
functioning of our approach.
To mitigate the uncertainty effects, we use a Kalman

filter [19] to obtain accurate estimates of the positions
and velocities of the robots. In addition, the Kalman filter
provides an estimate of the variance, and hence the standard
deviation, of the measured quantities. We explicitly model
this in our hybrid reciprocal velocity obstacles as follows.
Let P = (Px, Py) denote a bivariate normal distribution of

a measured position p with mean µ(P) = (µ(Px), µ(Py)).
For simplicity, we assume that there is the same measurement
uncertainty in the x-direction as in the y-direction, such
that the standard deviations σ(Px) and σ(Py) are equal. We
informally refer to this value as σ(P) = σ(Px) = σ(Py).
Now, we explicitly take into account one standard devi-

ation in the construction of the hybrid reciprocal velocity
obstacle to capture most uncertainty of the measurements.
We denote the uncertainty-adjusted hybrid reciprocal velocity
obstacle by HRV O∗

A|B , and define it as the union of
the simple hybrid velocity obstacles over all positions and

(a) (b) (c)

Fig. 6. (a) A zoomed-in view from the overhead camera showing the iRobot Create robots with their fiducial markers. (b, c) The traces of the robots in
the four corners scenario (b), and the moving obstacle scenario (c). The positions of the robots every 1.25 seconds are shown with a disc. Later positions
are drawn on top of earlier positions, and in a darker shade. Each robot is denoted by a different color, with the yellow discs in (c) corresponding to the
path of the moving obstacle.

velocities within one standard deviation around their mean:

HRV O∗
A|B =

⋃

pA∈D(µ(PA),σ(PA))

⋃

pB∈D(µ(PB),σ(PB))⋃

vA∈D(µ(VA),σ(VA))

⋃

vB∈D(µ(VB),σ(VB))

HRV OA|B,

where D(p, r) is a disc as previously defined.
V O∗

A|B and RV O∗
A|B are defined similarly. It is easy

to show that V OA|B is contained within the velocity ob-
stacle V O∗

A|B , with pA = µ(PA), pB = µ(PB), and
vB = µ(VB), where σ(PA) and σ(PB) are added to the
radii of A and B, respectively, and whose sides have been
perpendicularly moved outwards over a distance of σ(VB)
(see Fig. 5). The actual result is a truncated cone, but for
simplicity, we use the full cone in our implementation. The
same procedure can be applied for constructing RV O∗

A|B . In
this case, its sides need be moved outward over a distance
of (σ(VA) + σ(VB))/2 to account for the uncertainty in
the velocities of A and B. From V O∗

A|B and RV O∗
A|B ,

the uncertainty-adjusted hybrid reciprocal velocity obstacle
HRV O∗

A|B is constructed as explained in Section III-C.

V. IMPLEMENTATION AND EXPERIMENTATION
In this section, we describe our implementation of the

approach presented above and report experimental results
from several scenarios involving mobile robots.

A. Implementation Details
We implemented our approach using a centralized sensing

system, with simple, low-cost robots controlled remotely
over Bluetooth radio from a single computer with access
to the localization data of each robot.
Our chosen platform is the iRobot Create programmable

robot, based on the popular Roomba vacuum-cleaning robot.
This is a differential-drive robot with two powered wheels
and a third passive caster wheel to maintain balance. Each
wheel may be controlled independently with a maximum
speed of 500 mm/s, and weighing less than 2.5 kg, it has
a favorable power-to-weight ratio that allows us to assume
near-instantaneous acceleration. The limited sensing power
of the iRobot Create does not allow it to localize itself with
any degree of accuracy.
To localize the robots, we use a ceiling-mounted Point

Grey Grasshopper digital video camera with a FireWire 800

connection to obtain images at a resolution of 1024x768
at a refresh rate of 15 Hz. We attach a fiducial marker to
the top of each robot, as shown in Fig. 6(a), and use the
ARToolKit augmented reality system [20] to determine the
position and orientation of each robot, with an absolute error
of less than 10 mm. The velocity of the robots is inferred
from the position and orientation measurements using an
extended Kalman filter.
All calculations are performed on a single computer.

However, to ensure that our approach is also applicable when
each robot uses its own on-board sensing and computing,
only the acquisition of the localization data is performed
centrally. The calculations for each robot related to our
navigation approach are performed in separate processes that
do not communicate with each other. Each process sends
the computed wheel speeds to its associated robot over a
Bluetooth virtual serial connection (which we found to have
a typical latency of around 50 ms).

B. Experimental Results
Using our camera-based localization system and four

iRobot Create robots, we tested our approach in the following
scenarios:

• Four corners: A robot is placed at each corner of a
rectangular environment, and its goal is to navigate to
the opposite corner of the environment on the diagonal.
The robots will meet and have to negotiate around each
other in the middle.

• Moving obstacle: One robot takes the role of a mov-
ing obstacle, traveling at constant velocity across the
environment. The other robots have to cross its path to
navigate to their goals, while avoiding collisions.

In both scenarios, each robot has the same preferred speed
of 250 mm/s.
The traces of the robots are shown in Fig. 6(b) for the

four corners scenario (see also the video accompanying this
paper). As can be seen from the figure (and video), the
paths computed by the robots are smooth and direct, with
no oscillations or collisions. Each of the robots makes just
enough room for the other robots, so that they can precisely
pass each other in the center without substantially slowing
down. It is clear in the results that the robots make use of
the information regarding both the positions and velocities of

the other robots to plan a path that exactly avoids collisions
while maintaining as direct a path to the goal as possible.
This leads to natural motions, and the reciprocity of the
hybrid reciprocal velocity obstacle formulation ensures that
the robots do not exhibit oscillations.
To test the robustness of our formulation, we artificially

decreased the frequency with which sensor readings come
in and commands are sent to the robots (from 15 Hz to
5 Hz) and increased the preferred speed of the robots (from
250 mm/s to 400 mm/s). Even with these changes, our
approach continues to perform well and computes collision-
free motion with no oscillations.
The moving obstacle scenario shows that our approach

can naturally deal with the presence of an agent that will not
necessarily adapt its motion to the presence of other robots.
In this case, the robots use the original velocity obstacle
formulation, with our adjustments for uncertainty, to avoid
collisions with the moving obstacle along with the hybrid
reciprocal velocity obstacle formulation to avoid collisions
with each other. We do not consider how to identify the agent
as a moving obstacle, simply that our method is capable of
handling the distinction should it be made. Fig. 6(c) shows
that two robots increase speed to cross in front of the moving
obstacle, while the third slows and crosses behind. In this
scenario, there were again neither collisions nor oscillations.
Extended videos of these and other scenarios are available

at http://gamma.cs.unc.edu/HRVO/.

VI. CONCLUSION
In this paper, we have introduced the concept of hybrid re-

ciprocal velocity obstacles for smooth, direct, and collision-
free navigation of multiple robots sharing an environment.
We have incorporated the kinematics and sensor uncertainty
of the robot in our formulation, and implemented our ap-
proach on mobile robots. The key feature of our formulation
is that it explicitly considers reciprocity, such that each
robot can assume that other robots are cooperating to avoid
collisions. Yet, each of the robots fully acts independently,
and does not communicate with other robots.
In our current implementation, each of the robots receives

their sensor readings from an overhead camera. An important
next step is to equip each robot with purely localized sensing
and computing, such as in [21], which combines odome-
try, orientation sensors, and relative positions to accurately
estimate global positions. Our approach can be applied
without adaptation if data is gathered locally, and the hybrid
reciprocal velocity obstacles are defined just as well using
only relative positions and velocities of robots, rather than
absolute positions and velocities as used in this paper.
Our current implementation focuses on differential-drive

robots, but our approach can easily be adapted for other
kinematic systems, in particular car-like robots as they have
similar kinematics.
As our approach extrapolates current velocities, it is in

principle capable of handling robots moving at high speeds.
However, in our current implementation, we have ignored
inertia as its effects proved negligible compared to those due

to latency. At higher speeds, this may no longer be the case,
so dynamics may need to be explicitly addressed.
Future work also includes extending our approach to deal

with complex environments that contain static obstacles, for
instance walls in an office environment. In this case, our
formulation will need to be augmented with global path
planning to direct the robots towards their goals, potentially
following the approach of [22].

REFERENCES
[1] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments

using velocity obstacles,” Int. J. Robot. Res., vol. 17, no. 7, pp. 760–
772, 1998.

[2] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, pp. 23–33,
1997.

[3] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kino-
dynamic motion planning with moving obstacles,” Int. J. Robot. Res.,
vol. 21, no. 3, pp. 233–255, 2002.

[4] A. Kushleyev and M. Likhachev, “Time-bounded lattice for efficient
planning in dynamic environments,” in Proc. IEEE Int. Conf. Robot.
Autom., 2009, pp. 1662–1668.

[5] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-
ments,” in Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., 2005, pp.
2210–2215.

[6] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in Proc. IEEE Int.
Conf. Robot. Autom., 2008, pp. 1928–1935.

[7] F. Feurtey, “Simulating the collision avoidance behavior of pedestri-
ans,” Master’s thesis, Univ. Tokyo, 2000.

[8] F. Large, S. Sckhavat, Z. Shiller, and C. Laugier, “Using non-linear
velocity obstacles to plan motions in a dynamic environment,” in Proc.
IEEE Int. Conf. Control Autom. Robot. Vision, 2002, pp. 734–739.

[9] E. Prassler, J. Scholz, and P. Fiorini, “A robotic wheelchair for crowded
public environments,” IEEE Robot. Autom. Mag., vol. 8, no. 1, pp. 38–
45, 2001.

[10] C. Reinholtz, “Victor Tango,” DARPA Urban Chall. Tech. Pap., 2007.
[11] J. S. Dittrich, F. Adolf, A. Langer, and F. Thielecke, “Mission planning

for small UAV systems in unknown environments,” in AHS Int. Spec.
Mtg. Unmanned Rotorcraft Syst., 2007.

[12] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D. Manocha, and
P. Dubey, “ClearPath: Highly parallel collision avoidance for multi-
agent simulation,” in Proc. ACM SIGGRAPH Eurographics Symp.
Comput. Animat., 2009, pp. 177–187.

[13] C. Fulgenzi, A. Spalanzani, and C. Laugier, “Dynamic obstacle
avoidance in uncertain environment combining PVOs and occupancy
grid,” in Proc. IEEE Int. Conf. Robot. Autom., 2007, pp. 1610–1616.

[14] B. Kluge and E. Prassler, “Reflective navigation: Individual behaviors
and group behaviors,” in Proc. IEEE Int. Conf. Robot. Autom., 2004,
pp. 4172–4177.

[15] Y. Abe and M. Yoshiki, “Collision avoidance method for multiple
autonomous mobile agents by implicit cooperation,” in Proc. IEEE
RSJ Int. Conf. Intell. Robot. Syst., 2001, pp. 1207–1212.

[16] K. C. Ng and M. M. Trivedi, “A neuro-fuzzy controller for mobile
robot navigation and multirobot convoying,” IEEE T. Syst. Man Cyb.
B, vol. 28, no. 6, pp. 829–840, 1998.

[17] S. Carpin and L. E. Parker, “Cooperative motion coordination amidst
dynamic obstacles,” in Proc. Int. Symp. Distrib. Auton. Robot. Syst.,
2002, pp. 145–154.

[18] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
Univ. Pr., 2006.

[19] G. Welch and G. Bishop, “An introduction to the Kalman filter,” Univ.
N. Carolina Chapel Hill, Tech. Rep. 95-041, 1995.

[20] H. Kato and M. Billinghurst, “Marker tracking and HMD calibration
for a video-based augmented reality conferencing system,” in Proc.
IEEE ACM Int. Workshop Augment. Real., 1999, pp. 85–94.

[21] S. I. Roumeliotis and I. M. Rekleitis, “Propagation of uncertainty
in cooperative multirobot localization: Analysis and experimental
results,” Auton. Robot., vol. 17, pp. 41–54, 2004.

[22] J. van den Berg, S. Patil, J. Sewall, D. Manocha, and M. Lin,
“Interactive navigation of multiple agents in crowded environments,”
in Proc. Symp. Interact. 3D Graph. Game., 2008, pp. 139–147.

