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Abstract— We present a novel algorithm to compute collision-
free trajectories in dynamic environments. Our approach is
general and does not require a priori knowledge about the
obstacles or their motion. We use a replanning framework
that interleaves optimization-based planning with execution.
Furthermore, we describe a parallel formulation that exploits
a high number of cores on commodity graphics processors
(GPUs) to compute a high-quality path in a given time interval.
We derive bounds on how parallelization can improve the
responsiveness of the planner and the quality of the trajectory.

I. INTRODUCTION

Robots are increasingly used in dynamic or time-varying
environments. These scenarios are composed of moving
obstacles, and it is important to compute collision-free
trajectories for navigation or task planning. Some of the
applications include automated wheelchairs, manufacturing
tasks with robots retrieving parts from moving conveyors,
air and freeway traffic control, etc. The motion of the
obstacles can be unpredictable and new obstacles may be
introduced in the environment. As a result, we need to
develop appropriate algorithms for planning and executing
appropriate trajectories in such dynamic scenes.

There is extensive work on motion planning. Some of the
widely used techniques are based on sample-based planning,
though they are mostly limited to static environments. There
is recent work on extending sample-based planning tech-
niques to dynamic scenes by incorporating the notion of time
as an additional dimension in the configuration space [1],
[2], [3]. However, the resulting algorithms may not generate
smooth paths or handle dynamic constraints in real time.
Other techniques for dynamic environments are either limited
to local collision avoidance with the obstacles, or make some
assumptions about the motion of dynamic obstacles.

In this paper, we address the problem of collision-free tra-
jectory computation in dynamic scenes. In order to deal with
unpredictable environments, we use replanning algorithms
that interleave planning with execution [2], [4], [5], [6]. In
these cases, the robot may only compute partial or sub-
optimal plans in the given time interval. In order to generate
smooth paths and handle dynamic constraints, we combine
replanning techniques with optimization-based planning [7],
[8], [9].

We present a novel parallel optimization-based motion
planning algorithm for dynamic scenes. Our planning algo-
rithm optimizes multiple trajectories in parallel to explore

Chonhyon Park, Jia Pan and Dinesh Manocha are with the Department
of Computer Science, University of North Carolina at Chapel Hill. E-mail:
{chpark, panj, dm}@cs.unc.edu. The accompanying video
can be found at http://gamma.cs.unc.edu/ITOMP.

a broader subset of the configuration space and computes a
high-quality path. The parallelization improves the optimality
of the solution and makes it possible to compute a safe
solution for the robot in a shorter time interval. We map
our multiple trajectory optimization algorithm to many-core
GPUs (graphics processing units) and utilize their massively
parallel capabilities to achieve 20-30X speedup over serial
optimization-based planner. Furthermore, we derive bounds
on how parallelization improves the responsiveness and the
quality of the trajectory computed by our planner. We high-
light the performance of our parallel replanning algorithm
in the ROS simulation environment with a 7-DOF robot and
and human-like dynamic obstacles.

The rest of the paper is organized as follows. In Section 2,
we give a brief overview of prior work on motion planning
in dynamic environments and optimization-based planning.
We present an overview of optimization-based planning
and execution framework in Section 3. In Section 4, we
describe the parallel replanning algorithm and analyze its
responsiveness and quality in Section 5. We highlight its
performance in Section 6.

II. RELATED WORK

In this section, we give a brief overview of prior work
on motion planning in dynamic environments, optimization-
based planning and parallel algorithms for motion planning.

A. Motion Planning in Dynamic Environments

Many approaches for motion planning in dynamic envi-
ronments assume that the trajectories of moving objects are
known a priori. Some algorithms discretize the continuous
trajectory and model dynamic obstacles as static obstacles
within a short horizon [10]. Other techniques compute an
appropriate robot velocity that can avoid a collision with
moving obstacles during a short time step [11], [12]. The
state space for planning in a dynamic environment is given
as C × T , i.e., the Cartesian product of configuration space
and time. Some RRT variants can handle continuous state
space directly [6], while other methods discretize the state
space and use classic heuristic search [13], [14] or roadmap
based algorithms [15].

Some planning algorithms for dynamic environments [15],
[13] assume that the inertial constraints, such as acceleration
and torque limit, are not significant for the robot. Such
assumptions imply that the robot can stop and accelerate
instantaneously, which may not be feasible for physical
robots. Moreover, these algorithms attempt to find a good
solution for path planning before robot execution starts. In



many scenarios, the planning computation can be expensive.
As a result, path planning before execution strategy can lead
to long delays during the robot’s movement and may cause
collisions for robots operating in environments with fast
dynamic obstacles. One solution to overcome these problems
is based on real-time replanning, which interleaves planning
with execution so that the robot may only compute partial
or sub-optimal plans for execution to avoid collisions. Dif-
ferent algorithms can be used as the underlying planners in
the real-time replanning framework, including sample-based
planners [2], [4], [6] or search-based methods [5], [16]. Most
replanning algorithms use fixed time steps when interleaving
between planning and execution [6]. Some recent work [2]
computes the interleaving timing step in an adaptive manner
to balance between safety, responsiveness, and completeness
of the overall system.

B. Optimization-based planning

Optimization techniques can be used to compute a robot
trajectory that is optimal under some specific metrics (e.g.,
smoothness or length) and that also satisfies various con-
straints (e.g., collision-free and dynamics constraints). Some
algorithms assume that a collision-free trajectory is given
and it can be refined or smoothened using optimization
techniques. These include ’shortcut’ heuristic [17], elastic
bands or elastic strips planning [18], [19]. Other algorithms
relax the assumptions about the initial path and may start
with an in-collision path. Some recent approaches, such
as [7], [8], [20], directly encode the collision-free constraints
using a global potential field and compute a collision-
free trajectory for robot execution. These methods typically
represent various constraints (smoothness, torque, etc.) as
soft constraints in terms of additional penalty terms to the
objective function. In case the underlying robot has to satisfy
hard constraints, e.g., dynamic constraints needed to maintain
the balance for humanoid robots, the trajectory computation
problem is solved using constrained optimization [21], [22]
and this computation tends to be expensive for realtime
applications.

C. Parallel Algorithms

Due to the rapid advances in multi-core and many-core
commodity processors, designing efficient parallel planning
algorithms that can benefit from their computational capa-
bilities is an important topic in robotics. Many parallel algo-
rithms have been proposed for motion planning by utilizing
the properties of configuration space [23]. Moreover, tech-
niques based on distributed representation [2] can be easily
parallelized. In order to deal with very high-dimensional or
challenging scenarios, distributed sample-based techniques
have also been proposed [24], [25], [26].

The rasterization capabilities of a GPU can be used for
real-time motion planning of low DOF robots [27] or for im-
proving the sample generation in narrow passages [28]. Re-
cently, the GPUs have been exploited to accelerate sampling-
based motion planners in high-dimensional spaces, includ-

ing sample-based planning [29], RRT algorithms [30], and
search-based planning [31].

III. OVERVIEW

Our real-time replanning algorithm is based on
optimization-based planning and uses parallel techniques to
handle arbitrary dynamic environments. In this section, we
describe the underlying framework for optimization-based
planning and give an overview of our planning and execution
framework.

A. Optimization-based Planning

Traditionally, the goal of motion planning is to find a
collision-free trajectory between the start configuration and
the goal configuration. Optimization-based planning reduces
trajectory computation to an optimization problem that min-
imizes the costs corresponding to collision-free, smoothness,
and dynamics constraints. Specifically, the start configuration
vector qstart and the goal configuration vector qend are
defined in the configuration space C of a robot. In this case,
the dimension D of C is equal to the number of free joints in
the robot. There may be several static and dynamic obstacles
in the environment corresponding to rigid bodies. We assume
that a solution trajectory has a fixed time duration T , and
discretize it into N (excluding the two endpoints qstart and
qend) waypoints equally spaced in time. The trajectory can
be also represented as a vector Q ∈ RD·N :

Q = [qT1 ,q
T
2 , ...,q

T
N ]T . (1)

Similarly to the previous work [8], [7], [9], we define the
objective function of our optimization problem as:

min
q1,...,qN

N∑
i=1

(cs(qi) + cd(qi) + co(qi)) +
1

2
‖AQ‖2, (2)

where the three cost terms cs(·), cd(·), and co(·) represent
the static obstacle cost, dynamic obstacle cost, and the
problem specific additional constraints, respectively. ‖AQ‖2
represents the smoothness cost which is computed by the
sum of squared accelerations along the trajectory, using
the same matrix A proposed by Ratliff et al. [8]. The
solution to the optimization problem in (2) corresponds to the
optimal trajectory of the robot. Our algorithm ensures that the
costs corresponding to cs(·), cd(·), and co(·) are larger than
1
2‖AQ‖2, if they are nonzero, i.e., the costs corresponding
to collision-free trajectories are smaller than the costs of any
trajectories that have collisions with obstacles, regardless of
the trajectory smoothness.

In order to compute static and dynamic obstacle costs,
we use the signed Euclidean Distance Transform (EDT) and
geometric collision detection. As in previous work by Ratliff
et al [8], we divide the workspace into a 3D voxel grid
and precompute the distance to the boundary of the nearest
static obstacle with each voxel. Moreover, we approximate
the robot’s shape B by using a set of overlapping spheres
b ∈ B. In this case, the static obstacle cost for a configuration



qi can be computed by table lookup in the voxel map as
follows:

cs(qi) =
∑
b∈B

max(ε+ rb − d(xb), 0)‖ẋb‖, (3)

where rb is the radius of one sphere b, xb is the 3D point
of sphere b computed from the kinematic model of the robot
at configuration qi, d(x) is the signed EDT for a 3D point
x, and ε is a small safety margin between robot and the
obstacles.

EDT can be efficiently used to compute the cost of static
obstacles, since it requires only a simple table lookup after
one-time initialization. However, using EDT for dynamic
obstacles requires recomputation of EDT during each step,
which can be expensive. Therefore, we use geometric colli-
sion detection between the robot and dynamic obstacles to
formulate the cost function for dynamic obstacles. Object-
space collision detection algorithms based on bounding-
volume hierarchies [32] are used to compute the dynamic
obstacle cost efficiently.

In real-world applications, we cannot make assumptions
about the future motion or trajectory of the obstacles. We
can only locally estimate the trajectory based on sensor data.
In order to guarantee the safety of the planned trajectory in
a local time interval, we compute a conservative local bound
on the trajectories of dynamic obstacles and use them for the
collision detection. They are computed based on computing
a conservative bound on the swept volume of the objects
along the estimated trajectory. The allowed sensing error is
considered to determine the size of bounds. The conservative
bound for an obstacle Od for the time interval [t0, t1] is
computed as:

O
d
([t0, t1]) =

⋃
t∈[t0,t1]

c(1 + es · t)Od(t), (4)

where es is the maximum allowed sensing error. As the sens-
ing error increases, the bound becomes more conservative.
When an obstacle has a constant velocity, it is guaranteed that
the conservative bound includes the obstacle corresponding
to c = 1. However, if an obstacle changes its velocity, we
have to use a larger value of c in our conservative bound.
The bound can be guaranteed to include the obstacle if we
know the maximum acceleration of the obstacle.

B. Planning and Execution Framework

In order to improve the responsiveness of the robot in
dynamic environments, we use a replanning approach that
was previously used for sampling-based motion planning [4],
[2]. Instead of planning and executing the entire trajectory at
once, this formulation interleaves the planning and execution
threads within a small time interval ∆t. This approach allows
us compute new estimates on the local trajectory of the
obstacles based on the most current sensor information.
The time interval ∆t can be changed adaptively according
to replanning performance [2]. During each planning step,
we compute an estimate of the position and velocity of
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Fig. 1: Multiple trajectories that arise in the optimization-
based motion planning. The coordinate system shows how
the configuration space changes over time as the dynamic
obstacles move over time: each plane slice represents the
configuration space at time t. In the environment, there are
three C-obstacles: the two static obstacles COs1, COs2 and
the dynamic obstacle COd. The planned trajectories start
at time 0, stop at time T , and are represented by a set
of way points qstart, q1, ..., qk, ..., qN , qend. The three
trajectories for the time interval I = [t0, t1] are generated
with different random seeds and represent different solutions
to the planner in these configurations corresponding to the
dynamic obstacles.

dynamic obstacles using the senor data. Next, a conservative
bound on dynamic obstacles during the local time interval is
computed using these values, and the planner uses this bound
to compute the cost for dynamic obstacles. This cost is only
used during the time interval ∆t, as the predicted positions of
dynamic obstacles may not be valid over a long time horizon.
This bound guarantees the safety of the trajectory during the
planning interval; however the size of the bound increases
as the planning interval increases. Large conservative bounds
make it hard for the planner to compute a solution in the
given time or they result in a less optimal solution because of
the time constraints. Hence, it is important to choose a short
time interval to improve the responsiveness of the robot. Our
goal is to exploit the parallelism in commodity processors
to improve the efficiency of the optimization-based planner.
This parallelism results in two benefits:
• The faster computation allows us to use shorter time

intervals, which can improve the responsiveness and
safety for robots working in fast changing environments.

• Based on parallel threads, we can try to compute mul-
tiple trajectories corresponding to different seed values,
and thereby explore a broader configuration space to
compute a more optimal solution, as illustrated in Fig. 1.

IV. PARALLEL REPLANNING

Nowadays, all commodity processors have multiple cores.
Even some of the robot systems are equipped with multi-core
CPU processors (e.g. Quad-Core i7 Xeon Processors in PR2
robot). Furthermore, these robot systems provide expansibil-
ity in terms of using many-core accelerators, such as graphics
processing units (GPUs). These many-core accelerators are
massively parallel processors, which offer a very high peak
performance (e.g. up to 3 TFLOP/s on NVIDIA Kepler
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Fig. 2: The overall architecture of our parallel replanning
algorithm. The planner consists of four individual modules
(scheduler, motion planner, robot controller, sensor data col-
lection), each of which runs as a separate thread. When the
motion planning module receives a planning request from the
scheduler, it launches optimization of multiple trajectories in
parallel.

GPU). Our goal is to exploit the computational capabilities of
these commodity parallel processors for optimization-based
planners and real-time replanning in dynamic scenes. In this
section, we present a new parallel algorithm to solve the
optimization problem highlighted in in (2).

Our parallel replanning algorithm is based on the stochas-
tic optimization solver introduced by [7] to solve (2). The
solver is a derivative-free method which allows us to plan
trajectories in dynamic environments where derivatives for
the cost of dynamic obstacles are not available. We paral-
lelize our algorithm in two ways. First, we parallelize the
optimization of a single trajectory by parallelizing each step
of optimization using multiple threads on a GPU (Fig. 4).
Second, we parallelize the optimization of multiple trajec-
tories by using different initial seed values. Since it is a
randomized algorithm, the solver may converge to different
local minima, and the running time of the solver also varies
based on the initial seed values. In practice, such paralleliza-
tion can improve the responsiveness and the quality of the
resulting trajectory.

In this section, we describe our parallel replanning algo-
rithm, which exploits multiple cores. First we present the
framework of the parallel replanning pipeline with multiple
trajectories. We also present the GPU-based algorithm for
single trajectory optimization.

A. Parallelized Replanning with Multiple Trajectories

As shown in Fig. 2, our algorithm consists of several
modules: scheduler, motion planner, robot controller and sen-
sor data collection. The scheduler sends a planning request
to the motion planner when it gets new goal information.
The motion planner starts optimizing multiple trajectories in
parallel. When the motion planner computes a new trajectory
which is safe for the given time interval ∆t, the scheduler
sends the trajectory to the robot controller to execute the
trajectory. While the robot controller executes the trajec-
tory, the scheduler requests planning of the next execution
interval from the motion planner. The motion planner also
gets updated environment descriptions from the sensors and
utilizes them to derive bounds on the trajectories of dynamic
obstacles during the next time interval. Since all modules run
in separate threads, each module does not need to wait on
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Fig. 3: The timeline of interleaving planning and execution in
parallel replanning. In this figure, we assume the number of
trajectories computed by parallel optimization algorithm as
four. At time t0, the planner starts planning for time interval
[t1, t2], during the time budget [t0, t1]. It finds a solution by
trying to optimize four trajectories in parallel. At time t1, the
planner is interrupted and returns the result corresponding to
the best trajectory to scheduler module. Then the scheduler
module executes the trajectory.

other modules and can work concurrently.
Fig. 3 illustrates interleaved planning and execution with

multiple trajectory planning. During step i, the planner has
a time budget ∆i = ti+1 − ti, and it is also the time budget
available for execution during step i. During the planning
computation in step i, the planner generates trajectories
corresponding to the next execution step, i.e, the time interval
[ti+1, ti+2]. The sensor information at ti is used to estimate
conservative bounds for the dynamic obstacles during the
interval [ti+1, ti+2].

Within the time budget, multiple initial trajectories are
refined by the optimization algorithm to generate multiple
solutions which are sub-optimal and have different costs.
Some of the solutions may not be collision-free for the
execution interval, which could be due to the limited time
budget, or the local optima corresponding to that particular
solution. However, the parallelization using multiple trajec-
tories increases the probability that a collision-free trajectory
will be found. It also usually yields a higher-quality solution,
as we discussed in Section III-B.

B. Highly Parallel Trajectory Optimization

Because we parallelize the computation of multiple tra-
jectories, our approach improves the responsiveness of the
planner. We parallelize various aspects of the stochastic
solver on the GPUs by using random noise vectors.

The trajectory optimization process and the number of
threads used during each step are illustrated in Fig. 4. The
algorithm uses (k ·m · n · d) threads in parallel according to
these steps and exploits the computational power of GPUs.

The algorithm starts with the generation of k initial trajec-
tories. As defined in Section III, each trajectory is generated
in the configuration space C(which has dimension d), which
has n waypoints from qstart to qend. Then the algorithm gen-
erates m random noise vectors (with dimension d) for all the
n waypoints on the trajectory. These noise vectors are used
to perform stochastic update of the trajectory. Adding these
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Fig. 4: The detailed breakdown of GPU trajectory optimiza-
tion. It starts with the generation of k initial trajectories.
From these initial trajectories, the algorithm iterates over
stochastic optimization steps. The waypoint costs include
collision cost, end effector orientation cost, etc. We also
compute joint cost, which might include smoothness costs
or the cost of computing the torque constraints. The current
trajectory cost is repeatedly improved until the time budget
runs out.

m noise vectors to the current trajectory results in m noise
trajectories. The cost for a waypoint, such as costs for static
and dynamic obstacles, are computed for each waypoint in
the noise trajectories. As described in the Section III-A,
the static obstacle cost is computed by precomputed signed
EDT. The 3D space positions of the overlapping spheres
b ∈ B of the robot are computed by the kinematic model
of the robot in the configuration of each waypoint. Collision
detection for the cost of dynamic obstacles is computed by
the GPU collision detection algorithm [29]. Smoothness cost,
computed by a matrix multiplication ‖AQ‖2 for each joint,
can be computed efficiently using the parallel capabilities
of a GPU. When the costs of all noise trajectories are
computed, the current trajectory is updated by moving it
towards a direction which reduces the cost. The update vector
is computed by the weighted sum of noise vectors, which are
inversely proportional to their costs. If the given time budget
is expired, the optimization of all trajectories are interrupted
and the best solution is returned.

V. ANALYSIS

In this section, we analyze the benefits of parallelization
on the improvement in responsiveness and the quality of the
trajectory computed by the planner.

A. Responsiveness

The use of multiple trajectories improves the responsive-
ness of our planner. The optimization function corresponding
to (2) typically has multiple local minima. In general, any
trajectory that is collision-free, satisfies all constraints, and
is smooth can be regarded as an acceptable solution. In this
section, we show that the optimization of multiple trajectories
by our GPU-based algorithm improves the performance of
our planner.

The trajectory optimization uses the random number-based
algorithm in two stages. First, it generates initial trajectories

using randomly generated seeds. Then the algorithm uses
stochastic optimization to improve the trajectories. Both of
these steps have similar statistical characteristics and their
performance is improved by parallelization. In this section,
we mainly focus on analyzing initial trajectory generation.

In terms of generating initial trajectories, we assume
that the different random seeds used by the algorithm are
uniformly distributed. Each trajectory has a different distance
to collision-free solutions, and the expected time cost of
the trajectory is proportional to the distance. We define the
distance from a trajectory Q to collision-free solutions as:

d(Q) = max
i

(inf{‖qi − p‖|p ∈ Cfree}) , (5)

where Cfree represents the collision-free space in the con-
figuration space. Let the mean of the trajectory distances
be µ and their variation be σ2. Note that parameters µ
and σ2 reflect the problem space: large µ implies that the
environment is challenging and the solver needs more time
to compute an acceptable result; large σ2 means that the
result is sensitive to the choice of initial values.

Suppose the planner optimizes n trajectories and we
denote the time costs of different trajectories by X1, ..., Xn,
respectively. Then the time cost for the parallelized solver
is X = min(X1, ..., Xn), which is called the first order
statistic of {Xi}. We measure the theoretical acceleration
due to parallelization by computing the expected time costs
without and with parallelization:

Definition The theoretical acceleration of an optimization-
based planner with n trajectories is τ = E(Xi)

E(X) = µ
E(X) ,

where X = min(X1, ..., Xn).

If Xi follows the uniform distribution, then the accel-
eration ratio can be simply represented as τ = n+1

2 . For
general distributions, we can get the expected time costs for
n trajectories from the probability density function of the
distribution of Xi. Since all the trajectories are generated for
the same configuration space, they share the same probability
density function. The probability of the first order statistics
falling in the interval [u+ du] is

(
1−

(∫ ∞
u+du

pXi
(u)du

)n)
−
(

1−
(∫ ∞

u

pXi
(u)du

)n)
=

(∫ ∞
u

pXi
(u)du

)n
−
(∫ ∞

u+du

pXi
(u)du

)n
(6)

where pXi(u) is the probability density function of Xi.
With this probability density function for the first order

statistics pX(u), the expected time cost can be evaluated as:

E(X) =

∫ ∞
0

u · pX(u)du (7)

We evaluate the trajectory distance distribution of the
configuration space from some experiments (Fig. 5). We
measure the Euclidean distances to the nearest collision-
free points from the waypoints of the all possible initial
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Fig. 6: Benefits of a parallel, multi-threaded algorithm in
terms of the responsiveness improvement. We assume that
the time costs of different trajectories for optimization are
proportional to the distance to the feasible solution. We show
the acceleration by varying the number of trajectories on the
two distributions from Fig. 5.

trajectories in the configuration space, then evaluate the
distribution. With this distribution, we evaluate the expected
time cost with varying number of trajectories using (7). Fig. 6
shows the acceleration ratio. This graph shows that the higher
the number of trajectories, we obtain a higher speedup based
on parallelization.. Additionally, the acceleration is larger
in the second environment, which has a bigger mean; this
indicates that the benefit is greater when the environment is
more challenging.

We also analyze the responsiveness of the planner based on
GPU parallelization. The computation of each waypoint and
each joint are processed in parallel using multiple threads on
a GPU, which improves the performance of the optimization
algorithm. Fig. 7 shows the performance of the GPU-based
parallel optimization algorithm. The environment of the first
benchmark in Section VI is used for this measurement. The
GPU-based algorithm utilizes various cores to improve the
performance of a single-trajectory computation, as shown
in Fig. 4. Increasing the number of trajectories causes the
system to share the resources for multiple trajectories. Over-
all, we observe that by simultaneously optimizing multiple
trajectories, we obtain a higher throughput using GPUs.

B. Quality

The parallel algorithm also improves the quality of the so-
lution that the planner computes. The optimization problem
in Equation 2 has D · N degrees of freedom; N tends to
be a large number (often several hundreds). The space has a
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Fig. 7: Benefits of the parallel algorithm in terms of the per-
formance of the optimization algorithm. The graph shows the
number of optimization iterations that can be performed per
second. When multiple trajectories are used on a multicore
CPU (by varying the number of cores), each core is used
to compute one single trajectory. The number of iterations
performed per second increases as a linear function of the
number of cores. In the case of many-core GPU optimization,
increasing the number of trajectories results in sharing
of GPU resources among different trajectory computations,
and the relationship is non-linear. Overall, we see a better
utilization of GPU resources if we optimize a higher number
of trajectories in parallel.

number of global optima, acceptable local optima, and many
other local optima which are not acceptable (not collision-
free or not smooth). It is difficult to find the global optimal
solution when searching in such a high-dimensional space.
However, we can show that the use of multiple initializations
can increase the probability of computing the the global
optima or a solution that is close to the global optima.
According to [33], the probability for a pure random search
to find the global optima using n uniform samples is defined
as Lemma 5.1.

Lemma 5.1: An optimization-based planner with n
threads will compute the global optima with the probability
1− (1− |A||S| )n, where S is the entire search space. A is the
neighborhood around the local optimal solutions where the
local optimization converges to one of the global optima. | · |
is the measurement of the search space.
Here |A||S| measures the probability that one random sample
lies in the neighborhood of the global optima. Although
it is hard to measure the exact value of |A| in a high-
dimensional space, it can be expected that |A| will be smaller
as the envionment becomes more complex and has more local
optima. Each initial random value converges at one of the
local optima. If it is a global optimum, the planner finds a
global optimal solution. Using more trajectories increases
the probability that one of the initial values is placed in
A. As a result, Lemma 5.1 provides a lower bound on
the probability that an optimization-based planner with n
threads will compute the global optima. When the number of
threads increases, we have a higher chance of computing the
global optimal trajectory. In the same manner, the increasing
number of threads improves the probability that the planner
computes an acceptable solution.

VI. RESULTS

In this section, we highlight the performance of our
parallel planning algorithm in dynamic environments. All



(a) Start configuration used in
the performance measurement

(b) Goal configuration used in
the performance measurement

Fig. 8: Planning environment used to evaluate the perfor-
mance of our planner. The planner computes a trajectory
of robot arm which avoids dynamic obstacles and moves
horizontally from right to left. Green spheres are static, and
red spheres are dynamic obstacles. Figure (a), (b) Show the
start and goal configurations of the right arm of the robot.

Scenario Average
planning time (ms)

Std. dev.
planning time(ms)

CPU 1 core 810 0.339
CPU 2 core 663 0.284
CPU 4 core 622 0.180

GPU 1 trajectory 337 0.204
GPU 4 trajectory 203 0.326

GPU 10 trajectory 60 0.071

TABLE I: Results obtained from our trajectory computation
algorithm based on different levels of parallelization and
number of trajectories (for the benchmarks shown in Fig. 8).
The planning time decreases when the planner uses more
trajectories.

experiments are performed on a PC equipped with an Intel
i7-2600 8-core CPU 3.4GHz with 8GB of memory. Our
experiments are based on the accuracy of the PR2 robot’s
LIDAR sensor (i.e. 30mm), and the planning routines obtain
information about dynamic obstacles (positions and veloci-
ties) every 200 ms. Our GPU algorithm is implemented on
an NVIDIA Geforce GTX580 graphics card, which supports
512 CUDA cores.

Our first experiment is designed to estimate the responsive-
ness of the planner. We plan a trajectory of the 7 degree-of-
freedom right arm of PR2 in a simulation environment. We
measure the time needed to compute a collision-free solution
by varying the number of trajectories using both CPU- and
GPU-based planners. We perform this experiment to compute
the appropriate time interval for a single planning time step
during replanning; a shorter planning time means the planner
is more responsive. We repeat the test 10 times for each
scenario, and compute the average and standard deviation of
the overall planning time. This result is shown in Table I.
We observe that the GPU-based planner demonstrates better
performance than a CPU-based planner. In both cases, it
is shown that the performance of the planner increases as
more trajectories are optimized in parallel. We restrict the
maximum number of iterations to 500. The planner failed
to compute the collision-free solution only once in our
benchmarks, for a single-trajectory case on a GPU. This
happens because the single-trajectory instance gets stuck in
a local minimum and is unable to compute an acceptable
solution.

Fig. 9: Parallel replanning in dynamic environments with
a human obstacle. The planner optimizes multiple paths
which are smooth and avoid collision with the obstacle.
Each colored path corresponds to a different search in the
configuration space. The optimal path for each case is shown
in purple.
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Fig. 10: Success rate and trajectory cost results obtained
from the replanning in dynamic environments on a multi-
core CPU and a many-core GPU. The success rate and
trajectory cost is measured for each planner. The use of
multiple trajectories in our replanning algorithm results in
higher success rates and trajectories with lower costs and
thereby, improved quality.

In the next experiment, we test our parallel replanning
algorithm in dynamic environments with human-like obsta-
cles (Fig. 9); these human-like obstacles follow the paths
computed by motion-captured data, which is not known to
the robot or the planner. The planner uses the replanning
technique to reach the goal while avoiding collisions with the
obstacles. During each step, the planner uses conservative
local bounds that are based on positions and velocities of
the obstacles. For this experiment, the CPU-based planner is
too slow to handle the dynamic human motion used in this
environment; As a result, we reduced the moving speed of the
human obstacle by 3X, so that the CPU-based planner could
handle it. We measure the success rate of the planner and the
trajectory cost corresponding to the collision-free trajectory
to the goal position. The total cost function used in the
optimization algorithm is the sum of the obstacle cost and the
smoothness cost. However the solution trajectories have only
smoothness cost since they have no collisions. We measure
the cost by varying the number of optimized trajectories in
order to measure the effect of parallelization. We run 300
trials on the planning problem shown in Fig. 9; Fig. 10
highlights the performance. As the number of optimized
trajectories increases, the success rate increases and the cost
of the solution trajectory decreases. This result validates that
the multiple trajectory optimization improves the quality of



the solution, as shown in Section V-B.

VII. LIMITATIONS, CONCLUSIONS, AND FUTURE WORK

We present a novel parallel algorithm for real-time re-
planning in dynamic environments. The underlying planner
uses an optimization-based formulation, and we parallelize
the computation on many-core GPUs. Moreover, we derive
bounds on how parallelization improves the responsiveness
and the quality of the trajectory computed by our planner.

At the moment, our planner doesn’t take into account
uncertainty in sensor data; The conservative bound (4) is
only good for local intervals. If there is a very strong or
abrupt motion in any obstacle motion, this bound may not
hold. We need to evaluate the performance in more complex
environments with multiple obstacles.

There are many avenues for future work. Our current
formulation does not take into account any uncertainty in
sensor data. We would like to integrate our approach with
a physical robot, model different constraints on the motion,
and evaluate its performance in real-world scenarios. Further-
more, we would like to investigate other parallel optimization
techniques to further improve the performance. Recently, we
have extended our algorithm to high DOF robots [34].
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