
Fast and Dynamically Stable Optimization-based Planning for
High-DOF Human-like Robots

Chonhyon Park and Dinesh Manocha
http://gamma.cs.unc.edu/ITOMP/ (Videos included)

Abstract— We present a novel optimization-based motion
planning algorithm for high degree-of-freedom (DOF) robots.
Our approach combines a multi-contact dynamics formulation
with optimization-based planning to compute collision-free,
smooth and dynamically stable trajectories. Our formulation is
general and can handle multiple simultaneous contacts and non-
planar surfaces. We highlight the performance of our algorithm
in simulated environments on human-like robots with tens of
DOFs.

I. INTRODUCTION

Over the last few years, robots with complex shapes and
a high number of controllable joints have been increasingly
used for various applications. These include highly artic-
ulated bipedal humanoid robots (e.g. HRP-41 robot with
34 DOFs, and Hubo II2, with 40 DOFs). This increased
complexity of the robots results in two major challenges
for motion planning: (1) the high number of degrees-of-
freedom (DOFs) increases the dimensionality of both the
configuration and the search spaces, thereby increasing the
cost of path computation; and (2) only a subset of possible
motion are dynamically stable due to the robot’s kinematics
and shape. As a result, it is a major challenge to efficiently
compute a collision-free trajectory for the robot that can
satisfy all stability and smoothness constraints.

There is considerable work on motion planning for high-
DOF robots. At a broad level, the previous work can be
classified into sample-based planners and optimization-based
planners. Sample-based planners, which are based on prob-
abilistic roadmaps [1] or rapidly-exploring random trees [2],
are relatively easy to implement and can compute collision-
free paths in high dimensions. Recent progress on sample-
based planner makes it possible to handle some constraints
such as path smoothness and dynamic stability [3], [4], [5].
However, it is relatively difficult to guarantee the quality of
the trajectories computed by sample-based planners. On the
other hand, optimization-based planners compute a trajectory
using a continuous formulation of the problem [6], [7], [8],
[9]. Different constraints can be formulated as part of the
optimization function for trajectory computation, including
path-smoothness constraints and collision checking with
static and dynamic obstacles.

One key task for motion planning is to ensure that the
robot’s motion resulting from the planned trajectory satisfies

Chonhyon Park and Dinesh Manocha are with the Department of
Computer Science, University of North Carolina at Chapel Hill. E-mail:
{chpark, dm}@cs.unc.edu.

1http://global.kawada.jp/mechatronics/hrp4.html
2http://hubolab.kaist.ac.kr/

the stability constraints. For example, the computed posture
should be statically stable, and the projection of the center
of mass of the robot should lie inside the foot-supported
polygon; similarly, the zero moment point (ZMP) should lie
inside the support polygon [10] for dynamic stability on a
flat plane. Some of the current algorithms plan a trajectory
that satisfies the ZMP constraint and derive the appropriate
hip or torso motion to compute a trajectory. However, the
resulting hip or torso motion is often jerky because it has to
compensate for the lower-limb motions [11]. In the general
case, a robot is dynamically stable when the forces and
torques acting on the robot maintain an equilibrium; Newton-
Euler equations can be used to compute those forces and
torques [12]. Since the contacts between the robot and the
obstacles exert forces on the robot, we need to compute
the appropriate forces (including their duration) from the
contacts as part of overall motion planning.

In this paper, we present an efficient optimization-based
planning algorithm to compute dynamically stable, smooth,
and collision-free robot motions for high-DOF robots. Our
planner minimizes the trajectory cost function, which is
composed of cost functions for dynamic stability, calculation
of a collision-free path, and path smoothness. We also
optimize the durations of the contacts along with the state of
the robot, which allows our algorithm to compute a stable
motion with multiple contacts. In order to accelerate the com-
putation, we use a hierarchical decomposition of a high-DOF
robot and compute the trajectory of low-DOF components
in a bottom-up manner. Based on the decomposition, we
incrementally compute the trajectory for each node in the
hierarchy. Moreover, the trajectories of all the components
planned during the prior state are treated as constraints in the
optimization formulation for the planning of the subsequent
components. We highlight the performance of this model on
robots with 20-40 DOFs on non-planar surfaces with multiple
contacts. Moreover, we observe considerable speedups over
prior optimization-based algorithms.

The rest of the paper is organized as follows. In Section II,
we survey related work in motion planning and compare
our approach with prior methods. We give an overview of
the background algorithms in Section III. In Section IV, we
present our planning algorithm, based on dynamic stability
constraints. Finally, we highlight our algorithm’s perfor-
mance in simulated environments in Section V.

II. RELATED WORK

In this section, we give a brief overview of prior work
on optimization-based motion planning and motion stability
constraints.

A. Optimization-based Motion Planning

The simplest trajectory smoothing algorithms use the
shortcut method to smoothen the motion trajectory. These
algorithms are used as a postprocess on computed collision-
free trajectories; they optimize adjacent pairs of configura-
tions along the computed trajectory, using local planning, to
compute smooth paths [13], [14].

Many techniques based on numerical optimization have
been proposed in the literature [15]. Khatib proposed the
use of potential fields for real-time obstacle avoidance [16].
This approach is extended using elastic strips [17] and
elastic bands [18] to compute minimum-energy paths using
gradient-descent methods. These methods use a collision-free
path as an initial trajectory approximation for the optimiza-
tion algorithm.

Some recent approaches, such as [6], [7], [19] and [8],
directly encode constraints (e.g. the requirement that the path
be collision-free and smooth) into the cost functions, then use
a numerical solver to compute a trajectory that satisfies all
the constraints; these approaches do not require the collision-
free initial trajectory, as is the case with prior numerical
techniques. Some of these techniques explicitly compute the
gradient [6], [19], while others do not [7], [8].

B. Motion Stability Constraints

Ensuring that the computed motion is stable is an im-
portant criterion in motion planning for high-DOF robots.
There is considerable work on the walking motion of bipedal
robots [11]; proper, stable walking motion is essential for
humanoid robots. In order to handle motion dynamics, the
stability constraint is formulated to maintain the equilibrium
among the forces and torques acting on the robot: inertia,
Coriolis, gravity, ground-reaction forces from contacts, etc.
In this section, we give an overview of the previous motion
planning approaches that achieve dynamic stability in their
computed motions and compare our algorithm with them.

The zero moment point (ZMP)-based methods compute
the projected ZMP in the support polygon based on the
assumption that contacts between the robot and the envi-
ronment happen only on a planar terrain. Furthermore, the
standard ZMP-based methods [20], [21], [22] first plan the
ZMP trajectory, then (in the case of humanoids) derive
the hip or torso motion that will satisfy that trajectory.
However, adjusting only hip or torso motion may not be
enough to achieve the desired ZMP trajectory, and it may
generate jerky motion [11]. The ZMP concept has been
extended to wrench space in order to compute motions on
non-planar terrains [23], [24]. The wrench-space approaches
check whether the sum of wrenches applied on the robot is
within the polyhedral convex cone of the convex wrench.
The wrenches can be computed even if contacts are placed
on different heights. This approach is limited: it can generate

motions only when the height of the center of mass (CoM) is
constant (due to the assumption used in the algorithm), and
it can generate jerky motion under certain circumstances.

Dalibard et al. [5] suggested an approach that first com-
putes a collision-free statically balanced path using sample-
based planning algorithms, then transforms the path using
small-space controllability of the robot based ZMP [5]. It is
a general method for collision-free motions, but still has the
limitations of ZMP.

Recently, many approaches have been proposed to include
contacts in their optimization formulation [25], [26]. The
optimization algorithm directly uses the contact forces and
the robot state as variables [27]. This direct optimization
generates smooth paths and does not have the limitations
of the prior approaches; however, the increased number
of optimization variables increases the complexity of the
computation and affects planning performance.

Contact-Invariant Optimization (CIO) [28] has been used
to generate visually-natural motion for character animation
using a simplified physics formulation. This approach op-
timizes contact variables using contact phases rather than
directly optimizing the individual contact forces. It reduces
the search space and accelerates the overall performance.
Later, CIO is applied to a compute physical lower-limb
motions of a humanoid model [29].

III. BACKGROUND

Our motion planner is built on the ITOMP optimization-
based framework [8] and use Contact-Invariant Optimization
(CIO) [28] to find a dynamically stable motion. In this
section, we give a brief overview of ITOMP and CIO.

A. ITOMP: Incremental Trajectory Optimization
ITOMP is a motion planning algorithm that computes

smooth, collision-free paths using optimization techniques.
A configuration of a robot q is determined by all the actuated
joints of the robot, as well as by the position and orientation
of the robot in the workspace. We denote the trajectory for a
robot as a function M(t) for t ∈ [0, T], where we assume that
we know the length of the trajectory T . M(t) is a discretized
trajectory composed of N + 2 waypoint configurations:
M(t) = {qI ,q1, ...,qN ,qG}, where qk is a trajectory
waypoint at time k

N+1T . qI and qG represent the given
initial and goal configurations, respectively. Given qI and
qG, ITOMP generates the initial trajectory by discretizing
the configurations along a curve that connect qI and qG
into N + 1 segments equally spaced in time.

ITOMP computes a smooth trajectory M(t) that connects
the initial and goal configurations of the robot by solv-
ing an optimization problem. The optimization algorithm
avoids collisions with obstacles using conservative bounds
while simultaneously satisfying other constraints. ITOMP
optimizes the positions of internal waypoints {q1, ...,qN}
by optimizing the following cost function:

min
q1,...,qN

N∑
k=1

(CObs(qk)+CSpec(qk)+‖qk−1−2qk+qk+1‖2),

(1)

where the cost terms CObs(·), and CSpec(·) represent the
obstacle cost and the problem-specific additional constraints,
respectively.

∑N
k=1 ‖qk−1 − 2qk + qk+1‖2 represents the

smoothness of the entire trajectory, which is computed by
the sum of squared accelerations along the trajectory.

The optimization problem in (1) computes a local or global
optimal trajectory of the robot configuration waypoints qi.
In order to improve robot’s responsiveness and safety in
dynamic environments, ITOMP uses a replanning approach
to compute collision-free paths amongst dynamic obstacles.
Using estimations of the trajectories of moving obstacles over
a short time horizon, ITOMP computes conservative bounds
on the position of the obstacles over a short time interval.

B. Contact-Invariant Optimization

In order to compute a physically correct, stable motion, the
intermittent contacts between the robot and the environment
during the motion trajectory should be planned. For example,
a simple walking motion for a humanoid robot requires
planning both when a foot is on the ground and when it
is not in contact with the ground, and this computation must
be performed for each foot. Some earlier approaches [20] use
pre-defined positions for footsteps to simplify the problem,
but this works only in limited cases where the footsteps are
uniform and symmetric.

We use the Contact-Invariant Optimization (CIO) ap-
proach. In this formulation, the robot has several potential
contact points (e.g. feet or hands), that can make contacts
with the obstacles in the environment. It is assumed that
both the robot links and obstacles are rigid, and that each
contact point has dry friction. In optimization-based plan-
ning, additional contact-related variables for the potential
contact points need to be optimized along with the trajectory
waypoints to determine when the corresponding contacts
exist in the computed trajectory.

The CIO approach introduces contact phases. Instead of
defining the contact-related variables as a trajectory with
N waypoint values, we can approximate the trajectory with
fewer P values, where P is the number of contact phases and
P < N . The trajectory of contact-related variables is defined
as al = {al1, ..., alP } for l-th potential contact point, and a
map ρ(k) = p is used to retrieve the corresponding contact
variable alp for a waypoint qk. This approach assumes that
the contacts are invariant in a contact phase. It reduces the
number of variables, alp, that are used during the optimization
algorithm. A large value of alp implies that the contact l must
be active during the phase p; for a small alp, the contact l
can be ignored.

For a waypoint qk, the CIO approach computes the
stability cost by using two sub-cost functions:

CStability(qk) = CPhysics(qk) + CContact(qk). (2)

CPhysics(·) represents the cost due to the violation of the
balance, and CContact(·) represents the cost of the violation
of contacts. The contact invariant cost CContact(·) is defined

as

CContact(qk) =

L∑
l=1

N∑
k=1

alρ(k)(‖e
l
k(qk)‖2 + ‖ċlk(qk)‖2),

(3)
where L is the total number of potential contact points, and
elk and ċlk are the contact-violation vector and the velocity
of the l-th contact point at a waypoint qk, respectively.
elk is a 4D vector that concatenates the 3D position and
normal angle differences between the l-th contact point and
the nearest point on an obstacle. Therefore, elk represents
the misalignment between the l-th potential contact point on
the robot and the nearest point on the environment in both
position and orientation. If alρ(k) is large, the misalignment
of the l-th contact makes the cost function very high, while
the misalignment of small alρ(k) does not result in significant
cost. ċlk for a large value of alρ(k) corresponds to slip of the
contact point.

The cost of CContact(qk) corresponds to the global min-
imum when all aρ(k) are zero. However, these cases are
prevented by the second cost term CPhysics(qk), which
represents the cost that penalizes for the violation of the
equilibrium of forces and torques. If the contact variables
aρ(k) have small values, it increases the cost of CPhysics(qk)
as described in Section IV-C.

IV. MOTION PLANNING WITH DYNAMIC STABILITY

In this section, we present the details of our approach that
computes a collision-free, smooth trajectory that maintains
the robot’s dynamic stability. We first present the trajectory
optimization function. Next, we introduce the underlying
physics-based formulation of the cost computation and de-
scribe the overall algorithm.

A. Optimization with Stability Cost

Based on the ITOMP cost function (1), our planning algo-
rithm uses CIO to compute a dynamically stable trajectory
for robots. Based on CIO, our new optimization formulation
is:

min
q1,...,qN ,
a1,...aP

N∑
k=1

(CObs(qk) + CStability(qk,aρ(k))

+‖qk−1 − 2qk + qk+1‖2),

(4)

where 1 ≤ ρ(k) ≤ P , and ai =
[
a1i , ..., a

L
i

]
, the vector of

contact variables of L potential contact points for phase i.
In our objective function (4), CStability(qk) is the stability
cost for the waypoint qk, which is defined in Equation (2).
Though [28] uses a simplified physics model to make ani-
mated characters move naturally, we compute CPhysics(qk)
accurately based on Newton-Euler equations.

B. Dynamic Stability Computation

A key issue in our formulation is computation of physics-
violation cost CPhysics(qk) for maintaining dynamic stabil-
ity (as shown in Equation (2)). We first describe our physics-
based formulation. Fig. 1(a) illustrates a high-DOF human-
like robot, which makes contacts with the ground plane

x

z

y

ΣR

w1
c

w2
c

wi

wg

pg

c1

c2

(a) Wrenches exert on the robot.

nl

cl

ol

tl

(b) Friction cone and ap-
proximating pyramid.

Fig. 1: A humanoid robot makes contacts c1 and c2 with the ground plane.
The gravity wrench wg and the inertia wrench wi are applied to the robot.
The contact wrenches w1

c and w2
c can have values in their friction cone.

The robot is stable when w1
c +w2

c +wg +wi = 0.

using its feet. Let ΣR be the global coordinate frame, J
be the number of links in the robot, and c1, ..., cL be the
positions of L contact points. There are several wrenches
(forces and torques) exerted on the robot. The robot is
dynamically stable when all wrenches on the robot constitute
an equilibrium [12].

1) Contact wrench : The sum of contact wrenches wl
c

applied to the robot from contact points cl with respect
to ΣR is given by

wc =

L∑
l=1

wl
c =

L∑
l=1

[
fl

rl × fl

]
, (5)

where fl is the contact force of cl and rl is the position
vector of cl in the frame ΣR. Coulomb’s friction law
stipulates that fl should be constrained in its friction
cone Fl to avoid any slipping motion. This constraint
can be formulated as:

f2lt + f2lo ≤ µf2ln, (6)

where
[
fln flt flo

]T
corresponds to fl, with respect

to the frame of cl, which is defined by the axes of the
contact normal nl, tl and ol that satisfy nl × tl = ol.
Our formulation of wc considers the contact normal
and the friction coefficient. This makes it general
enough for uneven ground surface, unlike prior ap-
proaches based on ZMP.

2) Gravity wrench : The gravity wrench wg is

wg =

[
Mg

pg ×Mg

]
, (7)

where pg is the center of mass (CoM) of the robot.
pg can be computed by

∑J
j=1mjpj/

∑J
j=1mj , where

mj and pj are the mass and the position of j-th link of
the robot in ΣR, respectively. Here g is

[
0 0 −g

]T
.

3) Inertia wrench : The inertia wrench wi can be written
as

wi =

[
M p̈g

pg ×M p̈g − L̇

]
, (8)

where L is the angular momentum of the robot with
respect to pg is defined as

L =

J∑
j=1

[mj(pj − pg)× ṗj + Ijωj] , (9)

where Ij and ωj are the inertia tensor and the angular
velocity of the j-th link of the robot, respectively.

The robot is dynamically stable when it satisfies

wc + wg + wi = 0. (10)

C. Computation of Physics Violation Cost

Next we describe the computation of the physics-violation
cost CPhysics(qk) in (2). First we formulate the combination
of contact forces, which can be defined as:

f = [fT1 , ..., f
T
L]T . (11)

Equation (5) can be represented as wc = Bf , where B is
the corresponding 6×3L matrix. Using this formulation, we
solve an inverse dynamics computation problem, which com-
putes f such that it satisfies the Coulomb friction constraints
of Equation (6):

f = arg min
f∗

(‖Bf∗ + wg + wi‖+ f∗TRf∗). (12)

The Coulomb friction constraint is usually converted to an
inequality constraints, using a pyramid to approximate a
friction cone Fi (shown in Fig. 1(b). The constraint for fi is
reduced to

− µfln ≤ flt ≤ µfln
− µfln ≤ flo ≤ µfln. (13)

In (12), we add the contact variable penalty term f∗TRf∗ as
it is used in [28]. It increases the difference between f from
(12) and the actual optimal force that satisfies (10), when
contact variable al is small for a large contact force fi. The
matrix R is a 3L × 3L diagonal matrix, and its diagonal
elements correspond to

Rjj =
k0

(alρ(k))
2 + k1

, (14)

where 3l− 2 < j < 3l. k0 and k1 are constants that control
the weight of the penalty cost.

The quadratic programming (QP) problem (12) can be
solved using a QP solver; the result value of f is used to
compute the CPhysics(qk), which is evaluated as

CPhysics(qk) = ‖B(qk)f + wg(qk) + wi(qk)‖. (15)

If there are more potential contact points on the robot (e.g.
hips), Equation (12) can compute the contact reaction forces
of all contact points, while Equation (3) generates penalty
forces for violation of contacts.

Robot DOFs
Contacts Iterations Planning

Time(s)
Trajectory

Smoothness
Benchmarks Mean (Std. Dev.)

Steps
(Fig. 2)

34
2

140.27
(22.667)

17.467
(3.325)

10.315
(2.975)

Obstacles
(Fig. 3)

34
2

68.11
(162.749)

10.213
(24.863)

5.626
(4.021)

Door
(Fig. 4)

34
3

35.64
(15.272)

4.404
(1.419)

4.419
(1.789)

Drawer
(Fig. 5)

34
3

73.954
(143.026)

13.054
(19.868)

0.579
(0.097)

TABLE I: Planning results for different benchmarks on a single CPU core.
We highlight the robot DOFs and the number of potential contact points with
the environment. We measure the means and the standard deviations for the
number of iterations in the numerical optimization process; the planning
time needed to compute the first collision-free solution; and the smoothness
of the trajectory for different benchmarks. The smoothness is computed by
the sum of joint accelerations at the trajectory waypoints for all active joints,
which means that trajectories with lower values are smoother.

V. RESULTS

In this section, we highlight the performance of our
planning algorithm in simulated environments. We have
implemented our algorithm in a simulator with a human-like
robot model which has 34 DOFs.

We highlight the results for motion planning in different
environments for the robot in Table I. We compute the
trajectories of the robot in two environments, where the
robot must move by walking from the initial configuration to
the goal configuration. We evaluate the performance in two
scenarios, where the robot needs to make contacts using its
hand with the environments. We measure three components
to evaluate the performance: the number of iterations in
the optimization routines; the planning time to find the first
collision-free and stable solution; and the smoothness of the
trajectory. The results, shown in Table I, are the averages and
standard deviations of 100 trials for each scenario. Videos
of these and other benchmark experiments can be found at
http://gamma.cs.unc.edu/ITOMP/.

We use hierarchical planning in our benchmarks to
improve the planning performance. Hierarchical plan-
ning is a divide-and-conquer approach that decomposes
a high-dimensional planning problem into several lower-
dimensional problems [30], [31]. We decompose a robot into
5 different components: a lower body, which includes legs
and pelvis; a torso; a head; a left arm; and a right arm,
then incrementally plan the trajectory of the robot using this
decomposition. In Fig. 2-5, different robot components used
in hierarchical planning are marked with different colors.

Parameter values used our experiments are: N (Number
of waypoints) = 100, P (Number of contact phases) = 5, k0,
k1 (Contact variable penalty terms) = 0.01, 0.001, r (local
displacement vector) = 0.1, T (length of the motion)=5.

Our first benchmark is planning a trajectory on an uneven
terrain. The height of the terrain varies such that the ZMP-
based methods may not be able to compute a dynami-
cally stable solution. The planners with stability constraints
compute the contact points between the robot’s feet and
the terrain, and place the robot feet on these points. This
generates a walking motion towards the goal configuration

13.29%

23.25%

23.76%

39.70%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Trajectory Update

Collision Cost Computation

Stability Cost Computation

Others

Fig. 6: Timing breakdown of an iteration of the trajectory optimization.

while satisfying the stability requirements. Fig. 2 shows the
trajectory computed by the dynamic stability constraint.

In our second benchmark, the environment consists of
several obstacles that the robot needs to avoid. We place
an obstacle on the ground that the robot cannot go around,
forcing it to pass over the obstacle. The trajectory computed
with the stability constraint is shown in Fig. 3. In the
computed trajectory, the robot does not collide with the
obstacles and passes over the obstacles on the ground.

In the next two benchmarks, we test our algorithm with
with scenarios where the robot makes additional contacts
with its right hand, while satisfying the stability constraints.
The robot exerts force on the objects in the environment
to perform manipulation tasks. In the third benchmark, the
robot pushes a door (Fig. 4) to reach a goal. The robot pulls
a drawer (Fig. 5) to move it to the desired position in the
last benchmark.

Fig. 6 highlights the timing breakdown of an iteration of
the trajectory computation. The percentage of time spent in
stability cost computation takes 23.2% of the total computa-
tion time.

Algorithms Collision
-aware

Dynamic
Stability

Uneven
Terrain

Smooth
Motion

Vertical
movement
of CoM

Physically
Correct
Model

ZMP-based [20], [21] 7 3 7 7 3 3
Stability Computation
in Wrench Space [23] 7 3 3 7 7 3

Transform from
Statically Balanced Path [5] 3 3 7 3 3 3

Contact-Invariant
Optimization [28] 3 3 3 3 3 7

Direct Contact Force
Optimization [27] 3 3 3 3 3 3

Our Approach 3 3 3 3 3 3

TABLE II: This table compares the feature of our motion planning with
dynamic stability algorithm with other approaches. Our approach can
handle all the constraints, similar to the direct contact force optimization
algorithm [27], but is an order of magnitude faster.

Comparisons: Our algorithm combines the CIO approach
and the wrench-space stability computation, integrating them
into a hierarchical optimization framework. Our approach
can compute smooth, physically-correct motions while effi-
ciently computing the motions and reactions resulting from
various contacts. Our approach is more than an order of mag-
nitude faster than the other planning algorithms described
above ([5], [28], [27]). At the same time, other planners
with close to real-time performance either do not perform
obstacle-aware motion planning or do not provide similar
guarantees on dynamic stability. Table II shows a summary
of the capabilities of the different algorithms.

Fig. 2: Snapshots of the computed trajectory planned across uneven terrain of varying heights. The proper footstep points are computed during the
optimization, and the entire walking motion trajectory is dynamically stable.

Fig. 3: Snapshots of the computed trajectory for the environment with obstacles. There is an obstacle between the initial position and the goal position
that the robot cannot detour around. The computed trajectory passes over the obstacle.

Fig. 4: We highlight the smooth and dynamic stable trajectory computed by our planner to perform the specific tasks. The robot uses multiple degrees of
freedom, including 14 DOF on the legs to move and 7 DOF on the arm to open the door.

Fig. 5: We highlight the high-DOF trajectory for the robot to perform the tasks for opening the drawer by our algorithm.

VI. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

We present a fast, dynamically stable, optimization-based
motion planning algorithm for high-DOF robots. We use
contact variables to compute dynamically stable motions.
The stability of the motion is computed in a wrench space,
and we compute the friction force that creates an equilibrium
between the forces exerted on the robot. Our formulation of
contacts is general and can handle multiple contacts simul-
taneously. We highlight the performance of our algorithm
using a human-like robot with 34 DOFs.

There are some limitations to our approach. Currently,
our approach (like the previous ITOMP [8] and CIO [28]
approaches) assumes a fixed length of motion. This length of
motion could be optimized in the future. Also, our formula-
tion uses discretized waypoints on the continuous trajectory
and the computation is only performed on the waypoints.
However, the error due to the small interval is small and can
be easily corrected with a real-time control approaches [11],
[22]. For a feasible trajectory computed by optimization-
based planner, a controller can be used to provide a feedback

according to the measured executed trajectory.
There are many avenues for future work. Recently, we

have extended our approach on more complex benchmarks
where multiple robots and obstacles exist [32]. Furthermore,
we would like to investigate other optimization techniques
to improve optimization performance.

VII. ACKNOWLEDGMENTS

This research is supported in part by ARO Contract
W911NF-10-1-0506, NSF awards 1000579, 1117127 and
1305286, and a grant from Sandia Labs.

REFERENCES

[1] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[2] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in Proceedings of IEEE International
Conference on Robotics and Automation, 2000, pp. 995 – 1001.

[3] M. Stilman, “Global manipulation planning in robot joint space with
task constraints,” Robotics, IEEE Transactions on, vol. 26, no. 3, pp.
576–584, 2010.

[4] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions a frame-
work for pose-constrained manipulation planning,” The International
Journal of Robotics Research, vol. 30, no. 12, pp. 1435–1460, 2011.

[5] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taıx, and J.-
P. Laumond, “Dynamic walking and whole-body motion planning for
humanoid robots: an integrated approach,” The International Journal
of Robotics Research, 2013.

[6] N. Ratliff, M. Zucker, J. A. D. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in
Proceedings of International Conference on Robotics and Automation,
2009, pp. 489–494.

[7] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,”
in Proceedings of IEEE International Conference on Robotics and
Automation, 2011, pp. 4569–4574.

[8] C. Park, J. Pan, and D. Manocha, “ITOMP: Incremental trajectory
optimization for real-time replanning in dynamic environments,” in
Proceedings of International Conference on Automated Planning and
Scheduling, 2012.

[9] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant
hamiltonian optimization for motion planning,” International Journal
of Robotics Research, 2012.

[10] M. Vukobratovic and D. Juricic, “Contribution to the synthesis of
biped gait,” IEEE Transactions on Biomedical Engineering, no. 1, pp.
1–6, 1969.

[11] Y. Xiang, J. S. Arora, and K. Abdel-Malek, “Physics-based modeling
and simulation of human walking: a review of optimization-based
and other approaches,” Structural and Multidisciplinary Optimization,
vol. 42, no. 1, pp. 1–23, 2010.

[12] J. C. Trinkle, J.-S. Pang, S. Sudarsky, and G. Lo, “On dynamic multi-
rigid-body contact problems with coulomb friction,” ZAMM-Journal
of Applied Mathematics and Mechanics, vol. 77, no. 4, pp. 267–279,
1997.

[13] P. Chen and Y. Hwang, “Sandros: a dynamic graph search algorithm
for motion planning,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 3, pp. 390–403, jun 1998.

[14] J. Pan, L. Zhang, and D. Manocha, “Collision-free and curvature-
continuous path smoothing in cluttered environments,” in Proceedings
of Robotics: Science and Systems, 2011.

[15] J. T. Betts, “Practical methods for optimal control and estimation using
nonlinear programming,” in Advances in design and control. Siam,
2001, vol. 3.

[16] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” International Journal on Robotics Research, vol. 5, no. 1, pp.
90–98, 1986.

[17] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” International Journal of Robotics
Research, vol. 21, no. 12, pp. 1031–1052, 2002.

[18] S. Quinlan and O. Khatib, “Elastic bands: connecting path planning
and control,” in Proceedings of IEEE International Conference on
Robotics and Automation, 1993, pp. 802–807 vol.2.

[19] A. Dragan, N. Ratliff, and S. Srinivasa, “Manipulation planning with
goal sets using constrained trajectory optimization,” in Proceedings
of IEEE International Conference on Robotics and Automation, 2011,
pp. 4582–4588.

[20] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi,
and K. Tanie, “Planning walking patterns for a biped robot,” IEEE
Transactions on Robotics and Automation, vol. 17, no. 3, pp. 280–
289, 2001.

[21] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE International Conference on
Robotics and Automation, 2003, pp. 1620–1626.

[22] L. Saab, O. E. Ramos, F. Keith, N. Mansard, P. Soueres, and
J. Fourquet, “Dynamic whole-body motion generation under rigid
contacts and other unilateral constraints,” Robotics, IEEE Transactions
on, vol. 29, no. 2, pp. 346–362, 2013.

[23] H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro,
K. Fujiwara, and M. Morisawa, “A universal stability criterion of
the foot contact of legged robots-adios zmp,” in IEEE International
Conference on Robotics and Automation, 2006, pp. 1976–1983.

[24] Y. Zheng, M. C. Lin, D. Manocha, A. H. Adiwahono, and C.-M. Chew,
“A walking pattern generator for biped robots on uneven terrains,” in

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on. IEEE, 2010, pp. 4483–4488.

[25] G. Schultz and K. Mombaur, “Modeling and optimal control of human-
like running,” Mechatronics, IEEE/ASME Transactions on, vol. 15,
no. 5, pp. 783–792, 2010.

[26] H. Dai and R. Tedrake, “Optimizing robust limit cycles for legged
locomotion on unknown terrain,” in IEEE Conference on Decision
and Control, 2012, pp. 1207–1213.

[27] M. Posa and R. Tedrake, “Direct trajectory optimization of rigid body
dynamical systems through contact,” in Algorithmic Foundations of
Robotics X. Springer, 2013, pp. 527–542.

[28] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, p. 43, 2012.

[29] I. Mordatch, J. M. Wang, E. Todorov, and V. Koltun, “Animating
human lower limbs using contact-invariant optimization,” ACM Trans-
actions on Graphics (TOG), vol. 32, no. 6, p. 203, 2013.

[30] O. Brock and L. E. Kavraki, “Decomposition-based motion planning:
a framework for real-time motion planning in high-dimensional con-
figuration spaces,” in IEEE International Conference on Robotics and
Automation, 2001, pp. 1469–1474.

[31] L. Zhang, J. Pan, and D. Manocha, “Motion planning of human-
like robots using constrained coordination,” in IEEE-RAS International
Conference on Humanoid Robots, 2009, pp. 188–195.

[32] C. Park and D. Manocha, “Smooth and dynamically stable naviga-
tion of multiple human-like robots,” in Algorithmic Foundations of
Robotics XI. Springer, 2014.

