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We present a novel optimization-based motion planning algorithm for high degree-of-

freedom (DOF) robots in dynamic environments. Our approach decomposes the high-

dimensional motion planning problem into a sequence of low-dimensional sub-problems.
We compute collision-free and smooth paths using optimization-based planning and tra-

jectory perturbation for each sub-problem. The overall algorithm does not require a

priori knowledge about global motion or trajectories of dynamic obstacles. Rather, we
compute a conservative local bound on the position or trajectory of each obstacle over a

short time and use the bound to incrementally compute a collision-free trajectory for the

robot. The high-DOF robot is treated as a tightly coupled system, and we incrementally
use constrained coordination to plan its motion. We highlight the performance of our

planner in simulated environments on robots with tens of DOFs.

Keywords: Optimization-based Planning; Dynamic Environments; High-DOF.

1. Introduction

Motion planning algorithms are frequently used in robotics, CAD/CAM, and bio-

informatics. Many task execution techniques repeatedly invoke motion planning

algorithms for high-level planning. In some applications, motion planning and sub-

task execution steps are performed in an interleaved manner. In this paper, we

focus on the problem of motion planning for robots with high degrees-of-freedom

(DOF), which include articulated robots with tens of joints. Many applications use

articulated models for task planning, virtual prototyping or computer animation;

since the models must perform different tasks and model various motions, they are

represented using high-DOF articulated models.

Many efficient techniques have been proposed to compute collision-free paths in

open spaces. Most of the earlier work on practical motion planning algorithms is

based on randomized algorithms1,2,3 and is mostly limited to static environments. It

is important to develop techniques to enable a robot to safely navigate and perform

tasks in the presence of moving obstacles. Furthermore, non-smooth and jerky paths

1
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can cause actuator damages, and balancing constraints are important for humanoid

robots. Randomized algorithms4,5,6 can handle some constraints such as kinematic,

contact, and balance constraints; however, it is relatively difficult to guarantee the

quality of the trajectories (including torque or energy minimization, constraint han-

dling, and smooth-path generation) computed by sample-based planners.

Optimization-based approaches pose the motion planning problem in a con-

tinuous setting and use optimization techniques to compute the trajectory.7,8

Optimization-based approaches generate motion trajectories that can satisfy var-

ious constraints simultaneously (such as collision avoidance, smoothness, and dy-

namics constraints). Such trajectories are computed by posing the constraints in

terms of appropriate cost functions. However, even the state-of-art applications

of optimization-based motion planning for high-DOF robots9,10 require a large

amount of computation time, which makes them unsuitable for dynamic environ-

ments. Moreover, the convergence rate of the underlying numerical optimization

techniques tends to decrease as the number of DOFs increases.

In order to overcome these challenges, we present a hierarchical optimization-

based planner to compute smooth, collision-free trajectories for high-DOF robots in

dynamic environments. Our formulation is based on the assumption that the opti-

mal path lies in a lower-dimensional subspace, though the robot itself corresponds to

a tightly coupled high-DOF system.11 Our approach first decomposes a high-DOF

robot into a hierarchical tree structure where each node represents one component

of the robot (i.e., a set of joints and the related links). Based on this decomposition,

we compute a trajectory for each component using an efficient replanning frame-

work based on optimization techniques. In order to handle dynamic obstacles and

perform realtime planning, our algorithm uses an incremental approach. We esti-

mate the trajectory of the moving obstacles over a short time horizon using simple

estimation techniques. Next, we compute a conservative bound on the position of

the moving obstacles based on the predicted motion. We calculate a trajectory con-

necting the component’s initial and goal configurations by solving an optimization

problem that avoids collisions with the obstacles and satisfies smoothness and torque

constraints. We incrementally compute the trajectory corresponding to each of the

nodes that represents a sub-tree of the hierarchy. So that the robot can respond

quickly to the changing environment, we interleave planning with task execution:

that is, instead of solving the optimization problem completely, we assign a time

budget for planning and interrupt the optimization solver when the time runs out.

We repeat these steps until the robot reaches the goal position. The updated envi-

ronment information is incorporated into the optimization formulation, which uses

the sub-optimal result from the last step as the initial solution and tries to improve

it incrementally within the given timing budget. We demonstrate the performance

of our replanning algorithm in the ROS simulation environment, where 20-40 DOF

robots are used to perform manipulation tasks. This approach can be extended to

generate trajectories that are also dynamically stable.12

The rest of the paper is organized as follows. In Section 2, we survey related
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work in motion planning. We give an overview of optimization-based planning and

our hierarchical representation in Section 3. We present our algorithm for high-DOF

robots in Section 4 and techniques to parallelize the computation on multi-core and

many-core architectures in Section 5. We analyze the performance in Section 6 and

highlight the performance in dynamic environments in Section 7.

2. Related Work

In this section, we give a brief overview of prior work on motion planning in dy-

namic environments, optimization-based motion planning, and hierarchical motion

planning.

2.1. Planning in Dynamic Environments

Many approaches for motion planning in dynamic environments assume that the

trajectories of moving objects are known a priori. Some algorithms discretize the

continuous trajectory, and model dynamic obstacles as static obstacles within a

short horizon.13 Other techniques compute the velocity such that the robot can

avoid a collision with moving obstacles within a short time step.14,15 Some RRT

variants can compute a trajectory in the state space (C × T , i.e., the Cartesian

product of configuration space and time) directly;16 other methods discretize the

state space and use search techniques17,18 or roadmap-based algorithms.19

Some planning algorithms for dynamic environments17,19 assume that inertial

constraints like acceleration and torque limit are insignificant for the robot; the

assumption that the robot can stop and accelerate instantaneously is often not true

for physical robots. These algorithms also attempt to plan the robot’s path be-

fore execution begins, despite the fact that in many scenarios the computationally-

expensive global path planning causes long delays in execution. These delays may

cause collisions for robots operating in environments with fast-moving dynamic ob-

stacles. Real-time replanning16,20, which interleaves planning with execution, solves

many of these problems. With real-time replanning, the robot need only compute

partial or sub-optimal plans before execution to avoid collisions. Replanning allows

for the use of different algorithms, including sample-based16,20,21 or search-based

planners,22,23 as the underlying planners in the real-time replanning framework.

Most replanning algorithms use fixed time steps when interleaving between plan-

ning and execution.16 Some recent work20 adaptively computes the interleaving

timing step, which balances safety, responsiveness, and completeness over the en-

tire system.

2.2. Optimization-based Motion Planning

The most widely-used method of path optimization is the so-called ‘shortcut’ heuris-

tic, which selects pairs of configurations along a collision-free path and invokes a

local planner to replace the intervening sub-path with a shorter one.24,25 Another
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approach uses Voronoi diagrams to compute collision-free paths.26 Other techniques

are based on elastic bands or elastic strips, which use a combination of mass-spring

systems and gradient-based methods to compute minimum-energy paths.27,28 All

these methods use a collision-free path as an initial value for the optimization algo-

rithm. Some recent approaches29,8,30 do not need a collision-free path as an initial

value. They directly encode the collision-free constraints and use an optimization-

based solver to transform a naive initial guess into a trajectory suitable for robot

execution. Although these planners do not guarantee planning completeness, they

compute trajectories which optimize over a variety of criteria in many real-world

planning scenarios efficiently.

The planning complexity of optimization-based motion planning algorithms

tends to increase exponentially as the number of DOFs increases. Toussaint et al.

use an approach to lower the planning DOF on a per-task basis.31

2.3. Hierarchical Motion Planning

The hierarchical mechanism decomposes a higher-dimensional planning problem

into several lower-dimensional planning problems. This divide-and-conquer method

can substantially reduce the complexity of the planning problem,32 and the incom-

pleteness of the resulting planning algorithms can be improved by greedy techniques

based on back-tracing.33. Hierarchical mechanisms have been used to improve per-

formance for articulated robots32 or for multi-robot systems.34 Different coordina-

tion schemes35,36 have been proposed to guarantee that the decomposed planning

finds solutions for the robots’ whole bodies. Simple decomposition into lower- and

upper-body has been used to plan the motion for human-like robots;37 a more de-

tailed decomposition has been used to accelerate whole-body planning for high-DOF

robots using sampling-based planners.38,39 Recently, hierarchical mechanisms have

also been used to accelerate Markov Decision Process40 and task planning.41,42

3. Overview

In this section, we introduce the notation used in the rest of the paper and give an

overview of our approach.

3.1. Assumptions and Notations

We use the symbol C to represent the configuration space of a robot, which includes

C-obstacles and the free space Cfree. Let the dimension of C be D. Each element in

the configuration space, i.e., a configuration, is represented as a dim-D vector q.

For a single planning step, suppose there are Ns static obstacles and Nd dy-

namic obstacles in the environment, and that all obstacles are rigid. The number

of dynamic obstacles can change between the steps: new obstacles may be added

into the robot’s workspace, and other obstacles may be out of range during the

planning interval. We assume that these obstacles are all rigid bodies. We denote
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the positions of static obstacles as osj , j = 1, ..., Ns, and the volumes of the obstacles

in the workspace as Osj . Since the positions of dynamic obstacles vary with time,

we denote the trajectories of positions as functions of time t: odj (t), j = 1, ..., Nd,

and the swept volumes of obstacles as Odj (t). i.e., Odj (t) is the volume that is swept

by the boundary of j-th dynamic obstacle, as it moves along odj (t). For Osj and

Odj (t), we denote the corresponding C-obstacles in the configuration space as COsj
and COdj (t), respectively.

In the ideal case, we assume that we have complete knowledge about the mo-

tion and trajectory odj (t) of each dynamic obstacle, i.e., we know Odj (t) and COdj (t)
exactly. In such cases, it is relatively simpler to compute a collision-free path. How-

ever, in real-world applications, we may only have local estimates of the trajectories

of the dynamic obstacles (e.g. over a short time interval). Moreover, the recent po-

sition and velocity of obstacles computed from the sensors may not be accurate due

to sensing errors. In order to guarantee the safety of the planning trajectory, we

compute a conservative local bound on the trajectories of dynamic obstacles during

planning. Given the time instance tcur, the conservative bound at time t > tcur for

an obstacle which moves along odj (t) bounds the shape corresponding to Odj (t), and

is computed as:

O
d

j (t) = c(1 + es · t)Odj (t), (1)

where es is the maximum allowed sensing error and c c is a predefined constant,

which provides additional margins in terms of the conservative bound used to avoid

collisions for obstacles. The computation is performed in the local coordinate system

of the object, and the origin is placed at the center of the object. Therefore, as the

sensing error increases, the conservative bounds of obstacles become larger. When

an obstacle is moving with a constant velocity, it is guaranteed that the conservative

bound on the trajectory includes the actual path traversed by the obstacle during

the time period corresponding to t > tcur, when c = 1. However, if an obstacle

changes its velocity, we use a larger value of c in deriving our conservative bound,

and it is valid for a shorter time interval. We can define the conservative bound for

a time interval I = [t0, t1] using Equation (1):

Odj (I) =
⋃
t∈I
Odj (t),∀t ∈ I, t > tcur. (2)

Similarly, we can define conservative bounds in the configuration space, which are

denoted as COdj (t) and COdj (I), respectively.

A configuration of a robot q is determined by all the actuated joints of the

robot, as well as by the position and orientation of the robot in the workspace.

The high-DOF robot is hierarchically decomposed into n different components

{A1, A2, ..., An}. Accordingly, the configuration q can also be represented as

the concatenation of the configuration qi for each body component: i.e., q =



March 3, 2014 2:28 WSPC/INSTRUCTION FILE main

6 Chonhyon Park and Jia Pan and Dinesh Manocha

dynamic obstacle COd

static obstacle COs

qI

qk

qG0

t
T

C-Space at different time

I
=

[t 0
, t 1

]

COd
([t0, t1])

Fig. 1: Optimization-based motion planning for dynamic environments. We show

how the configuration space changes over time: each plane slice represents the con-

figuration space at time t. In the environment, there are two C-obstacles: the static

obstacle COs and the dynamic obstacle COd. We need to plan a trajectory to avoid

these obstacles. The trajectory starts at time 0, stops at time T , and is represented

by a set of waypoints qI , q1, ..., qk, ..., qN , qG. Assuming that the trajectory is

executed by the robot during the time interval I = [t0, t1], we need only to consider

the conservative bound COd([t0, t1]) for the dynamic obstacle during the time in-

terval. The C-obstacles shown in the red color correspond to the obstacles at time

t ∈ I.

[(q1)T , (q2)T , ..., (qn)T ]T , where qi corresponds to the configuration of Ai. More-

over, qi is determined by all Ai’s actuated joints, including the joint through which

Ai is connected to its parent component. q1 includes the position and orientation of

A1 component, which has the base link of the robot. We denote the trajectory with

a fixed time duration T for a robot as M(t), which is a discretized trajectory com-

posed of N + 2 waypoint configurations: M(t) = {qI ,q1, ...,qN ,qG}, where qk is a

trajectory waypoint at time k
N+1T . qI and qG represent the given initial and goal

configurations, respectively. The trajectory for each component Ai is represented

as M i(t), which also contains N + 2 waypoints, i.e., M i(t) = {qiI ,qi1, ...,qiN ,qiG}.
We use symbol q̄ik to represent the k-th waypoint corresponding to component Ai

and all its previous components, i.e., q̄ik = [(q1
k)T , ..., (qi−1

k )T , (qik)T ]T . Similarly,

M̄ i(t) corresponds to the trajectory of q̄i. Fig. 1 illustrates the symbols used in our

optimization-based planner.
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3.2. ITOMP : Incremental Trajectory Optimization

The ITOMP planning algorithm43 treats motion planning in dynamic environments

as an optimization problem in the configuration space; we search for a smooth tra-

jectory that minimizes the cost corresponding to collisions with moving objects and

that takes into account some additional constraints (e.g., joint limit or acceleration

limit). Similarly to previous work29,8, our optimization problem finds the minimum

cost trajectory; in other words, the N waypoint configurations are the optimization

variables of the problem. It is formalized as:

min
q1,...,qN

N∑
k=1

(cs(qk) + cd(qk) + co(qk)) +
1

2
‖AQ‖2, (3)

where cs(·) is the obstacle cost for static objects, cd(·) is the obstacle cost for moving

objects (explained below) and co(·) is the cost for additional constraints, such as

joint limit and torque limit. As cd(·) changes along time due to the motion of the

dynamic obstacles, we denote it as ctd(·) to highlight the dependency on time. Q is

the serialized vector of a trajectory M(t), which is defined as [qTI ,q
T
1 , ...,q

T
N ,q

T
G]T .

A is a matrix that is used to represent the smoothness cost. We choose A such that

‖AQ‖2 represents the sum of squared accelerations along the trajectory. Specifically,

A is of the form

A =



1 0 0 0 0 0

−2 1 0 · · · 0 0 0

1 −2 1 0 0 0
...

. . .
...

0 0 0 1 −2 1

0 0 0 · · · 0 1 −2

0 0 0 0 0 1


⊗ ID×D, (4)

where ⊗ denotes the Kronecker tensor product and ID×D is a square identity matrix

of size D. It follows that Q̈ = AQ, where Q̈ represents the second-order derivative

of the trajectory Q.

The solution to the optimization problem in Equation (3) corresponds to the

optimal trajectory for the robot Q∗ = {qTI , (q∗1)T , ..., (q∗N )T ,qTG}T . However, notice

that Q∗ is guaranteed to be collision-free with dynamic obstacles only during a short

time horizon. Because we only have a rough estimation based on the extrapolation

of the motion of the moving objects, rather than an exact model of the moving

objects’ motion, the cost function ctd(·) is only valid within a short time interval.

In order to improve robot’s responsiveness and safety, we interleave planning

and execution. We assign a time budget ∆k to the k-th step of replanning, which is

also the maximum allowed time for execution of the planning result from the last

step. The interleaving strategy is subject to one particular constraint: the trajectory

currently being executed cannot be modified. Therefore, if the replanning result is

sent to the robot for execution at time t, it is allowed to run for time ∆, and no
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portion of the computed trajectory before t+ ∆ may be modified. In other words,

the planner should start planning from t+ ∆.

3.3. Obstacle Costs

Similarly to prior work29,8, we model the cost of static obstacles using the signed

Euclidean Distance Transform (EDT) method. We start with a boolean voxel rep-

resentation of the static environment, obtained either from a laser scanner or from

a triangle mesh model. Next, the signed EDT, d(x), for a 3D point x is computed

throughout the voxel map. This provides information about the distance from x

to the boundary of the closest static obstacle; the distance is negative, zero, or

positive when x is inside, on the boundary or outside the obstacles, respectively.

After the signed EDT is computed, the planning algorithm can efficiently check for

collisions by table lookup in the voxel map. In order to compute the obstacle cost,

we approximate the robot shape B by a set of overlapping spheres b ∈ B. The static

obstacle cost is as follows:

cs(qk) =
∑
b∈B

max(ε+ rb − d(xb), 0)‖ẋb‖, (5)

where rb is the radius of one sphere b, xb is the center of sphere b computed from

the kinematic model of the robot in configuration qk, and ε is a small safety margin

between the robot and the obstacles.

However, EDT computation cannot currently be applied to dynamic obstacles;

EDT’s recomputations, which take into account new positions of dynamic obstacles,

is not fast enough on current CPUs for realtime performance. Instead, we perform

geometric collision detection between the robot and moving obstacles and use the

collision results to formalize the dynamic obstacle cost. Given a configuration qk
on the trajectory and the geometric representation of moving obstacles Odj at the

corresponding time (i.e., k
N+1T ), the obstacle cost corresponding to configuration

qk is given as:

cd(qk) =

Nd∑
j=1

is collide(Odj (
k

N + 1
T ),B), (6)

where is collide(·, ·) returns one when there is a collision and zero otherwise.

This function can be performed efficiently using object-space collision detection

algorithms, such as OBBTree44. This obstacle cost function is only used during a

short or local time interval, i.e. from replanning’s start time t to its end time t+ ∆,

since the predicted positions of dynamic obstacles become highly uncertain over

long time horizons.

3.4. Hierarchical Planning

The optimal path tends to lie in a subspace which has a larger cost variation. For

high-DOF robots shown in Fig. 2, we determine which degree-of-freedom has the
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A3: 3 DOF

A2: 3 DOF

A5: 7 DOFA4: 7 DOF

A1: 14 DOF

Lower body

Torso

HeadLArm RArm

A3 A5A4

A2

A1

(a) A human-like model
(34 DOFs)

Lower body 

Torso 

Head LArm RArm 

A3 A5 A4 

A2 

A1 

A3: 2 DOF 

A2: 2 DOF 

A5: 9 DOF A4: 9 DOF 

A1: 12 DOF 

(b) HRP-4 (34 DOFs)

Base

Torso

HeadLArm RArm

A3 A5A4

A2

A1

A3: 2 DOF

A2: 1 DOF

A5: 7 DOF

A4: 7 DOF

A1: 3 DOF

(c) PR-2 (20 DOFs)

Fig. 2: An example of hierarchical decomposition for various robots. These hierar-

chical decompositions are used to divide a high-dimensional problem into a sequence

of low-dimensional problems.

largest impact on the cost function when changed. Changes in some components

influence the configuration of a large portion of the robot; for example, changing

the pose of the legs affects the configuration of the whole upper body. Based on this

observation, we decompose the robot body into a hierarchy of planning components.

Fig. 2 shows a decomposition scheme for different robots. The high-DOF system is

divided into several parts: a lower body (including legs and pelvis for human-like

model, or a 3-DOF base for the PR2 robot), a torso, a head, a left arm and a right

arm. For the same levels in the hierarchy, the physical volumes of the components

are used to determine the order of the components.

We can incrementally plan the trajectory of a high-DOF robot based on this

decomposition. First, we compute a trajectory M1(t) for the root component A1.

Then we fix the trajectory for A1 and compute a trajectory for its child component

A2 by considering A1 as a moving obstacle in the optimization formulation for

A2. However, there may be no feasible trajectory for A2 because A1 blocks it as

an obstacle. In such cases, we first slightly modify the trajectory of A1 based on

workspace heuristics and search whether it is possible to compute a collision-free

trajectory for A2. If such local trajectory refinement does not result in a feasible

solution, we perform back-tracing: we merge A1 and A2 into a larger component

A1,2 and then try to compute a collision-free path for this larger component using

optimization-based planning. After the trajectory for A2 is computed, we extend

the approach in an incremental manner to compute a collision-free path for A3,

now treating A1 and A2 as moving obstacles. This process is repeated for all n

components, and a trajectory for the overall robot is computed.

The hierarchical planner is implemented by decomposing Equation (3) into n

optimization problems, one for each component Ai:

min
qi
1,...,q

i
N

N∑
k=1

(cs(q̄
i
k) + cd(q̄

i
k) + co(q̄

i
k)) +

1

2
‖ĀiQ̄i‖2, (7)

where we compute the optimal waypoints qik for components Ai while fixing the
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A1

q1I q1G

M 1(t)
A2

(a) Planning of trajectory
M1(t) for A1 in stage 1.

M 2(t)
A2

q2I q2G

M 1(t)A1

(b) Planning of trajectory
M2(t) for A2 in stage 2.

Fig. 3: Incremental trajectory planning. The robot model consists of {A1 (3 DOFs),

A2 (1 DOF)}. (a) During stage 1, the algorithm computes trajectory M1(t) for A1

while avoiding collisions between A1 and the obstacle shown in the black region. (b)

During stage 2 of the planning algorithm, the trajectory M2(t) for A2 is computed

while A1 is assumed to move along the trajectory M1(t).

waypoints qpk for all the previous components A1≤p≤i−1. Āi is the smoothness

matrix; it is similar to A in Equation (3), but it is resized to the length of q̄ik. Q̄i

is defined as Q̄i = [(q̄iI)
T , (q̄i1)T , ..., (q̄iN )T , (q̄iG)T ]T .

4. Hierarchical Optimization-based Planning

In this section, we present our hierarchical optimization-based planning algorithm.

We first introduce our multi-stage trajectory optimization method. Next, we present

the local refinement method, which uses the incremental coordination algorithm.

4.1. Multi-stage Planning using Constrained Coordination

Our algorithm traverses the entire hierarchy of the robot {A1, A2, ..., An} sequen-

tially in a breadth-first order using n planning stages. Stage i computes the tra-

jectory for Ai and improves the trajectories of {A1, ..., Ai−1}, which were com-

puted during the prior stages. We use the incremental coordination approach34,38

in our planning algorithm. During each planning stage, the algorithm computes

the trajectory for a subset of robot components in order to compute the whole-

body motion trajectory incrementally. According to our notation, we denote

{M1(t),M2(t), ...M i(t)} as M̄ i(t). Given the input M̄ i−1(t), the planning algorithm

during stage i computes M̄ i(t).

The trajectory for a new component is computed by treating the trajectories

during the previous stages as constraints. In Fig. 3, the 2D robot has two compo-

nents, A1 and A2. Each component has only one link. A1 has 3 DOFs corresponding

to the position and orientation of the robot in 2D space. A2 has 1 DOF correspond-

ing to the angle that connects A1 and A2. Therefore, the configuration vectors q1
k

and q2
k have dimensions 3 and 1, respectively. The trajectory M(t) is a sequence of

N configurations at discretized time steps. During planning stage 1, the algorithm
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A1

q1I q1G

A2

M 1(t)

M 2(t)
q2I q2

qk

(a) There is no collision-
free configuration q2

k for
A2 at time k if A1 moves
along the trajectory M1(t),
which is computed in the
prior stages.

A2

M 1(t)

M 2(t)
j1

A1

(b) With local refinement,
the planner finds a feasi-
ble solution. The trajec-
tory M1(t) is updated to
find a feasible trajectory
M2(t).

Fig. 4: Planning with local refinement. By adjusting the configuration of the joint

j1 connecting A1 and A2, we can move A1 away from the obstacle and leave more

space for A2 to pass through. As a result, the planner can compute a collision-free

solution M̄2(t) = {M1(t),M2(t)}.

computes the trajectory M1 for A1, which connects the initial configuration q1
I of

A1 with its goal configuration q1
G. During planning stage 2, the trajectory M2(t)

for A2 is computed, while A1 is assumed to move along the trajectory M1(t).

4.2. Trajectory Optimization with Local Refinement

In this section we present the local refinement scheme used as part of trajectory

optimization. In our incremental planning algorithm, the trajectory of a robot com-

ponent is computed using an optimization formulation such that the trajectories

of prior components are constrained to lie on the paths computed during previous

stages. However, the optimization-based planner may fail to find a solution that

satisfies all the constraints. Fig. 4(a) shows such an example for a simple 2D robot,

which consists of two components, A1 and A2. The trajectory M1(t) for A1, which

is computed during planning stage 1, is collision-free. However, when computing a

solution for A2, A1 is constrained to move along M1(t). This may result in no fea-

sible solution for A2 that avoids collisions with the environment. The back-tracing

approach, which replans the trajectory with merged component A1,2, can find a

solution in such a case, but can be expensive for higher-dimensional problems. As

shown in Fig. 4(b), we refine the trajectory M1(t) by adjusting the configuration

of the joint connecting A1 and A2, then move A1 away from the obstacles by a

displacement r. For the k-th waypoint, the vector rk represents the position dis-

placement of the first joint of the current component (component i for stage i), so

the joint position is changed by rk and the refined trajectory for A1 is computed

using inverse kinematics.

The trajectory optimization algorithm (Algorithm 1) uses a stochastic

approach,8 which computes the gradient of the cost for a trajectory waypoint by
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Algorithm 1 Hierarchical Trajectory Optimization in Planning Stage i

Require: Robot components {A1, ...Ai}
Trajectory M̄ i−1(t) which is computed in stage i− 1

Start and goal configurations qiI and qiG for Ai

Planning time limit ∆ti
Ensure: Trajectory M̄ i

i (t)

1: Generate an initial trajectory M ′(t) which connects (piI) = [(qiI)
T , (0, 0, 0)]T

and (piG) = [(qiG)T , (0, 0, 0)]T .

2: tstart ← getT ime()

3: while getT ime()− tstart < ∆ti do

4: Evaluate q̄i−1 from M ′(t)
5: Compute the trajectory cost of M ′(t)
6: Compute the gradient of the cost

7: Update trajectory M ′(t) using the gradient

8: end while

9: Extract M i from M ′(t)
10: Compute M̄ i−1 from M ′(t)

evaluating the costs of randomly generated configuration points. Instead of opti-

mizing qi and r separately, we define a new term pi (the concatenation of qi and r)

and we optimize M ′ (the trajectory of N waypoints pi). At stage i, M ′ is initialized

as a line connecting piI = [(qiI)
T , (0, 0, 0)]T and piG = [(qiG)T , (0, 0, 0)]T , in order to

ensure that the resulting trajectory M will connect the initial and the goal configu-

rations. For the given planning interval ∆ti the algorithm explores the configuration

space of pi to improve the trajectory M ′ using Equation (7). During each iteration,

the algorithm computes q̄i−1 from the value of r. This new q̄i−1
k value is used for

trajectory cost computation. When the planning time interval ends, M ′ is decom-

posed to two trajectories: M i and the trajectory for r. The refined trajectories of

{A1, ..., An−1} are evaluated from the trajectory of r.

4.3. Dynamic Environment and Replanning

The ITOMP algorithm makes no assumption about the global motion or trajectory

of each moving obstacle. Instead, we predict the future position and the velocity of

moving obstacles based on their recent positions, which may be generated from noisy

sensors for physical robots. This prediction computation is used in combination with

maximum error bounds to compute conservative bounds on the trajectories of the

moving obstacles during the local time interval. Therefore, the planning result is

guaranteed to be safe only during a short time period.

ITOMP takes advantage of this short time window of accuracy by interleaving

the robot’s planning and execution steps; this handles uncertainty from moving

obstacles and provides high responsiveness. When the motion planner computes a
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Fig. 5: Interleaving of planning and execution. The planner starts at time t0. During

the first planning time budget [t0, t1], it plans a safe trajectory for the first execu-

tion interval [t1, t2], which is also the next planning interval. In order to compute

the safe trajectory, the planner needs to compute a conservative bound for each

moving obstacle during [t1, t2]. The planner is interrupted at time t1 and the robot

starts the execution of the computed trajectory. Meanwhile, the algorithm starts

the trajectory planning computation for the next interval [t2, t3], after updating the

bounds on the trajectory of the moving obstacles. This interleaving of planning and

execution is repeated until the robot reaches the goal position.

new trajectory that is safe within a short horizon, the robot controller executes the

trajectory. Meanwhile, the motion planner computes a safe trajectory for the next

execution interval. This method of interleaving planning and execution phases is

shown in Fig. 5. The i-th time step of short-horizon planning has a time budget

∆i = ti+1 − ti, which is also the time budget for the current step of execution.

During the i-th time step, the planner tries to generate a trajectory by solving the

optimization problem in Equation (7). The trajectory should be valid during the

next step of execution, i.e., during the time interval [ti+1, ti+2].

Due to the limited time budget, the planner may only be able to compute a

sub-optimal solution before it is interrupted. The sub-optimal solution may not be

collision-free, or it may violate some other constraints during the next execution

interval [ti+1, ti+2]. We assign higher weights to the obstacle costs related to the

trajectory waypoints during the interval [ti+1, ti+2], which biases the optimization

solver to reduce the cost during the execution interval. If the optimization computa-

tion is not optimal, the planner can improve it incrementally during subsequent time

intervals. In order to balance robot responsiveness with trajectory safety, the time

budget for each step of short-horizon planning can be changed adaptively according

to the quality of the resulting trajectory.20

Usually, the optimization can quickly converge to local optima, since during the

i-th step planning we use the result of (i − 1)-th step as the initial value. On the

other hand, the optimization algorithm tends to compute a sub-optimal solution

when the robot is in a narrow passage or near a region that has multiple minima

in the configuration space.
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5. Parallel Trajectory Optimization

Our algorithm is designed to take advantage of the computational capabilities of

modern multi-core parallel processors. Nowadays, many of the robot systems are

equipped with multi-core CPU processors (for example, the Quad-Core i7 Xeon Pro-

cessors in PR2 robota). These robot systems are expansible, and can use many-core

accelerators, such as graphics processing units (GPUs). These many-core accelera-

tors are massively parallel processors offering a very high peak performance (e.g. up

to 3 TFLOP/s on NVIDIA Kepler GPU). Our goal is to exploit the computational

capabilities of these commodity parallel processors for optimization-based planners

and real-time replanning in dynamic scenes. In this section, we present our parallel

algorithm45 to solve the optimization problem highlighted in Equation (3).

We parallelize our algorithm in two ways. First, we parallelize the optimization of

a single trajectory by parallelizing each step of optimization using multiple threads

on a GPU (Fig. 6). Second, we parallelize the optimization of multiple trajectories

by using different initial seed values. Since it is a randomized algorithm, the solver

may converge to different local minima, and the running time of the solver also

varies based on the initial seed values. In practice, such parallelization can improve

the responsiveness and the quality of the resulting trajectory.

5.1. Parallelized Replanning with Multiple Trajectories

When the planner interleaves planning and execution as shown in Fig. 5, the parallel

planner computes multiple trajectories in parallel. Within the time budget, multiple

initial trajectories are refined by the optimization algorithm to generate multiple

solutions that are sub-optimal and have different costs. Some of the solutions may

not be collision-free during the execution interval, which could be due to the limited

time budget or to the local optima corresponding to that particular solution. How-

ever, the parallelization using multiple trajectories increases the probability that

a collision-free trajectory will be computed. It also usually yields a higher-quality

solution.

5.2. Highly Parallel Trajectory Optimization

Because we parallelize the computation of multiple trajectories, our approach im-

proves the responsiveness of the planner. We parallelize various aspects of the

stochastic solver on the GPUs by using random noise vectors. The trajectory opti-

mization process and the number of threads used during each step are illustrated

in Fig. 6. The algorithm uses (K ·M ·N ·D) threads in parallel, according to these

steps, to exploit the computational power of GPUs. The algorithm starts with the

generation of K initial trajectories. As defined in Section 3.1, each trajectory of a

component Ai (which has D DOFs) is generated in the configuration space C, which

ahttp://www.willowgarage.com/pages/pr2/specs



March 3, 2014 2:28 WSPC/INSTRUCTION FILE main

High-DOF robots in Dynamic Environments using Incremental Trajectory Optimization 15

Generate Initial 
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during each step of trajectory optimization 
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Fig. 6: The detailed breakdown of GPU trajectory optimization. It starts with the

generation of K initial trajectories. From these initial trajectories, the algorithm

iterates over stochastic optimization steps. The waypoint costs include collision

cost, end effector orientation cost, etc. We also compute joint cost, which might

include smoothness costs or the cost of computing the torque constraints. The

current trajectory cost is repeatedly improved until the time budget runs out.

has N waypoints from an initial configuration qI to a goal configuration qG. Then

the algorithm generates M random noise vectors for all the N waypoints on the

trajectory. These noise vectors are used to perform a stochastic update of the tra-

jectory. Adding these M noise vectors to the current trajectory results in M noise

trajectories. The total cost, including costs for static and dynamic obstacles, is com-

puted for each waypoint in the noise trajectories. As described in the Section 3.3,

the static obstacle cost is computed by precomputed signed EDT. Collision detec-

tion for the cost of dynamic obstacles is computed by the GPU collision detection

algorithm46. Smoothness cost, computed by a matrix multiplication ‖AQ‖2 for each

joint, can be computed efficiently using the parallel capabilities of a GPU. When

the costs of all noise trajectories are computed, the current trajectory is updated

by moving it towards a direction which reduces the cost.

Fig. 7 shows the performance of the GPU-based parallel optimization algorithm.

The GPU-based algorithm utilizes various cores to improve the performance of a

single-trajectory computation, as shown in Fig. 6. Increasing the number of trajec-

tories causes the system to share the resources for multiple trajectories. Overall, we

observe that by simultaneously optimizing multiple trajectories, we obtain a higher

throughput using GPUs.

6. Performance Analysis

In this section, we show that hierarchical decomposition can improve the perfor-

mance of optimization-based planners like CHOMP29, STOMP8 and the ITOMP
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Fig. 7: Benefits of the parallel algorithm for the performance of the optimization

algorithm. The graph shows the number of optimization iterations that can be per-

formed per second. When multiple trajectories are used on a multicore CPU (by

varying the number of cores), each core is used to compute one single trajectory.

The number of iterations performed per second increases as a linear function of the

number of cores. In the case of many-core GPU optimization, increasing the num-

ber of trajectories results in sharing of GPU resources among different trajectory

computations, and the relationship is non-linear. Overall, we see a better utilization

of GPU resources if we optimize a higher number of trajectories in parallel.

algorithm. All these planners solve an optimization problem expressed in the form of

Equation (3) using steepest descent methods: CHOMP explicitly uses a numerical

gradient, while STOMP and ITOMP use gradient information estimated using sam-

pling. The convergence rate of steepest descent is related to the covariance matrix

of the cost field based on the following theorem:

Theorem 1. (Boyd and Vandenberghe)47 Suppose we have a D-dimensional cost

field f(x), x ∈ RD. For steepest descent search on the cost field starting with point

x0, the error between k-th and (k + 1)-th step is:

f(xk+1)− f(x∗)
f(xk)− f(x∗)

≤ c = 1− m

M
, (8)

where 0 < m ≤ λD ≤ λ1 ≤ M . λ1 and λD are the minimum and maximum eigen-

values of the cost field’s covariance matrix ∇2f(x), respectively. x∗ is the optimal

solution point corresponding to the minimum cost of f(x). In particular, we must

have f(xk)− f(x∗) ≤ ε after at most log((f(x0)−f(x∗)))/ε)
log(1/c) iterations.

In Equation (3), the dimension of the cost field is D′ = N ·D, where N is the

number of waypoints and D corresponds to the overall DOF. The time complexity

to evaluate the cost for each point in the cost field is a constant proportional to the

number of dynamic obstacles in the environment. According to the above theorem,

we need log(∆/ε)
log(1/c) steps to converge to a local minima, where ∆ is the error in the

initial guess. As a result, the overall complexity for an optimization-based planner

is
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O(
log(∆/ε)

log(1/c)
Nd) = O(1/ log(1/c)). (9)

If c is very small, then we can approximate 1/ log(1/c) ≈ M
m , i.e., the complexity

is decided by the ratio between the maximum and minimum variations along dif-

ferent directions of the cost field. Equation (9) implies that the optimization-based

planners are most efficient on cost fields with similar variations along different di-

rections; in other circumstances, the optimization procedure may instead follow a

zigzagging curve and perform more iterations to converge to a local minima. Even

in a 2D space, if an eigenvalue of ∇2f(x) is very small, the direction of the corre-

sponding eigenvector has a weak correlation with the cost, in which case many areas

of the cost field have local gradients which do not contribute toward the global solu-

tion. In this case, because of the large differences between the direction of the local

gradient and the direction which leads toward the global solution, the optimization

procedure may require many steps. On the other hand, in a high-dimensional space

(say D-dimensions), if all D eigenvectors are related to the cost, the gradient de-

scent methods can find a correct direction and can converge rapidly. Usually the

time complexity of optimization-based planning algorithms grows as the DOFs of

the robot increase,48 because the configuration space of a high-DOF robot is more

complex in the number of components and in the topology as the DOFs increase.

This also increases the variance in eigenvalues of the cost field’s covariance matrix;

the eigenvectors therefore are only weakly correlated with cost in the cost fields of

high-DOF robots.

We now use Equation (9) to explain the benefit of hierarchical decomposition.

Suppose the eigenvalues for the cost field’s covariance matrix are λD ≤ λD−1 ≤
... ≤ λ2 ≤ λ1, and that we decompose the robot into two components A1 and A2.

First we assume that no back-tracing occurs, i.e., the trajectory for A1 does not

block the collision-free motion for A2. Then the complexity for the decomposed

planner is O( λ1

λm
+ λm+1

λD
), which can be much smaller than the complexity of the

original planner O( λ1

λD
), if λD � λm+1 ≈ λm ≤ λ1. When back-tracing does occur,

the decomposed planner may be less efficient than the original planner, as we are

trying to compute the motion trajectory of a tightly-coupled system. However,

such cases are not common in practice (also refer to Table 2 in Section 7). The

components follow the hierarchy and volume order: components which influence

the configuration of a large portion of the body are planned first, then components

which influence smaller portions. A1 affects the motion of a larger portion of the

body than A2, and therefore usually dominates the variation in the cost function.

Let’s take collision cost, which is measured by the intersected volume between the

robot and the environment, as an example. Suppose A1’s cost value is a random

variable C1 within the range [0, Cmax1 ] and A2’s cost value is a random variable C2

within the range [0, Cmax2 ], where 0 means collision-free, and Cmax1 and Cmax2 mean

that the components are completely inside the obstacles. As A1 is larger than A2,
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we have Cmax1 > Cmax2 . We also assume that C1 and C2 are symmetric random

unimodal variables. Moreover, we have the following properties for the symmetric

unimodal random variable:

Theorem 2. For a symmetric unimodal random variable X defined on an interval

[a, b], there is

(d− c)2 Pr[X 6∈ [c, d]]

4
≤ Var[X] ≤ (b− a)2

12
,

where [c, d] ⊆ [a, b] is a subset of [a, b].

As a result, if Cmax1 is larger enough than Cmax2 , we have

Var[C1] ≥ (Cmax1 )2 Pr[X 6∈ [
3Cmax

1

4 ,
Cmax

1

4 ]]

16
≥ (Cmax2 )2

12
≥ Var[C2];

that is, the variance in A1’s cost is larger than A2’s cost. In practice, the conclusion

usually holds even when the assumption in Theorem 2 does not hold.

In other words, the decomposed planner first searches in the subspace with the

larger cost variation and then in the subspace with the smaller variation. According

to Vernaza and Lee11, the optimal path usually lies in the subspace with the larger

cost variation; therefore A1’s trajectory is usually optimal even though we do not

consider A2 during its computation. As a result, it is unlikely to block A2, and the

decomposed planner tends to be faster than the original planner.

7. Results

In this section, we highlight the performance of our hierarchical planning algorithm

in static and dynamic environments. The experimental results of non-hierarchical

planning can be found in previous works.43,45 We have implemented our algorithm

in the ROS simulator with both a human-like robot model and Willow Garage’s

PR2 robot model. We decompose the models into five components each (shown in

Fig. 2). For the PR2 robot, we compute a trajectory of 20 DOFs, which are shown in

Fig. 2(c). The human-like model has 34 DOFs, which are shown in Fig. 2(a). In this

paper, we are focusing on efficient planning for high-DOF robots. The walking mo-

tions of human-like robots can be efficiently computed using motion generators49,50.

Therefore, we compute a trajectory for the 3 DOFs lower body component using

our motion planning algorithm; after that we use the motion generator to generate

the walking motion, which is constrained by the trajectory of A1. This reduces the

DOFs for motion planning computations from 34 to 23. The constraints for legged

robots, such as stability constraints or contact generation constraints, are discussed

in Section 8.

We highlight all the results of motion planning in different environments in Ta-

ble 1. We compute the trajectories for the PR2 and the human-like robot in two

static environments and two environments with dynamic obstacles. We compute the
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Non-hierarchical Planning Hierarchical Planning

Iterations
Planning

Time(s)
Cost Success

Rate

Iterations
Planning

Time(s)
Cost Success

Rate
Mean (Std. Dev.) Mean (Std. Dev.)

Human

-like

Robot

Static

Environment 1
418.25 (344.90) 20.93 (16.24) 0.032 (0.011) 100/100 84.74 (18.00) 2.81 (0.50) 0.036 (0.000) 100/100

Static

Environment 2
461.26 (539.66) 30.78 (35.63) 0.017 (0.000) 100/100 54.02 (15.62) 2.21 (0.53) 0.025 (0.000) 100/100

Dynamic

Environment 1
13.99 (2.30) 1.71 (0.17) 0.058 (0.000) 89/100 18.89 (3.35) 1.33 (0.12) 0.101 (0.000) 95/100

Dynamic

Environment 2
20.15 (3.53) 2.80 (0.17) 0.163 (0.010) 76/100 26.48 (5.52) 1.79 (0.40) 0.201 (0.035) 93/100

PR2

Static

Environment 1
102.06 (33.11) 8.20 (2.35) 0.033 (0.000) 100/100 90.75 (22.53) 5.11 (1.09) 0.032 (0.000) 100/100

Static

Environment 2
167.26 (239.65) 16.00 (22.42) 0.033 (0.000) 100/100 104.13 (73.08) 6.09 (4.11) 0.032 (0.000) 100/100

Dynamic

Environment 1
8.81 (3.90) 1.54 (0.42) 0.051 (0.000) 96/100 16.51 (12.12) 1.66 (0.66) 0.051 (0.004) 99/100

Dynamic

Environment 2
14.16 (3.67) 2.42 (0.51) 0.095 (0.002) 94/100 19.95 (6.40) 2.32 (0.49) 0.106 (0.006) 100/100

Table 1: The performance of our hierarchical planning algorithm is compared with

the non-hierarchical ITOMP algorithm. We compute collision-free trajectories in

static and dynamic environments. We measure the number of iterations used in the

numerical optimization procedure; planning time to find the first collision-free solu-

tion; trajectory cost based on Equation (3); and the success rate of our planner, i.e.,

the total number of trials that found a collision-free trajectory. In the static scenes,

our hierarchical planner results in up to 14X speedup over the non-hierarchical algo-

rithm. The trajectory costs for the hierarchical and non-hierarchical algorithms are

small (less than 0.1), which means the quality of the solution with the hierarchical

planner is close to the trajectory computed by the non-hierarchical planner.

motion trajectory using our hierarchical planning algorithm and compare its per-

formance with the motion trajectory computed using the non-hierarchical ITOMP

algorithm. We measure the number of iterations in the optimization routines and

the amount of planning time required to find the first collision-free solution. We also

evaluate the quality of the computed trajectory by evaluating the cost functions and

the success rate of the optimization-based planner. The results are shown in Table 1

and correspond to the means and standard deviations of 100 trials for each scenario.

In most cases, hierarchical planning outperforms non-hierarchical planning. The

only exception is the PR2 in dynamic environment benchmark in Table 1, where

the planning time’s mean and variance are larger for hierarchical planning than for

non-hierarchical planning. This is because hierarchical planning has a higher suc-

cess rate; non-hierarchical planning has many failed planning queries, whose time

consumptions are not counted in the planning time statistics. Supplemental videos

for the experiments can be viewed at http://gamma.cs.unc.edu/ITOMP/.

Fig. 8(a) and 8(b) show our first benchmark for a static environment. The envi-

ronment has several static obstacles that prevent the initial trajectory from being

collision-free; the robot must bend its two arms and its head to pass through a

collision-free space, which is surrounded by obstacles. Using hierarchical planning,

we incrementally compute the trajectory of the robot from components A1 to A5,
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(a) The planned trajectory for PR2 robot in
a static scene.

(b) The planned trajectory for a human-like
model.

(c) The planned trajectory for PR2 robot in
dynamic environment 1.

(d) The planned trajectory for a human-like
model in dynamic environment 2.

Fig. 8: (a)(b) Hierarchical planning of a PR2 robot and a human-like robot in a

static environment. The planned trajectory for different components is marked using

different colors. (c)(d) Planning in dynamic environments. With the static obstacles,

we also use human-like obstacles (shown in cyan) that follow a path generated from

motion-capture data. The robot does not have any a priori information about the

trajectory of this obstacle, which is designed to interrupt the robot’s trajectory.

with no planning time limit. In Fig. 8, the trajectories of different components have

different colors. In Table 2, we show the timings and the trajectory costs of each

stage of hierarchical planning. Since the volume of the base of PR2 is much larger

than the lower body of the human-like robot, the collision-free space is very tight

for PR2. As a result, most of the planning time in this scenario is spent in the

stage corresponding to A1. Because PR2 is shorter than the human-like robot, the

overhead obstacle has no effect on PR2; the components A2 and A3 are therefore

collision-free on the computed trajectory of A1, and the components require only a

single iteration of the optimization algorithm for all trials. In the two other stages,

which compute trajectories for the arm components A4 and A5, the planner runs

tens of iterations to improve the trajectory to ensure that A4 and A5 have no col-
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Static Environment 1 Dynamic Environment 2

Stage Iterations
Planning

Time
Cost

Back

-tracing
Iterations

Planning

Time
Cost

Back

-tracing

Human

-like

Robot

A1 (3 DOFs) 7.33 0.25 0.009 0/100 6.98 0.37 0.051 0/100

A2 (3 DOFs) 15.18 0.53 0.009 0/100 7.12 0.39 0.125 2/100

A3 (3 DOFs) 24.10 0.65 0.000 0/100 1.52 0.07 0.000 0/100

A4 (7 DOFs) 18.81 0.69 0.012 0/100 4.26 0.39 0.021 1/100

A5 (7 DOFs) 19.32 0.69 0.005 0/100 6.60 0.57 0.004 2/100

Overall Planning 84.74 2.81 0.036 0/100 26.48 1.79 0.201 5/100

PR2

A1 (3 DOFs) 43.32 32.31 0.019 0/100 9.70 0.88 0.093 0/100

A2 (1 DOFs) 1.00 0.12 0.000 0/100 1.00 0.01 0.000 0/100

A3 (2 DOFs) 1.00 0.12 0.000 0/100 1.00 0.01 0.000 0/100

A4 (7 DOFs) 9.26 0.60 0.008 0/100 3.21 0.50 0.011 1/100

A5 (7 DOFs) 36.17 1.96 0.005 1/100 5.04 0.75 0.002 1/100

Overall Planning 90.75 5.11 0.032 1/100 19.95 2.32 0.106 2/100

Table 2: We highlight the runtime performance of our planning algorithm in static

and dynamic environments. We show the number of iterations; the planning time to

find the first collision-free solution; the trajectory costs; and the number of trials in

which back-tracings occur for each stage of our hierarchical planning algorithm, i.e.,

when a stage fails to find a collision-free trajectory for the corresponding component,

the planner merges the component and its parent, then computes the trajectory of

the merged component.

lisions. In the decomposition of the human-like model, each of the stages takes a

similar amount of time and no one stage dominates the overall computation. This

demonstrates that the decomposition used for the human-like robot divides the

high-DOF planning problem into almost equal-sized low-dimensional sub-problems,

which results in an overall performance improvement as compared to high-DOF

planning. We observe that the speedup due to hierarchical planning is about 7X

for the human-like model, with its equally decomposed sub-problems; it is about

1.6X for the PR2 model, which has a larger variance in the complexities of its

sub-problems. In both cases, the trajectory cost corresponding to the optimization

function with our hierarchical algorithm is close to the trajectory cost calculated

by the non-hierarchical algorithm. This implies that the trajectories computed by

both these algorithms are quite similar. In the second static environment bench-

mark, we use the same number of obstacles but the collision-free space is narrower

than the first benchmark. This makes the motion planning more challenging, but

still shows improvement using hierarchical planning: we observed 14X speedup for

the human-like model and 2.6X for the PR2 model.

We also evaluated the performance of our algorithm in two dynamic scenes

(Fig. 8(c) and Fig. 8(d)). We use a human-like obstacle that follows a path from

motion-captured data, though the robots have no information about the global path

of the obstacle. The path of the obstacles is designed to interrupt the path of the

robot during execution. We set the replanning time step interval as 3 seconds; the

planner fails if it cannot find a collision-free trajectory within that time interval. In
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such dynamic scenes, the planner tends to improve trajectory computation during a

given time step, but not for the overall duration. As a result, it is more important to

measure the success rate of each planner rather than the overall planning time or the

number of iterations. With the same replanning time step interval, our hierarchical

planner has a higher success rate in dynamic environments than the non-hierarchical

planner.

8. Conclusions, Limitations and Future Work

We present an optimization-based motion planning algorithm for high-DOF robots.

Our algorithm decomposes the high-dimensional motion planning problem into a

sequence of low-dimensional sub-problems and computes the solution for each sub-

problem in an incremental manner. We use constrained coordination and local re-

finement to incrementally compute the motion. Our algorithm does not require a

priori knowledge about global movement of moving obstacles; it tries to compute a

trajectory that is collision-free and satisfies smoothness and dynamics constraints.

In order to respond to unpredicted cases in dynamic scenes, we interleave planning

optimization and task execution. This strategy can improve the responsiveness and

safety of the robot. We highlight the performance on a 20 DOF PR-2 robot simu-

lation and on a human-like robot with 34 DOFs, with which we also use a walking

generator. In static environments, our algorithm offers up to 14X speedup while

still generating smooth trajectories. In dynamic environments, we show that the

algorithm can increase the success rate of the planning.

Our algorithm has some limitations. The performance of the hierarchical plan-

ner depends on the decomposition scheme and the motion trajectories computed

for the previous stages. Since the underlying planner uses a stochastic optimization

approach, the trajectories from the previous stages may not provide a good initial

guess for local refinement. As a result, we cannot provide the completeness guaran-

tee with our approach that it will always be able to compute a collision-free path

within the given time interval. Currently, we need to assume the overall trajectory

time and set the time for each waypoint on the trajectory before the optimization

solver is used. In our implementation, we set the overall time as T and distribute

the waypoints equally over the total time. These two requirements may cause fail-

ure of the planner in some situations. Moreover, our current implementation only

takes into account two constraints: that the path be collision-free and that it meet

smoothness requirements. In order to use such an approach for humanoids, we also

need to take into account stability and control constraints. Recently, we have ex-

tended this approach to handle dynamic stability constraints (See Fig. 9).? Finally,

we have only evaluated our planner in a simulated environment, and it does not

take into account the various sensor errors and uncertainty that come with real

data.

There are many avenues for future work. It would be interesting to extend our

approach to compute whole-body trajectories for high-DOF human-like models.
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Fig. 9: Hierarchical planning of HRP-4 robot. Using stability constraints, the

optimization-based planner computes physically plausible walking motion.

We would also like to evaluate its performance in more dynamic environments and

ensure that the resulting motion of human-like robots is dynamically stable. Finally,

we would like to use this approach for high-level planning and task execution, and

evaluate its performance on physical robots.
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