
To appear in ACM TOG 30(6).

Interactive Hybrid Simulation of Large-Scale Traffic

Jason Sewall∗

Intel Corporation
David Wilkie† Ming C. Lin‡

University of North Carolina at Chapel Hill

(a) (b)

Figure 1: (a) Interactive 3D visualization of urban traffic; (b) Augmenting a satellite earth map of a metropolitan region with real-time
moving traffic consisting of tens of thousands of vehicles using our method.

Abstract

We present a novel, real-time algorithm for modeling large-scale,
realistic traffic using a hybrid model of both continuum and agent-
based methods for traffic simulation. We simulate individual vehi-
cles in regions of interest using state-of-the-art agent-based models
of driver behavior, and use a faster continuum model of traffic flow
in the remainder of the road network. Our key contributions are
efficient techniques for the dynamic coupling of discrete vehicle
simulation with the aggregated behavior of continuum techniques
for traffic simulation. We demonstrate the flexibility and scalabil-
ity of our interactive visual simulation technique on extensive road
networks using both real-world traffic data and synthetic scenar-
ios. These techniques demonstrate the applicability of hybrid tech-
niques to the efficient simulation of large-scale flows with complex
dynamics.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling I.6.8
[Simulation and Modeling]: Types of Simulation—Animation

Keywords: traffic, road networks, hyberbolic models

1 Introduction

Automobile traffic is ubiquitous in the modern world. Traffic simu-
lation techniques for animation, urban planning, and road network
design are of increasing interest and importance for analyzing road
usage in high-traffic urban environments and for interactive visual-
ization of virtual cityscapes and highway systems.

One of the hallmark applications of 3D graphics is VR flight
[Pausch et al. 1992] and driving simulators [Cremer et al. 1997;
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Donikian et al. 1999; MIT 2011; SUM 2009; Wang et al. 2005]
used for training. As today’s virtual environments have evolved
from the earlier single-user VR systems into online virtual globe
systems and open-world games (e.g. Grand Theft Auto), the need to
simulate large-scale complex traffic patterns — possibly informed
by real-time sensor data — has emerged. These new social, eco-
nomic, and environmental applications present huge computational
demands. Road networks in urban environments can be complex
and extensive, and traffic flows on these roads can be enormous,
making it a daunting task to model, simulate, and visualize at in-
teractive rates. This paper introduces a hybrid simulation technique
that combines the strengths of two broad and disparate classes of
traffic simulation to achieve flexible, interactive, and high-fidelity
simulation even on very large road networks.

Two classes of simulation techniques are most commonly used in
modeling traffic flows. Agent-based traffic simulations, also known
as microscopic methods, determine the motion of each vehicle in-
dividually through a series of rules. These rules are easy to vary on
a car-to-car basis; such simulation techniques are well-suited to in-
dividual vehicles with inhomogeneous governing behaviors. Con-
tinuum, or macroscopic, approaches describe the motion of many
vehicles with aggregated behavior; numerical methods are used to
solve partial differential equations (PDEs) that model large-scale
traffic flows. While agent-based simulation techniques can capture
individualistic vehicle behavior, continuum simulations maximize
efficiency. Our technique dynamically partitions the simulation do-
main between these two simulation methodologies to take advan-
tage of their complimentary features.

The resulting hybrid technique can automatically and dynamically
select the appropriate method based on user-specified application
needs, such as zooming in to a specific region, quickly browsing
through large metropolitan areas, maintaining constant simulation
rates, etc. We have developed techniques to integrate continuum
traffic simulation with agent-based vehicle simulators, enabling dis-
tinct regions of the road network to be handled by separate simu-
lation techniques without disrupting the flow of vehicles between
regions. We present techniques based on averaging as well as the
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Poisson process for handling the transition of vehicle representa-
tions between continuum and discrete simulation areas and discuss
how the constituent simulation components are adapted to handle
this conversion.

The technique we present has a number of attractive properties: ef-
ficiency — it offers a low-overhead trade-off between performance
and simulation fidelity, based on the application requirements; ver-
satility — it is applicable to both real-world and synthetic traffic
and road network data; and extensiblity — it is general and suit-
able for integrating a wide variety of models.

To demonstrate our method, we show a real-time visualization of
metropolitan-scale traffic flows on a urban scene and an augmented
aerial street map, such as those shown in Figure 1. We also vali-
date the simulation results using real-world traffic data with string-
distance metrics and analyze the performance of our technique on
modern architectures.

2 Related Work

Since the influential ‘boids’ model of [Reynolds 1987], there has
been interest in agent-based simulations and crowd dynamics, cov-
ering important sub-problems ranging from motion planning and
collision avoidance, to behavioral modeling (see the recent sur-
veys of [Pettré et al. 2008; Pelechano et al. 2008] for more detail).
There has been comparatively little investigation of vehicles and
traffic flows for visual simulation. Recently, [Sewall et al. 2010]
proposed a continuum simulation model for real-world traffic that
uses particle-like tracers for visual description of the traffic flow;
continuum formulations for crowd dynamics have been proposed
by [Treuille et al. 2006; Narain et al. 2009]. There has also been
renewed interest in synthesizing vehicle motion using algorithmic
robotics techniques [Go et al. 2005; Sewall et al. 2011].

In general, there are three broad classes of traffic simulation tech-
niques: the agent-based microscopic and continuum-based macro-
scopic techniques mentioned in Section 1, and the kinetic meso-
scopic techniques based on Boltzmann-like statistical mechanics.
Agent-based techniques were first introduced by the car-following
model of [Gerlough 1955]. Later work by [Newell 1961], [Al-
gers et al. 1997], and [Helbing 2001] incorporated more features
of traffic into the model. [Nagel and Schreckenberg 1992] describe
a method for agent-based traffic simulation using cellular automata.

Macroscopic simulation of traffic was initially developed inde-
pendently by [Lighthill and Whitham 1955] and [Richards 1956]
based on observed similarities between one-dimensional compress-
ible gas dynamics and the way traffic flows along a lane. The result-
ing so-called ‘LWR’ equation is a scalar, nonlinear partial differen-
tial equation describing the motion of traffic in terms of density,
i.e. ‘cars per car length’. Because the LWR equation is a scalar
equation for density, the velocity of traffic at any point is given by
an equation of state; traffic velocity is based solely on the traffic
density.

To achieve a more complete model of traffic where velocity does not
depend wholly on density, [Payne 1971] and [Whitham 1974] pro-
posed 2-variable systems of equations — later dubbed the ‘Payne-
Whitham’ model — based more directly on the Euler equations of
gas dynamics. This was later shown to have incorrect behavior by
[Daganzo 1995], who pointed out that the isotropy of gas dynamics
was not compatible with traffic dynamics.

More recently, [Aw and Rascle 2000] and [Zhang 2002] each pro-
posed 2-variable models of traffic flow with correct anisotropic be-
havior. [Lebacque et al. 2007] noted that these two models could

be unified through a change of variables, and dubbed the system the
‘Aw-Rascle-Zhang’ (ARZ) system of equations.

Traffic simulation presents unique challenges in acquiring and rep-
resenting simulation domains. One option is to use real-world road
networks; digital representations of real-world road networks are
widely available in the form of connected polylines. The forth-
coming work of [Wilkie et al. 2011] describes techniques for syn-
thesizing useful road networks from publicly-available GIS data.
On the other end of the spectrum, procedural modeling of virtual
cities and roads has been the subject of notable investigations in
computer graphics; recent work by [Galin et al. 2010] and [Chen
et al. 2008] has enabled the synthesis of detailed, realistic urban
layout and roads. Low-cost accessibility of such further enhances
the value of our work.

3 Method

In this section, we briefly discuss the data structures used in our
simulation and present a description of our hybrid simulation tech-
nique for real-time traffic visualization.

3.1 Road networks

Because our method visualizes the behavior of vehicles in both ur-
ban and rural settings, in lane-changing scenarios and intersection
crossings, we require detailed road network data as our domain.
We use a lane-based representation that works well for both agent-
based and continuum simulations.

Arc roads Although polylines are often used in digital networks
to represent road shapes, they can lead to visible artifacts in the
motion of vehicles along these roads. We use a representation based
on polylines with fitted circular arcs that is simple, efficient, and
allows for realistic, visually smooth vehicle motion. Arc roads are
described at length in the supplementary Appendix A.

3.2 Overview of simulation methodology

Our hybrid traffic simulation is both efficient and flexible, com-
bining the strengths of continuum and agent-based techniques. At
any given point in simulation, the road network consists of mutu-
ally exclusive regions of two types: one where we use a continuum
technique to describe vehicle movement and another where we use
a discrete, agent-based technique for simulation. These regions are
not necessarily connected nor static; we can pick either technique to
govern a given part of the traffic network based on observations, ap-
plication requirements, a user’s field of view, each car’s distance to
visual display, the current volume and velocity of traffic in the net-
work, or to enforce certain types of desired behaviors. Switching
between the two simulation models can be dynamic and automatic
based on specified governing criteria, similar to real-time graphical
rendering using geometric levels of detail.

The key component of our hybrid simulation technique is how the
two different types of simulations are coupled together; continuum
traffic expects a density-like quantity of cars per car length with a
velocity component, while discrete simulation is carried out with
the explicit position and velocity of each vehicle in the network.
We allow for an arbitrary number of interface points where the two
types of simulation must be coupled and vehicles under one type
of simulation must be transitioned into the other. This step is crit-
ical to ensure artifact-free, consistent transitions as vehicles cross
boundaries between two simulation models.
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Simulation components Our technique for describing the flow
of traffic requires a road network with suitably-defined boundary
conditions and an initial state for the vehicles in the network, which
can also be taken directly from live traffic data. We then proceed by
taking discrete time steps of varying length ∆t, wherein the state of
traffic is considered and integrated forward in time.

At a high level, the steps of our algorithm are as follows:

Step 1: Advance continuum regions:

(a) Determine the dynamics of traffic flow, also known
as flux, between each adjacent cell.

(b) Compute ∆t, the minimum stable timestep, us-
ing the maximum speed from each cell solution in
Step 1a.

(c) Integrate each cell using the fluxes from Step 1a and
∆t from Step 1b.

Step 2: Update flux capacitors (see Section 4.3.1) and add discrete
cars as needed.

Step 3: Advance agent-based regions (using the same ∆t com-
puted in Step 1b).

Step 4: Aggregate all discrete vehicles (Section 4.1) that flow into
a continuum region.

In other words, we separately advance the continuum and agent-
based simulations and manage the transition of vehicles between
the different simulation regimes. Below, we describe the basic sim-
ulation techniques used in Steps 1 and 3. Later, in Section 4, we
present our main contributions — techniques for converting be-
tween different types of simulation.

3.3 Continuum simulation

In continuum models of traffic simulation, each lane is divided into
discrete computational cells that represent the traffic. In the case of
the Aw-Rascle-Zhang (ARZ) system of equations, these cells store
the two conserved quantities in the vector q = [ρ, y]T, where ρ is
the density of traffic, i.e. “cars per car length”, and y the “relative
flow” of traffic. The solution is then advanced via explicit inte-
gration with the finite volume method (FVM); the cells themselves
typically cover anywhere from a few car lengths of road to ten or
more, depending on the details of the simulation.

The continuum components of the network are advanced in Step 1
before the agent-based simulation components are handled. This
is to ensure that the ∆t used in each component is the largest sta-
ble timestep achievable. The continuum simulation component has
more stringent stability requirements than the agent-based compo-
nent; by performing the continuum update prior to the agent-based,
we can use the ∆t computed in Step 1b in the later agent-based
update performed in Step 3.

More detail on continuum simulation techniques for traffic simu-
lation can be found in any of [Aw and Rascle 2000; Zhang 2002;
Sewall et al. 2010]; the results presented in this paper use the ARZ
model.

3.4 Agent-based simulation

The regions of our traffic network under the agent-based regime are
handled by a discrete ‘car-following’ method. Each vehicle’s posi-
tion and velocity is explicitly tracked and advanced at each simu-
lation step, and each chooses its acceleration based on the distance
to the vehicle ahead of it as well as their difference in velocity.

This acceleration is explicitly integrated into the vehicle’s velocity,
which is then integrated into position.

It should be noted that the details of the agent-based technique are
not particularly relevant to our hybrid coupling and instantiation
technique. As we show below, we only require that each discrete
vehicle have a position and (non-negative) velocity and that it de-
termine its velocity by the state of the vehicle ahead of it. Our
demonstrations in this paper use an extended version of the method
of [Treiber et al. 2000], considered to be a representative, mod-
ern approach to agent-based traffic simulation — our adaptation
of their technique additionally supports lane-changing, inhomoge-
neous driver models, and vehicle response to traffic signals, inter-
sections, and variable speed limits.

Lane changes are handled by first applying a behavior model that
determines if vehicles desire to change lanes, then determining if
such lane changes are safe, and finally transitioning the vehicle
between the lanes over a time interval. Driver behavioral models
vary across techniques; we have chosen a variety of parameters that
we modulate over different agents to effect a variety of drivers and
make a more realistic simulation.

4 Transitioning between continuum and
agent-based models

To take advantage of agent-based and continuum simulations, we
introduce a hybrid technique that allows a road network to be sim-
ulated with both simulation types; the network is partitioned into
multiple disjoint (and not necessarily connected) regions that cover
the domain. Each such region is governed by either agent-based
simulation or continuum simulation.

These regions in our simulation are dynamic; we can adaptively
change the shape of and the simulation method in a region as needed
to observe certain phenomena, meet performance requirements, or
to respond to user input. To achieve this, we must convert discrete
vehicles from agent-based simulation lanes into the aggregate for-
mat necessary for continuum simulation, and we must use the distri-
bution of density in continuum lanes to introduce discrete vehicles
for agent-based simulation.

Sections 4.1 and 4.2 establish the fundamentals of the conversion
process and describe how whole regions are converted from one
regime to the other. Later, in Section 4.3, we present how traffic
flowing from one type of region into another is handled.

4.1 Conversion of agent-based regions to continuum
through averaging

Vehicle support functions It is straightforward to compute a
continuum representation from a list of discrete vehicles; the qk =

[ρk, yk]T stored for continuum simulation are averaged quantities
for densities and relative flows of traffic. For each discrete vehi-
cle Ci with front-bumper position pi, length li, and velocity vi, we
define a boxcar-like support function as follows:

Si (x) = H (x− pi + li)−H (x− pi) (1)

where H (x) is the Heaviside function. The support of all n vehi-
cles is then given by the sum:

D (x) =

n−1X
0

Si(x) (2)

An exemplary plot of this function is depicted in Figure 2. Assume,
without loss of generality, that the continuum cells are uniformly
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Figure 2: The car support function D (x) for a series of cars with
front bumpers at x = 10, 16, and 30.

spaced by ∆x; then given n vehicles to discretize, the traffic density
ρk for each cell of the continuum is

ρk =
1

∆x

Z (k+1)∆x

k∆x

D (x) dx (3)

A weighted combination of such ρk along with the vehicles’ veloc-
ities can be used to similarly determine traffic velocity, uk and the
derived ‘relative velocity’ yk.

Averaging algorithm In practice, the qk can be computed in an
efficient manner — linear in the number of cars n — by iterating
over each vehicle Ci, i ∈ Z[0, n). For each i, we compute the
intersection of the nonzero portions of Si with the continuum grid
and apply Equation (3) and its analogues for velocity. So long as
∆x = Ω(li) ∀li, each vehicle will cover a constant number of grid
cells and the averaging process is O(n).

4.2 Conversion of continuum regions to agent-based
through Poisson instantiation

The process of initializing an agent-based region given a continuum
is more complicated than that described above. This is necessarily
so; while agent-based to continuum conversion effects a decrease
in information, the reverse requires us to increase the information
in the system. We propose a method inspired by the kinetic theory
of gases and Poisson processes that delivers suitable results while
remaining simple and efficient.

4.2.1 Poisson processes

The Poisson process is a well-known stochastic procedure used to
model occurrences (‘arrival times’) of independent events t0, t1,
t2, and so on. We use a Poisson-like process to determine the loca-
tion of discrete vehicles in a continuum region given the piecewise-
constant density cells ρk that comprise the unknowns in that region.
Rather than determining how discrete events are distributed in time,
we model where discrete vehicles are distributed in space — specif-
ically, how they are located along the 1-dimensional space of the
lane.

It can be shown [Devroye 1986] that the times between events ti,
ti+1 in a homogeneous Poisson process with rate λ satisfy an expo-
nential distribution with probability density function (PDF):

p(x) = λe−λx (4)

More precisely, Equation (4) gives the probability, for each x ∈
R[0,∞), that x = ti+1 − ti.

We can efficiently generate exponential random variables through
the inversion process; that is, we combine uniform random vari-
ables U with the inverted cumulative density function (CDF) of
the exponential distribution; setting this equal to a uniform random

variable U and solving for x, we get an exponentially-distributed
random variable:

− lnU

λ
= x (5)

4.2.2 Generating events in an inhomogeneous Poisson pro-
cess

To properly account for the continuum traffic density data ρk in the
lane, we would like to model an inhomogeneous Poisson process —
that is, where the λ in Equation (4) is no longer constant. Indeed,
we wish to have λ (x) = 1

l
ρ (x), where l reflects a representative

car length; this scaling converts ρ (x) from cars per car length to
cars per meter (i.e., to the spatial units of x).

To capture the variation in ρ that generally occurs in a continuum
lane, the distribution of the separation between successive events
is no longer described by Equation (4), but by the following PDF
reflecting the inhomogeneous case:

p (x) = λ (τ + x) e−(Λ(τ+x)−Λ(τ)) (6)

Here τ is the time of the last event and Λ (x) =
R x

0
λ(t) dt.

Cumulative density function To extend the technique presented
in Equation (5) for generating events in a homogeneous Poisson
processes to the inhomogeneous case, we compute the CDF to ob-
tain the following:

= 1− e−(Λ(τ+x)−Λ(τ)) (7)

Here we have assumed that lim
x→∞

Λ(x) =∞.

Inversion As with the homogeneous case, we invert the CDF to
achieve the formula for generating exponentially-distributed ran-
dom variables that match the given λ (x):

x = Λ−1 (Λ (τ)− lnU)− τ (8)

Recall that the above equation gives the separation time between
two events with the first occurring at τ ; in general, we will be more
interested in the actual time of the new event rather than this differ-
ence:

τi = Λ−1 (Λ (τi−1)− lnU) (9)

Observe that we can generate events in an inhomogeneous Pois-
son process with rate function λ (x) if we can compute Λ (x) and
Λ−1 (ν). For general λ (x), this may require numerical methods for
integration and inversion — computations that may be expensive
and prone to issues of numerical stability. In these cases, the thin-
ning method [Lewis and Shedler 1979] may be applied with suc-
cess; this technique uses a secondary rate function µ (x) > λ (x)
to which the above inversion process may be applied and then uses
a rejection-like process to select only the random variables that sat-
isfy the process with rate function λ (x).

Because our rate function λ (x) = 1
l
ρ (x) is actually given by

discrete cells’ traffic densities ρk, our rate function is piecewise-
constant — its integral Λ (x) and integral inverse Λ−1 (ν) are sim-
ple to compute. In Section 4.2.4, we give an efficient algorithm
for computing the positions of discrete vehicles given a continuum
region with a piecewise-constant density function ρ (x) = ρk; how-
ever, we first establish details of the integral and integral inverse of
a piecewise-constant function.
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4.2.3 Integral and inverted integral of continuum densities

We have a continuum region with n discrete cells qk =

[ρk, yk]T , k ∈ Z[0, n). Each cell is ∆x in length; then

Λ (s) =

Z s

0

1

l
ρ (t) ∆x

=
1

l
∆x

i−1X
k=0

ρk +
1

l

Z s

i∆x

ρ (t) ∆x

=
1

l

 
∆x

i−1X
k=0

ρk + ρi (s− i∆x)

!
(10)

where i = sup{j ∈ Z[0, n]|∆j < s}; i.e., the index of the cell
‘containing’ s (or one past the last grid cell, if s ≥ ∆n). We restrict
s ≥ 0 and define ρ(t) = 0 for t ≥ ∆xn, and also that ρn = 0. See
Figure 3 for a plot of λ (x) and Λ (x). We wish to use Equation (9)
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Figure 3: Plot of 1
l
ρk for a lane and its integral. Exponentially-

distributed random variables are mapped to the y-axis and used to
locate the x-value of an event (vehicle).

to generate events that correspond to the density ρ in a continuum
region, so we must invert Λ from Equation (10).

Asymptotic behavior Let us consider this Λ (x); in Equa-
tion (7), we assumed that lim

x→∞
Λ(x) = ∞. This is important be-

cause the argument to Λ−1 in Equation (9) takes its value in the
range (0,∞), so the domain of Λ−1 (ν) must match. However, for
our Λ (x) in Equation (10), lim

x→∞
Λ(x) = 1

l
∆x
Pn−1
k=0 ρk <∞, be-

cause each continuum lane has finite length and obviously contains
a finite number of vehicles. In our technique, when Λ (τ)− lnU >
1
l
∆x
Pn−1
k=0 ρk in Equation (9)1, we simply stop the instantiation

process; this is the termination condition.

Monotonicity Finally, while the Λ (x) in Equation (10) is mono-
tone (because 1

l
ρk ≥ 0 ∀k), it is not strictly increasing and Λ−1 (ν)

is not well defined in the traditional sense. However, given our ap-
plication, we may easily deal with this issue. A ‘flat’ spot on Λ (x)
corresponds to one or more adjacent cells i + 0, i + 1, . . . , i + m
(i,m ≥ 0 and i+m < n) where ρi = 0; conceptually, no vehicles
may be instantiated here. Whenever X =

˘
Λ−1 (ν)

¯
for any ν has

cardinality |X| > 1, we define x = sup X = ∆x (i+m+ 1).

1The quantity Λ (τ) − lnU is strictly increasing, and 1
l
∆x

Pn−1
k=0 ρk

is finite, so this must eventually occur for some τ

4.2.4 Discrete car instantiation algorithm

The process for generating discrete cars given n cells of density ρk,
k ∈ Z[0, n) with spacing ∆x is based on Equations (9) and (10);
given a previous vehicle position pi−1 and a uniformly distributed
random variable U , we add − lnU to the integrated rate Λ (pi−1)
and look up the x value of this sum in Λ−1; this gives us pi. When
we generate a value that has no value in the inverse integral Λ−1,
we have exceeded the length of the region and we are finished.
Our algorithm for this process is given in Algorithm 1; it is based

Algorithm 1 INSTANTIATE-VEHICLES

INSTANTIATE-VEHICLES(ρ[n],∆x)

// ρ[n] — an array of n density values,
// ∆x — the length of each grid cell

1 p = [ ]
2 Λlast, i , σ = 0
3 while true
4 U = UNIFORM-RANDOM-NUMBER((0, 1])
5 Λcand = Λlast − lnU
6 σcand = σ
7 while i < n and σcand + 1

l
ρ[i]∆x < Λcand

8 σcand = σcand + 1
l
ρ[i]∆x

9 i = i + 1

10 pcand = (Λcand−σcand)
1
l
ρ[i]

+ i∆x

11 if pcand > n∆x
12 return p
13 if pcand + l > p[−1]
14 Λlast = Λcand
15 σ = σcand
16 p = p + [pcand]

An algorithm for vehicle instantiation from continuum data

on several observations on the nature of Equations (9) and (10).
First, we note that the τ in Λ (τ) in Equation (9) is the argument to
Λ−1 from the previous event — Λ

`
Λ−1 (Λ (τi−1)− lnUi−1)

´
=

Λ (τi−1) − lnUi−1. Therefore, we never need to explicitly com-
pute Λ (τ); it was computed in the previous iteration. In the base
case, we know from Equation (10) that Λ (0) = 0. While the pro-
cess is expected to generate vehicles with spacing of at least l, it is
possible that the vehicle identified by pcand in line (10) overlaps the
previously instantiated vehicle. To prevent this, we use rejection
sampling (see lines 13–16).

Furthermore, we know that the instantiated vehicles have strictly in-
creasing x values. This is a general property of Poisson processes,
and it is readily confirmed by the fact that − lnU > 0 and that
Λ (τ) is monotone and nondecreasing. This simplifies the com-
putation of each Λ−1; we know that each Λlast will take its value
as i∆x < Λ−1 (Λlast), where i is the index of the grid cell the
last instantiation occurred in. Figure 4 shows the result of running
INSTANTIATE-VEHICLES on a continuum lane.

Analysis The performance of INSTANTIATE-VEHICLES is
O(n + k), where n is the number of grid cells in the continuum
region and k is the number of instantiated vehicles. The outer while
loop spanning lines 3–16 in Algorithm 1 is executed k times, and
the inner loop spanning lines 7–9 will iterate no more than n times
in the course of the entire execution of INSTANTIATE-VEHICLES.

It remains to bound the value of k for a call of
INSTANTIATE-VEHICLES; this is a randomized algorithm
and k may theoretically be arbitrarily large (although subject to
some upper bound based on floating-point arithmetic). We can
give a conservative estimate as follows: consider the case where
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Figure 4: The results of running INSTANTIATE-VEHICLES() on a
continuum lane; green vertical lines represent vehicle positions.

ρ[n] is such that ρ[i] = 1∀i ∈ Z[0, n) — clearly an upper
bound on any real continuum region. Then λ (τ) = 1

l
, and since

the expected value for a homogeneous exponential distribution
with rate parameter λ is 1

λ
, we average an instantiated vehicle

every l meters — bumper-to-bumper traffic that precisely matches
saturation of density. The total expected number of vehicles k is
then n∆x

l
, which itself is O(n). Given that the estimate for k we

have just developed is an upper bound, the expected runtime of
INSTANTIATE-VEHICLES is O(n).

4.3 Coupling

The continuum and agent-based simulations that occur on adjoin-
ing regions of a road network interact in two ways: vehicles passing
from one regime to another must be converted to the representation
used in the destination regime (akin to the processes described in
Sections 4.1 and 4.2), and the flow of traffic in each lane must in-
fluence the lanes that precede them.

We introduce ‘flux capacitors’ to convert continuum flow to discrete
agents in Section 4.3.1, and we describe how we adapt the car av-
eraging procedure from Section 4.1 to handle discrete vehicles that
flow into continuum regions in Section 4.3.2.

4.3.1 Flux capacitors

Given two adjacent cells in a continuum lane, we use methods de-
scribed in [Aw and Rascle 2000; Zhang 2002; Sewall et al. 2010] to
solve for the flow at the interface between two cells; when we do so,
we have computed the flux between the cells. When a continuum
lane flows into a discrete one, we first create a ‘virtual’ continuum
cell at the start of the agent-based lane using averaging (see Sec-
tion 4.1). Then we are able to use the standard flux computation
process on the last continuum cell and this virtual one; this flux can
now be used to convert density flowing out of the continuum region
into discrete vehicles entering the agent-based lane and simulta-
neously provide the proper dynamics for the incoming continuum
lane.

To instantiate vehicles due to this flux, we accumulate density until
a sufficient quantity has been retained that we may emit a vehicle
— we call this a flux capacitor. Formally, the accumulated density
ρcap at a flux capacitor increases by ∆ρcap during the time step from
ti−1 to ti as per the following:

∆ρcap =
1

l

Z ti+1

ti

ρ0(t)u0(t) dt (11)

where ρ0(t)u0(t) is the ρ-component of the flux of the intermedi-
ate state at time t, as computed by the solution of a continuum lane,

and l is vehicle length; this term is necessary to scale the integrand
from cars per car length (ρ) times meters per second (u) to cars per
second, or rate of traffic flow. Because we consider the intermedi-
ate state q0(t) = ρ0(t)u0(t) to be constant during a timestep, this
integral is trivial to evaluate.

4.3.2 Flow averaging

The above discussion on ‘flux capacitors’ describes how to trans-
late flow from a continuum region into discrete vehicles, and how
to account for the downstream (agent-based) region’s effect on the
upstream continuum region. Here we consider the converse: how
vehicles in discrete regions that flow into continuum regions may
be converted into the appropriate continuum quantities, and how
the state of this continuum region can be accounted for in the up-
stream (agent-based) region.

Transfer of discrete vehicles into continuum regions When
agent-based regions flow into continuum regions, one must con-
vert discrete vehicles into continuum data as they pass into the new
regime. We achieve this in a manner similar to our method for ac-
counting for discrete downstream vehicles’ effect on the outflow of
continuum regions (see Section 4.3.1).

A single ‘virtual’ grid cell at the end of the agent-based region is
filled according to the averaging procedure in Sec 4.1; this is then
used as the upstream boundary condition for the downstream lane’s
(continuum) flux computation.

When the motion of a vehicle carries it from a discrete region to a
continuum one, its discrete representation simply vanishes; the ve-
hicle is immediately accounted for in the continuum representation
and flux computation just described.

Finding leaders in continuum regions In agent-based simula-
tion, a vehicle’s motion is determined by the position and velocity
of the vehicle directly ahead of it — its leading vehicle. When en-
tering a downstream continuum region, a vehicle will have no such
leader; we must translate the continuum quantities into a suitable
position and velocity pair — a ‘virtual’ leading vehicle.

We use the vehicle instantiation procedure described in Section 4.2,
except that it now terminates after finding just one vehicle; this ve-
hicle’s velocity is determined by the continuum data at its location.

4.4 Region refinement criteria

Continuum techniques can efficiently handle both large and dense
areas of networks at the expense of being coarse-grained and not
precisely capturing individual vehicle behaviors, whereas agent-
based simulators are flexible and generally more computationally
costly than continuum techniques.

There are numerous criteria to consider when choosing which por-
tions of the network should be simulated with continuum or agent-
based techniques:

Visual and spatial For real-time visualization, we consider what
areas of the network are visible (via a view-frustum test or a more
conservative bound) and ensure that only agent-based simulation
is performed there — except for [Sewall et al. 2010], continuum
techniques do not admit a ready visual representation.

Performance Based on the performance needs of the simulation,
regions that are particularly expensive to compute in one regime
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can be converted to the other. More formally, every region can be
assigned an estimated computational cost of the form:

wT (r) = αT |r|+ βTC
r (12)

where r is a region, |r| the region’s length, and Cr the number
of vehicles in that region. αT and βT are weights associated with
the computational regimes T = {continuum, agent-based}. These
can be determined empirically during computation; based on what
we know of the two regimes, at least αcontinuum � βagent-based and
βagent-based � αcontinuum. Given a pair of weights wcontinuum(r) and
wagent-based(r) for each r and a computational ‘budget’, we can as-
sign and convert regions using an inexpensive partitioning scheme,
such as a greedy algorithm or polynomial approximation to the
makespan problem (for example, as in [Hochbaum and Shmoys
1987]).

Feature-capturing Another useful class of criteria for partition-
ing arises from the desire to capture specific features and types of
flow with a specific simulation technique. An example of this is
when one wishes to track the movement of a specific vehicle or
group of vehicles through the network. Because the continuum
regime aggregates vehicles, were a specific vehicle to be absorbed
into the continuum regime, either through the region conversion
process described in Section 4.1 or the transfer process described in
Section 4.3.2, the specific information associated with that vehicle
would be lost. Similarly, should we wish to capture the behavior of
heterogeneous vehicles, we must resort to the agent-based model,
which allows varied vehicle behavior.

To effect this, any regions containing such features must not be con-
verted, and furthermore, whenever such a feature of interest is about
to transition into a region governed by the other (unsuitable) regime,
that downstream region must be converted to the upstream regime.

Additionally, there are times when we wish to satisfy certain nu-
merical conditions governing the nature of the simulation itself.
For example, in the kinetic theory of gases, there is a dimension-
less quantity known as the Knudsen number that is used to classify
fluid behavior as a function of the fluid state itself and the scale of
observation. Precisely, the Knudsen number is given by

Kn =
λ

L
(13)

where λ is the mean free path of a particle and L the characteristic
length scale of the problem. The prevailing wisdom in gas simula-
tion is that continuum models are valid in the range Kn < 0.01,
statistical models are valid when Kn < 0.1, and discrete models
are valid at all scales; see [Hirschfelder et al. 1964] for details.

A rigorous investigation of the applicability of the Knudsen num-
ber to continuum traffic simulation has not been performed, but
should the user wish to ensure that the above scheme is satisfied,
it is straightforward to compute the Knudsen number for each lane
and force those that have too large a Knudsen number to use the
agent-based regime.

5 Results

5.1 Benchmarks

We have implemented our hybrid technique for interactive visual
simulation of large-scale traffic and demonstrate the following sce-
narios:

(a) A low-angle view

(b) A top-down view

Figure 5: A city scene filled with traffic simulated with our tech-
nique

Virtual downtown of a metropolitan area We have recreated a
‘virtual downtown’ based on the “The Grid” sequence in Godfrey
Reggio’s film Koyaanisqatsi [Reggio 1982]; a particular shot in this
film shows traffic moving along a busy city street, played back at a
greatly increased speed. The motion of the vehicles is punctuated
by the rhythmic cycling of traffic signals and cross-traffic emerg-
ing from behind the skyscrapers evenly spaced at each block. This
particular shot is located 52 minutes, 3 seconds into the theatrical
release of the film2. The supplemental video accompanying this
paper has video of similar traffic generated by our technique; a still
can be seen in Figure 1.

Augmented satellite street maps One impetus for this work
was to be able to interactively visualize real-world traffic simu-
lated using live traffic data to augment online virtual worlds, such
as Google Earth, Microsoft Virtual Earth, or Second Life, as well
as to enhance mobile geographic information systems, such as car
navigation systems for PDAs or on-vehicle GPS systems.

In Figure 1, we show example road networks used as simulation do-
mains for real-time visual simulations of metropolitan-scale traffic
— with tens of thousands of vehicles. The models illustrated here
were created using GIS data from the Open Street Maps project us-
ing the technique described in [Wilkie et al. 2011]. Our hybrid tech-
nique is able to recreate real-time traffic flows and individual vehi-
cle motion on complex, metropolitan-scale road networks, which
can then be visualized atop aerial imagery.

2For readers in most regions, this can be viewed on YouTube: http:
//www.youtube.com/watch?v=Sps6C9u7ras#t=0h52m03s
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Figures 6(a)–(d) and the corresponding sequence in the accompany-
ing video show dynamic region refinement based on the movement
of a ‘region of interest’ — a yellow rectangle. Typically, this re-
gion of interest would be the visible portion of the scene, allowing
our technique to perform simulation in the off-camera areas without
incurring the expense of agent-based simulation everywhere.

Although this concept of augmented street maps bears close resem-
blance to some features in the work by [Kim et al. 2009], their ap-
proach to augment aerial earth maps with traffic information re-
quires setting up many video cameras closely located on freeways
in order to reproduce the spatial extent and aerial coverage of traffic
visualization that we are able to recreate here. With our approach,
commonly available live traffic data from sparsely located cameras
or merely inexpensive in-road sensors (e.g. inductive loops) would
be sufficient to initialize our simulation method for real-time traffic
visualization. The two approaches are, however, complimentary;
our work could be easily integrated into their overall Augmented
Reality framework.

5.2 Performance

One of key objectives for this work is to facilitate the cooper-
ative use of disparate simulation strategies — agent-based and
continuum traffic simulation — in a traffic network for extensive
metropolitan areas. There are numerous reasons this is desirable:
continuum techniques have performance advantages over agent-
based simulations in many situations; their computational cost is
proportional to size of the network, not to the traffic therein. Fur-
thermore, the limited and regular memory access patterns of con-
tinuum algorithms are much more amenable to scalable parallelism
than those found in agent-based algorithms.

Figure 7 shows the performance of (single-thread) agent-based,
continuum, and hybrid simulations on a city road network for a va-
riety of vehicle densities. Pure continuum simulation outperforms
pure agent-based by 10–20x. Our hybrid scheme, in which a con-
stant portion the road network uses agent-based simulation and the
rest uses continuum-based, is 9–17x faster than pure agent-based.
These results were collected on an Intel R© CoreTM i7 980X proces-
sor running at 3.33GHz.

5.3 Validation using real-world data

It is useful to understand how the traffic motion produced by the
method described in this work compares to the motion of real-world
traffic. However, this comparison must be performed with deliber-
ation and care, as there are numerous subtleties at play. For more
detail on the validation experiments, data formats and sources, is-
sues involved, methodology, comparison strategies considered, and
evaluation on the effectiveness of our hybrid approach, please refer
to Appendix B. Below we summarize the results from our valida-
tion experiments using the data from the Next-Generation Simula-
tion (NGSIM) project by the Federal Highway Administration.

5.3.1 Comparison results

Agent-Based Overall, the agent-based simulation matches the
NGSIM data quite well; near the start of the simulation re-
gion, we expect all quantities to match because we are close
to the incoming boundary condition. ‘Detectors’ further down
the highway continue to match the vehicle count well, but it is
evident that the agent-based simulation technique which we
are using aggressively adjusts vehicles to their preferred ve-
locity. The final detector (x = 620; Figure 8) matches ve-
locity well as we approach the boundary condition, where the
outgoing velocity is set based on the leading vehicle from the

(a)

(b)

(c)

(d)

Figure 6: A sequence of images illustrating simulation region re-
finement. 6a: Initially, the whole road network is simulated with
agent-based techniques. 6b-6d: Later, only roads whose bounding
box intersects the yellow box are simulated with agent-based tech-
niques — continuum techniques are used elsewhere. The averaging
and instantiation methods of Sections 4.1 and 4.2 handle changes
due to the movement of the rectangle, while the coupling techniques
described in Section 4.3 seamlessly integrate the dynamics of dif-
ferent simulation regimes.
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Figure 7: Performance of all-continuum simulation, our hybrid
technique, and wholly agent-based simulation for various densities
on a road network with 2151 km of lanes

NGSIM data. We see some time shifts in features we identify
from the NGSIM data which can be attributed to the different
preceding velocity values.

Continuum The results of the continuum simulation are fluxes. As
with agent-based, we see good matches for the initial detec-
tors and drift accumulating further down the highway. How-
ever, despite shifts in overall magnitude and phase, the overall
patterns remain, showing that the primary features of the flow
are preserved — in particular, the trough in flux that occurs
around t = 800 is preserved.

Hybrid Because the final leg of the hybrid validation scheme is
agent-based, we have data for the number of cars, velocity,
and flux for the final detector (x = 620, Figure 8). Velocity
matches quite well as with the pure agent-based case due to
the outgoing boundary condition. The vehicle counts demon-
strate the same features as those found in the original NGSIM
data, albeit with slight variations in magnitude.

Sequence comparison Computing the number of vehicles and
average velocities for the real-world data and corresponding sim-
ulation results in comparable time-series data — numbers of cars,
average velocity, and flux. Examining these visually can be illumi-
nating, but a quantitative comparison of these data provides a more
rigorous measure. A standard infinity– or 2– norm might seem an
obvious choice, but these will rather harshly penalize noisy and
time-shifted data. As discussed in [Chen et al. 2005] and [Morse
and Patel 2007], suitably modified string-distance metrics, such
as longest common subsequence and edit distance, are very useful
when comparing time series.

As the name implies, given two sequences R and S — not neces-
sarily of the same length — longest common subsequence (LCSS)
reports the length of the largest subsequence they share. By nor-
malizing this subsequence length by the length of the shorter of R
and S, we can assign a ‘score’, or distance, to the similarity of the
two sequences. Numerous techniques fit into the aegis of edit dis-
tance; the common theme is scoring the similarity of R and S by
the ‘effort’ required to transform one to the other. Varieties of edit
distance are distinguished by how they define the weight of trans-
formations — [Chen et al. 2005] propose edit distance with real
penalties (EDR).
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Figure 8: Comparison between agent-based (micro) simulation,
continuum (macro) simulation, our hybrid simulation technique,
and real-world NGSIM data for the highway 101 domain. These
graphs show density, velocity, and flux recorded over 15-second in-
tervals centered around the times shown at a sensor near the end of
the highway (620m from the start).

These algorithms typically operate on sequences consisting of ele-
ments from a finite set — for example, Latin characters in a string.
When dealing with sequences of real numbers (velocity and flux
in this case), [Morse and Patel 2007] suggest identifying two real
numbers x ∈ R and y ∈ S as ‘equal’ when |x− y| < ε = σmin/2,
where σmin is the lesser of the standard deviations of R and S.

We propose to adopt and modify string-distance metrics, such as
LCSS and EDR, for comparing different simulation methods and
validating simulation results. For each of the simulation types
(agent-based, continuum, hybrid), we have compared the resulting
flux time series with the corresponding NGSIM data — see Table 1.
As the data in the x = 620 row shows, our simulation technique
only slightly decreases the score for agent-based simulation while
maintaining overall performance comparable to that of the contin-
uum methods.

6 Conclusion

We have presented a novel method to dynamically couple con-
tinuum and discrete methods for interactive simulation of large-
scale vehicle traffic for virtual worlds and augmented aerial maps.
Adopting these two disparate techniques simultaneously in differ-
ent regions allows for a flexible simulation framework where the
user can easily and automatically trade off quality and efficiency at
runtime. We have applied this technique to the simulation of large
networks of car traffic based on real-world data, as well as synthetic
urban settings, and achieved greater-than real-time performance.
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x metric agent-based continuum hybrid

429 flux LCSS 0.833 0.850
flux EDR 0.900 0.870

440 flux LCSS 0.783 0.850
flux EDR 0.858 0.862

474 flux LCSS 0.533 0.800
flux EDR 0.675 0.813

497 flux LCSS 0.533 0.800
flux EDR 0.700 0.813

542 flux LCSS 0.475 0.672
flux EDR 0.680 0.750

598 flux LCSS 0.836 0.607
flux EDR 0.877 0.710

620 flux LCSS 0.934 0.541 0.820
flux EDR 0.951 0.685 0.861

Table 1: Flux sequence comparison results for successive detection
points along the NGSIM 101 freeway. The final row shows that our
hybrid technique gives only a modest drop in comparison score with
the real-world data.

6.1 Extension to crowds and other phenomena

While we have only investigated how our coupling technique may
be applied to two models for simulating and visualizing traffic
flows, there are potential applications to other areas of simulation.

Other varieties of multi-agent simulation are particularly attractive
candidates for our hybrid technique. For hybrid crowd simulation,
there several important components that need to be developed —
first, an agent-free continuum simulation technique for crowds is
needed. This does not yet exist — the work of [Narain et al. 2009]
does solve for velocity in a continuum fashion, but their technique
uses discrete agents to provide goals. For coupling and instanti-
ation, a key component is a suitable statistical model expressing
distribution of discrete elements in the continuum model. The fact
that the domain is a 2D rather than a 1D one is not necessarily prob-
lematic; work in gas kinetics has dealt extensively with reconciling
particle and statistical models in multiple dimensions.

One issue that will require careful consideration is the stability of
transitions; while the traffic in a road in this method always moves
in a single direction — forward along the road — people in crowds
are free to move in many directions, which may include backtrack-
ing. This freedom in locomotion presents an issue wherein agents
can become ‘jittered’ between continuum and agent regions; forc-
ing regions to overlap by some amount and only performing transi-
tions where the overlap area meets a single region may be a reason-
able way to handle this situation.

6.2 Limitations

While we have emphasized the flexibility of this technique, it has
some limitations. In particular, because of the statistical nature of
the instantiation technique, quickly alternating the simulation type
of an area will likely result in incoherent vehicles — quantities and
distributions will be relatively stable, but actual positions will not.

Furthermore, this same instantiation stochasticity can result in ir-
regular leading distances and velocities when computing accelera-
tions for the leading vehicle for agent-based regions flowing into
continuum ones. For the agent-based models we have considered,
this has not been an issue, but for certain unstable acceleration com-
putations, it could require some further work.

This technique currently will perform well with a number of con-

stituent simulation types, continuum and agent-based, so long as
the continuum method can report density and velocity wherever it
is required and the agent-based vehicles have query-able positions
and velocities and compute their accelerations based on their lead-
ing vehicle. This sort of ‘car-following’ model is by far the most
prevalent, but it is conceivable that other types of models are de-
sirable; some modifications to the scheme presented here will be
necessary to accommodate them.

6.3 Future Work

This approach opens many other promising avenues for future
work. It would be an interesting exploration to use our technique for
real-time traffic prediction to examine how the behaviors of individ-
ual vehicles at the arterial street level affect overall traffic flow on
freeways. This could be used to calculate better routing for individ-
ual vehicles and more effective remediation for traffic congestion.

Furthermore, preliminary results have shown that aspects of the hy-
brid technique are highly parallel; we hope to develop our tech-
nique to effectively utilize today’s many-core parallel architectures
and tomorrow’s nascent parallel hardware.
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A Arc Roads

A.1 Preliminaries

We have an ordered sequence P of n points:

P := (p0, p1, . . . , pn−2, pn−1) (14)

These points define a (not necessary planar) polyline with n − 1
segments such as that in Figure 9a. Let us assume that there are no
two points adjacent in the sequence that are equal, and that there are
no three adjacent points that are colinear; clearly we can eliminate
these adjacent repeated points or the interior points in a colinear
sequence without modifying the line’s shape. We wish to ‘smooth’
this polyline to something like what is shown in Figure 9b, which
we shall refer to as PS . We construct PS by replacing the region
around each interior point pi, i ∈ Z [1, n− 2] of P with a circular
arc and retaining the exterior points p0 and pn−1.

Each of these circular arcs can be characterized by a center ci, ra-
dius ri, orientation oi, start radius direction si, and angle φi; see
Figure 10.

p0

p1

p2

p3

p4

(a) A polyline P

(b) PS : A ‘smoothed’ version of the polyline P

r1
c1

r2

c2

r3

c3

(c) The polyline P and the circles defining PS

Figure 9: Polylines

A.2 Construction of arc roads from polylines

A.2.1 Arc formulation

As mentioned above, each arc is defined by a center ci, a radius
ri, orientation oi, start radius vector si, and angle φi. Each arc i
corresponds to an interior point pi, and we require it to be tangent
to pi−1pi and pipi+1. See Figure 9c and Figure 10; the full circles
corresponding to each arc are shown.

Figure 10: Quantities defining an arc i corresponding to interior
point pi; the orientation vector oi is coming out of the page.

To help describe each arc i, we introduce the following quantities
derived from the polyline P :

vi = pi+1 − pi (15)

their lengths:

Li = |vi| (16)

and the associated unit vectors:

ni =
vi
Li

=
vi
|vi|

(17)

We shall frequently refer to −ni−1 =
pi−1−pi

|pi−1−pi| . We also refer to

the normal of the plane containing the circle:

oi = −ni−1 × ni (18)

At certain times, it is useful to construct a matrix Fi that is the
frame defined by ni, si, and oi:

Fi =
ˆ

ni si oi
˜

(19)

The matrix Hi representing the homogeneous transform of transla-
tion to the arc center ci along with the frame is defined as follows:

Hi =

»
ni si oi ci

0 1

–
(20)

Tangent points The projections of ci − pi onto −ni−1 and onto
ni have equal length αi; then the tangent points of the circle on
−vi−1 and vi are:

(ci − pi) proj − ni−1 + ci = −αini−1 + ci (21)
(ci − pi) proj ni + ci = αini + ci (22)

Radius vectors We are also interested in the (negative) radius
vectors from these points to the center ci:

r−i = −risi = ci − (−αni−1 + pi) = ci + (αni−1 − pi)
= rini−1 × oi (23)

r+
i = ci − (αni + pi) = rini × oi (24)

Obviously, since ni−1 and ni are perpendicular to oi (see Equa-
tion (18)),

˛̨
r−i
˛̨

=
˛̨
r+
i

˛̨
= ri.

12



To appear in ACM TOG 30(6).

The center The center ci can be determined by combining Equa-
tions (23), (24) and (21), (22):

ci = pi − αini−1 + r−i (25)

= pi + αini + r+
i (26)

We can also write ci in terms of the unit bisector bi:

ci = pi +
q
r2
i + α2

ibi (27)

Where bi is of course given by:

bi =
ni + ni−1

|ni − ni−1|
(28)

See Fig. 11 for a visual depiction of these quantities.

pi

−vi−1

−ni−1

vi
ni

bi

θi

θi

−αini−1

r−i

αini

r+
i

ci

π − θi
π − θi

Figure 11: The interior point pi with backward vector −vi−1 and
forward vector vi. bi is the unit bisector of these vectors

Angles From Figure 11, we know:

cosφi = r−i · r
+
i (29)

cos 2θi = −ni−1 · ni (30)

Combining Equations (29) and (30), we get the following equation
for the angle φi of each arc:

φi = 2 (π − θi)
= 2π − arccos−ni−1 · ni
= 2π − (arccos ni−1 · ni − π)

= π − arccos ni−1 · ni (31)

Relating ri and αi Say we are given a triple of points pi−1, pi,
pi+1 to which we wish to fit an arc. Of the quantities that character-
ize an arc listed in Section A.1, the orientation oi, angle φi depend
solely on the normals ni−1 and ni; see Equations (18) and (31).
The center ci and start radius vector si depend on these normals
and the radius ri.

To fit an arc to an interior point i, we must choose an appropriate ra-
dius to complete the definition. The obvious lower bound condition
is ri > 0; as upper bound, each radius depends on the geometry of
the triple of points about pi. To remain tangent to both pi−1pi and
pipi+1, we must be certain that the points of tangency −αini−1

and αini are on those segments. This translates to the following:

αi ≤ min {Li−1, Li} (32)

To put this limit in terms of ri, we need a formula relating ri, and
αi. From inspection of Fig. 11, we can see that:

ri = αi tan θi (33)

We know from trigonometry that

tan θ =

r
1− cos 2θ

1 + cos 2θ
(34)

We can combine Equation (33) with Equation (34) to obtain

ri = αi

r
1− cos 2θi
1 + cos 2θi

(35)

Finally, we can substitute Equation (30) into Equation (35), and
obtain

ri = αi

r
1− ni · −ni−1

1 + ni · −ni−1
= αi

r
1 + ni · ni−1

1− ni · ni−1
(36)

Then the limits on ri subject to the following:

ri ∈
„

0,min {Li−1, Li}
r

1 + ni · ni−1

1− ni · ni−1

–
A.2.2 Fitting the ri

In Section A.2.1, we developed the tools to compute an arc for each
interior point of a polyline P given a radius ri for each.

Given an arbitrary polyline P , it is desirable to automatically select
the ri to complete the definition of a smoothed polyline PS . A
reasonable goal is to pick the ri such that the quantity

min
i∈[1,n−2]

ri (37)

is maximal over all valid configurations of ri; this helps minimize
the ‘sharpness’ of each corner.

We must consider what values of ri are valid configurations. The
bounds on αi given in Equation (32) are valid for a given triple of
points, but when we are concerned with the αi for all of the interior
points of P , we must consider that the Li between interior points
pi−1 and pi are in contention, i.e.

αi + αi+1 ≤ Li (38)

where again we set α0 = αn−1 = 0.

Fitting algorithm We have a recursive algorithm for selecting
the ri for each arc given a polyline P that satisfies Equation (37).
Briefly, we iterate over all of the segments pipi+1, i ∈ [0, n − 2]
and consider how large a radius it is possible to assign to the arcs
i, i + 1 at either end of the segment i; we take the smallest such
segment (and associated radius) and assign this radius to the asso-
ciated arcs. This process is repeated until each interior point has
been assigned a radius value.

A key component of the algorithm is how we consider how large a
radius can be assigned to the arcs at either end of a segment i; we
wish to ‘balance’ the radii of the arcs at either end of the segments
such that ri = ri+1. This leads us to:

ri = ri+1 = αifi = αi+1fi+1 (39)

Where we have used Equation (36) and we introduce the conve-
nience

fi =

r
1 + ni · ni−1

1− ni · ni−1
(40)
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Combining Equations (39) and (38), we compute:

Li − αi ≥ αi+1 =
αifi
fi+1

Li − αi ≥
αifi
fi+1

Li ≥
αifi
fi+1

+ αi

Li ≥ αi
fi
fi+1

+ 1

Li ≥ αi
fi + fi+1

fi+1

Lifi+1

fi + fi+1
≥ αi (41)

This gives us (invoking Equation (38) again):

αi = min


Li−1 − αi−1,

Lifi+1

fi + fi+1

ff
(42)

αi+1 = min {Li+1 − αi+2, Li − αi} (43)

Since we naturally define α0 = αn = 0, Equation (42) is not con-
sidered when i = 0; nor is Equation (43) when i = n − 1. Algo-
rithm 2 gives pseudocode for this radius-balancing procedure. The

Algorithm 2 RADIUS-BALANCE

RADIUS-BALANCE(i)

1 αa = min
n
Li−1,

Lifi+1
fi+fi+1

o
2 αb = min {Li+1, Li − αa}
3 return αa, αb, max{fiαa, fi+1αb}
The RADIUS-BALANCE returns the radius that balances the radii

on either end segment i.

rest of the algorithm is given in detail in Algorithm 3; the procedure
ALPHA-ASSIGN is invoked with s = 0 and e = n− 1 (with A the
array of αi, with A[0] = A[n − 1] = 0); the ri are easily com-
puted after ALPHA-ASSIGN completes using Equation (36). Both
RADIUS-BALANCE and ALPHA-ASSIGN implicitly make use of
(but do not modify) quantities associated with the polyline P : Li
from Equation (16) and fi from Equation (40).

Optimality of radii-selection algorithm The algorithm de-
scribed above in Section A.2.2 aims to maximize Equation (37).
Here we informally demonstrate that the resulting assignment of
ri makes the value of Equation (37) as large as possible given the
shape of the input polyline P .

Consider that we have run ALPHA-ASSIGN on a polyline P . Now
consider the set of radii Rmin that have the smallest value of radius
rmin, namely:

ri = rmin, ∀i ∈ Rmin (44)
ri > rmin, ∀i ∈ [1, n− 2]/Rmin (45)

To increase the value of Equation (37), we must increase the value
of rmin — i.e increase ri, ∀i ∈ Rmin.

Now recall how ALPHA-ASSIGN works; each call examines the
unassigned A in its range and finds the largest radius that could
be assigned to each. Then the arc that has the smallest such
‘largest’ radius is assigned to. Thus the radii assigned (indirectly,
through the A[i]) in a call must be equal to or greater than that as-
signed in its caller, and so on up to the top-level call. Then we

Algorithm 3 ALPHA-ASSIGN

ALPHA-ASSIGN(A, s, e)

// A — array of n α values, s — start segment index,
// e — end segment index + 1

1 rmin, imin = ∞, e // Initialize min. radius, index of min. index
2 if s + 1 ≥ e // Return if interval is length zero
3 return
4 αb = min {Ls −A[s], Ls+1}
5 rcurrent = max{fsA[s], fs+1αb} // Radius at initial seg.
6 if rcurrent < rmin

7 rmin, imin = rcurrent, s
8 αlow, αhigh = A[s], αb

9 for i = s + 1 to e − 2 // Radii for internal seg..
10 αa, αb, rcurrent = RADIUS-BALANCE(i)
11 if rcurrent < rmin

12 rmin, imin = rcurrent, i
13 αlow, αhigh = αa , αb

14 αa = min {Le−2, Le−1 −A[e]}
15 rcurrent = max {fe−1αa, feA[e]} // Radius at final seg.
16 if rcurrent < rmin

17 rmin, imin = rcurrent, e − 1
18 αlow, αhigh = αa ,A[e]
19 A[imin] = αlow // Assign alphas at ends of selected segment
20 A[imin + 1] = αhigh

21 ALPHA-ASSIGN(A, s, imin) // Recur on lower segs
22 ALPHA-ASSIGN(A, imin + 1 , e) // Recur on higher segs

The ALPHA-ASSIGN procedure assigning radii based on a
polyline P

know that the value of the radius computed in the top-level call to
ALPHA-ASSIGN is rmin; to show that the computed rmin cannot be
improved upon, it is sufficient to show that the two arcs assigned to
(one if imin = s or e − 1) in the top-level call to ALPHA-ASSIGN
cannot have their radii increased.

Boundary case First consider the case where imin = s = 0
(since this the top-level invocation, s = 0). Then in Line 4 of
ALPHA-ASSIGN, we know we chose

αb = L0 −A[0] = L0 (46)

(recall that A[0] = 0). Otherwise, that would mean

L0 −A[0] = L0 > L1 (47)

This would lead to rcurrent having been assigned f1L1 at Line 5.
But then when i = 1 and we invoke RADIUS-BALANCE(1) on
Line 10, we know that

αa = min


L0,

L1f2

f1 + f2

ff
=

L1f2

f1 + f2
(48)

in Line 1 of RADIUS-BALANCE because f2/ (f1 + f2) < 1 and
L0 > L1 (from Equation (47)). Then we would have replaced
rcurrent = f1L1 from Line 5 with rcurrent = f1L1f2/ (f1 + f2)
at Line 11, and we would not have chosen imin = 0. Thus, by
contradiction, if imin = 0 in the first call to ALPHA-ASSIGN, we
know that A[1] = L0 and r1 = f1L0 = rmin.

So A[1] = α1 = L0 and rmin = r1 = f1L0; then the condition in
Equation (38) dictates that we cannot increase α1. Neither, in that
case, can we increase rmin. A similar argument can be made in the
case where imin = e− 1 = n− 2.
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General case We shall move on to demonstrating that when 0 <
imin < n− 2, neither of the assigned A[imin] and A[imin + 1] (nor
their associated radii) may be increased.

We shall do this by demonstrating that rimin = rimin+1 = rmin

and that A[imin] + A[imin + 1] = Limax ; then there is no way
to increase either of rimin or rimin+1 without decreasing the other,
and thus our rmin must hold.

Consider an i ∈ [1, n − 3] that is the imax from the top-level in-
vocation of ALPHA-ASSIGN; the associated αa and αb must have
been computed via RADIUS-BALANCE(i) on Line 10. We con-
tend that Line 1 in RADIUS-BALANCE(i) must have computed

αa = min
n
Li−1,

Lifi+1
fi+fi+1

o
=

Lifi+1
fi+fi+1

.

If it had not, then it would have computed αa = Li−1 and we
would know that

Li−1 <
Lifi+1

fi + fi+1
(49)

Furthermore, we know that RADIUS-BALANCE would have re-
turned some Q such that

rcurrent = Q ≥ fiLi−1 (50)

as computed on its Line 3. Now consider what the computation for
i− 1 must have looked like; if i > 1, then we have

αa = min


Li−2,

Li−1fi
fi−1 + fi

ff
(51)

αb = min {Li, Li−1 − αa} (52)

These equations are from Lines 1 and 2 of a call to
RADIUS-BALANCE (i− 1). We can combine Equations (49)
and (52) to deduce that αb = Li−1−αa, regardless of the value of
αa. Then, in Line 3, we would compute the radius for i− 1 to be

rcurrent = max {fi−1αa, fi (Li−1 − αa)} (53)

In fact, we know

fi−1αa ≤ fi (Li−1 − αa) (54)

because αa is given by Equation (51) — if αa =
Li−1fi

fi−1+fi
,

then we know by Equations (39) (42), and (43) that fi1αa =
fi (Li−1 − αa). On the other hand, if αa = Li−2, then by Equa-
tion (51), Li−2 ≤ Li−1fi

fi−1+fi
; thus Equation (54) must be true.

So we know that the radius computed in Equation (53) for i − 1
is fi (Li−1 − αa). Regardless of which value we select for αa in
Equation (51), this radius is obviously less than the Q from Equa-
tion (50) that we computed for the segment i that is supposed to
be imin. Thus choosing anything but αa =

Lifi+1
fi+fi+1

in Line 1 in
RADIUS-BALANCE(i) results in a contradiction.

In fact, this last discussion particularly demonstrated that contra-
diction under the assumption that i > 1. Having i = 1 (i = 0 was
already covered in our discussion of boundary cases above) results
in slightly different Equations (51) and (52), but the contradiction
develops on similar grounds.

On our way to show that rimin = rimin+1 = rmin and A[imin] +
A[imin + 1] = Limax (as we must do to demonstrate that
we cannot increase rmin), we have just showed that Line 1 in
RADIUS-BALANCE(i) computed αa =

Lifi+1
fi+fi+1

. When we com-
pute αb in Line 2 of RADIUS-BALANCE(i), we have

αb = min


Li+1, Li −

Lifi+1

fi + fi+1

ff
(55)

It is straightforward to show that Li+1 ≥ Li − Lifi+1
fi+fi+1

using

a process similar to the one just used to show αa =
Lifi+1
fi+fi+1

;
with that condition, clearly αimin + αimin+1 = Li and rimin =
fiminαimin = rimin+1 = fimin+1αimin+1 = rmin. Since nei-
ther αimin nor αimin+1 can be increased without decreasing the
other, and because the radii are equal in size, the minimum radius
computed in the top-level call to ALPHA-ASSIGN cannot be made
larger; it is the maximum value possible for Equation (37).

A.2.3 Length of a smoothed polyline

It is useful to consider the length of a smoothed polyline PS . This
will be the sum of the circumference of each arc ai plus the length
of the straight line segments connected consecutive arcs and the
segments connecting p0 to arc 1 and arc n− 2 to pn−1.

The length wi of an arc i given by the standard formula:

wi = 2πri
φi
2π

= riφi (56)

The length si of a segment connecting two consecutive arcs i and
i + 1 is simply the length of the original line from pi to pi+1 (Li)
minus the αi and αi+1 of arcs i and i+ 1:

si = |pi+1 − pi| − (αi+1 + αi) = Li − (αi+1 + αi) (57)

Defining α0 = αn−1 = 0 as usual, we can use Equation (57) for
the beginning/end segments as well.

For nondegenerate PS (i.e. with n > 2), we have:

L (PS) =

n−2X
i=1

riφi +

n−2X
i=0

si

=

n−2X
i=1

riφi +

n−2X
i=0

Li − (αi+1 − αi)

=

n−2X
i=1

riφi + L (P )−
n−2X
i=0

αi+1 −
n−2X
i=0

αi

= L (P ) +

n−2X
i=1

riφi −
n−1X
i=1

αi −
n−2X
i=0

αi

= L (P ) +

n−2X
i=1

riφi − 2

n−2X
i=1

αi − α0 − αn−1

= L (P ) +

n−2X
i=1

riφi − 2αi (58)

A.2.4 Offset polylines

So far, given a planar polyline P and an ri for each interior point
pi, we can compute the smoothed polyline PS by computing the
associated arcs for each interior point of P using the equations in
Section A.2.1; we can even compute the ri automatically in such
a way as to minimize curvature using the algorithm presented in
Section A.2.2.

Suppose that we wish to compute a new smoothed polyline P ′S that
has the property that at every point, the nearest point on PS is ex-
actly distance d away. That is, P ′S is ‘offset’ from PS to one side by
a signed distance d; see Fig. 12. We used the convention that d > 0
refers to a ‘right’ offset (the lower blue line in Fig. 12) and d < 0 to
a ‘left’ offset (the upper blue line in the same figure). The new arcs
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Figure 12: A ‘fattened’ smoothed polyline; the original smoothed
polyline PS as computed above is drawn in black. The blue lines
represent the same shape offset to either side by an equal distance.

i corresponding to P ′S (with signed offset d) can be derived from
PS by replacing each ri with ri + d.

We must also choose new endpoints p′0 and p′n−1 for this line; a
reasonable definition is use the plane of the first and last arcs to
choose a perpendicular suitable for placing these offset endpoints.

p′0 = p0 + d(n0 × o1) (59)

p′n−1 = pn−1 + d(nn−2 × on−1 (60)

A.2.5 Discrete approximations of smooth polylines

To visually depict a smoothed polyline PS , we may wish to com-
pute a discrete representation.

Polylines One obvious way to do this is by approximating the
shape by a series of lines — that is to say, a new polyline P ∗. See
Figure 13a. We must simply approximate each arc i with an se-
quence Γi of qi ∈ Z>1 points, and connect those points with lines.
Then the sequence of m = 2 +

Pn−2
i=1 qi points in P ∗ is simply:

P ∗S =
“
p0,Γ

0
1, . . . ,Γ

q1−1
1 , . . . ,Γ0

n−2, . . . ,Γ
qn−2−1
n−2 , pn−1

”
(61)

We generate each Γi by rotating and scaling the frame Fi (from
Equation (19)) of each arc incrementally and translating by the cen-
ter ci:

Γji = ci + riFi
h
cos tj , sin tj , 0

iT
, j ∈ Z[0, qi − 1] (62)

Here the tj are elements of a sequence
[0, φi/(qi − 1), 2φi/(qi − 1), . . . , φi] of length qi.

Triangle meshes A surface representation of a smoothed poly-
gon can be easily computed from a pair of offset polygons (com-
puted as in Sec. A.2.4). f Given a smoothed polygon PS and two
smooth polygons offset from PS , order the polygons by offset so
that we have a ‘left’ smoothed polygon P lS with a lesser offset than
the ‘right’ smoothed polygon P rS .

Now we can use any constrained triangulation technique to com-
pute a planar triangle mesh with P lS and P rS as the boundaries; see
Fig. 13b.

(a) P ∗: A polyline approximation of a smoothed polyline PS

(b) A triangle mesh approximation of a ‘fattened’ smoothed
polyline PS

Figure 13: Discrete approximations of smoothed polylines

B Validation Experiments and Issues

B.1 The NGSIM project

Despite the ubiquity of traffic in the real world, data collected for a
reasonable period of time with correspondingly large spatial scales
that are suitable for comparison with simulation techniques can be
difficult to find. In addition, it is challenging to set up sensors at
these extensive scales, and the problem is made all the more difficult
for the necessity of obtaining accurate and precise measurements.
Fortunately, reasonably high-quality data has been made available
by the Next-Generation Simulation project (NGSIM). This is a joint
project between the Federal Highway Administration and a num-
ber of partners created to provide useful data to serve the needs of
the simulation common. The data provided is per-vehicle trajec-
tory information for relatively short segments of major highways in
California.

Data format The NGSIM highway data is organized as a series of
time entries each specifying the position, the magnitude of velocity,
and the magnitude of acceleration of a given vehicle, among other
quantities. A unique identification number associated with each
frame is given to identify which vehicle the data describes. Curi-
ously, each frame also specifies the length and width of the vehicle,
as well as a discrete ‘type’ specifying if the vehicle is a motorcycle,
truck, or passenger car. For for the data sets we have examined,
these remained (blessedly) constant. Each frame also identifies a
discrete ‘lane number’ that the vehicle is traveling in.
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A B C
D

Figure 14: Section of Highway 101 near Los Angeles. The
black rectangle indicates the region where the NGSIM project has
recorded trajectories. The red lines (the interval AD) denote the
clipped region used in this comparison, while the blue lines (in-
terval BC) denote the macroscopic simulation region used in the
hybrid simulation test.

All data is given at 10 frames per second, and this is aligned glob-
ally — the position of each vehicle in the system is updated every

1
10th of a second of a global clock. The data for each highway is
broken up into several 15-minute intervals. Position information is
given in feet to a precision of three digits, while velocity and accel-
eration data is given to a precision of two digits.

Figure 14 shows the layout of a section of highway 101 near Los
Angeles.

Issues It is very useful to have the NGSIM data, although it
presents several challenges as well. First, from a validation stand-
point, a notion of the accuracy of the measurements in the data
would be useful. Unfortunately, no such estimate is given. Addi-
tionally, while the given spatial precision of three digits in feet is
more than enough, the frame rate of 10 frames per second is quite
poor for highway traffic.

Furthermore, the format of the acceleration and velocity data — as
scalar magnitudes rather than vector data — is somewhat limiting,
since vehicles changing lanes and merging have non-trivial velocity
and acceleration vectors.

Finally, while the black box in Figure 14 shows the region where
the NGSIM project recorded data, not all vehicle trajectories begin
or end where the box actually intersects the highway; some start as
much as 30 meters from the beginning of the highway. In order to
perform a meaningful comparison, it is necessary to clip all trajec-
tories to the smallest region of the highway where there is data for
all vehicles, which somewhat reduces the total amount of trajectory
data to work with.

B.2 Methodology

As discussed previously in Section B.1, there is real-world data
readily available for comparison with simulation techniques, albeit
with some deficiencies. Here, we discuss our approach to achiev-
ing a meaningful validation of the results of our technique and real-
world data.

Comparison strategies Numerous approaches to validation are
taken in the simulation community; these are often developed based
on the quality and completeness of real-world data with which
to form a comparison. Given a time series of real-world data
{η0, η1, η2, . . .}, the most straightforward approach is to initialize
the simulator with some initial condition {η0} and generate the sim-
ulated successor states {η′0 = η0, η

′
1, η
′
2, . . .}.

Such a simple scheme falls prey to a number of complications, rang-
ing from granularity and measurement error in the initial data set
to known deficiencies with the simulation technique. Additionally,

many classes of phenomena are highly chaotic — even small per-
turbations in the initial conditions are greatly magnified in succes-
sive time steps. Such phenomena is exceedingly difficult to directly
compare in a meaningful fashion.

Often, specific qualities of phenomena are tested; simple initial con-
ditions are chosen that are expected to evince certain characteristic
features of phenomena — for example, the ‘lid-driven cavity’ for
fluid dynamics described by [Burggraf 1966], or ‘arching’ behavior
in crowd dynamics (see [Guy et al. 2010]).

For agent simulation techniques, such as traffic or crowd simula-
tion, direct trajectory comparisons are usually not performed due
to the chaotic nature of the phenomena. Rather, comparisons of
averaged velocity and traffic volume over time are common, as
in [Treiber et al. 2000]. A cross-sectional region of the road is des-
ignated as a ‘detector’ and the number of vehicles crossing said re-
gion are counted along with their average velocities over a series of
non-overlapping time spans. It is also sometimes useful to measure
the total flux of vehicles — the product of the average velocities
for all vehicles and the total number of vehicles over an interval.
In fact, this is the only quantity that can be directly extracted from
macroscopic simulation.

Measuring effectiveness of coupling The hybrid technique
presented in this paper consists of both microscopic and macro-
scopic traffic simulation coupled together through a mechanism de-
scribed in Section 4.3.

The extent that the base simulation methods — microscopic and
macroscopic — are able to match the real-world data gives a base-
line for comparison. To gauge the effect of our algorithm on the
ability of the underlying simulation methods to match real-world
input, we have performed three separate simulations, each of which
is compared against the real-world data from NGSIM Project.

Microscopic Pure agent-based simulation is carried out on a sec-
tion of highway corresponding to the domain of the real-world
data — AD in Figure 14. Vehicles are introduced to the sim-
ulation according to the time in which they enter the corre-
sponding section of the real highway, with the appropriate
lane and velocity information. Detectors spaced along the
highway — as described above — record crossing times and
velocities for the simulated agents (vehicles), which are then
accumulated over short intervals.

Macroscopic The same area of highway used for agent-based sim-
ulation in the previous simulation is instead used for con-
tinuum simulation. Vehicles are introduced as densities and
velocities in the appropriate lanes according to the crossing
times. Similarly, detectors are employed to compare results
against real-world data. However, while agent-based and the
real-world trajectory data lend themselves to direct computa-
tion of vehicle crossings, the nature of macroscopic simula-
tion dictates that we measure the flux of vehicles across detec-
tors — that is, f = ρu. Averaged over intervals, this may be
meaningfully compared against the product of crossing densi-
ties and velocities from trajectory data.

Hybrid The highway segment used for the simulations above is
now divided into three segments — a microscopic region in-
cluding the incoming boundary, an adjacent macroscopic re-
gion that occupies the central potion of the highway segment,
and an abutting additional microscopic region that includes
the outgoing boundary — respectively, AB, BC, and CD
in Figure 14. Vehicles are introduced to the first region just
as in the microscopic simulation setup, and our hybrid tech-
nique converts vehicles into the neighboring macroscopic re-
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gion, where they eventually are converted back into discrete
vehicles in the succeeding microscopic region. A ‘detector’
in this final region records crossing times and velocities as in
the above microscopic setup.

Boundary conditions Simply supplying initial conditions to a
simulator is generally not sufficient if one hopes to achieve a mean-
ingful comparison; we must consider what forces outside the sim-
ulation are affecting it. The shape of the highway certainly has an
effect; thankfully this is fairly clear from the original data and easily
accommodated in the simulation techniques being examined.

Of larger concern is the traffic that is not present in the real-world
trajectory data; the NGSIM data provided is simply a snapshot of
real traffic on a highway — there is necessarily a beginning and an
end, and in particular, the leading vehicles in the provided data are
behaving according, to some extent, on the behavior of vehicles un-
known to us — vehicles that occupy the highway at the start of the
simulation, or vehicles further ‘down’ the highway than the domain
captures. It is important to somehow capture the effect of these ve-
hicles on the simulation; in both the agent-based and macroscopic
simulation techniques examined in this work, vehicles with unlim-
ited headway — no vehicles ahead of them — will simply accel-
erate until they reach their maximum velocity; generally, the speed
limit of the road.

To account for these unknown leading vehicles, we simply set the
velocity of the leading vehicle in each lane in the simulation (lead-
ing computational cells, in a macroscopic simulation) to the veloc-
ity of the leading vehicle of the corresponding lane in the real-world
data.
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