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Abstract

We present a parallel time-domain wave solver designed for large and high

frequency acoustic domains. Our approach is based on a novel scalable method

for dividing acoustic field computations specifically for large-scale distributed

memory clusters using parallel Adaptive Rectangular Decomposition (ARD).

In order to efficiently compute the acoustic field for large or high frequency

domains, we need to take full advantage of the compute resources of large clus-

ters. This is done with new algorithmic contributions, including a hypergraph

partitioning scheme to reduce the communication cost between the cores on

the cluster, a novel domain decomposition scheme that reduces the amount of

numerical dispersion error introduced by the load balancing algorithm, and a re-

vamped pipeline for parallel ARD computation that increases memory efficiency

and reduces redundant computations.

Our resulting parallel algorithm makes it possible to compute the sound

pressure field for high frequencies in large environments that are thousands of

cubic meters in volume. We highlight the performance of our system on large

clusters with 16000 cores on homogeneous indoor and outdoor benchmarks up

to 10 kHz. To the best of our knowledge, this is the first time-domain parallel

acoustic wave solver that can handle such large domains and frequencies.
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1. Introduction

Modeling and simulating acoustic wave propagation is one of the leading

problems in scientific computing today [12]. Challenges in this area vary from

real time constraints in video games and virtual reality systems to highly accu-

rate offline techniques used in scientific computing and engineering. The sim-

ulation environment also varies; acoustic propagation problems can vary from

small room acoustics problems to large, complicated outdoor scenes.

The sound we hear is the results of small changes in air pressure traveling

as a wave. The propagation of these pressure waves is governed by the linear,

second order partial differential acoustic wave equation:

∂2

∂t2
p(~x, t)− c2∇2p(~x, t) = f(~x, t), (1)

where ~x is a 3D position, t is time, p(~x, t) is the pressure at point ~x and time t,

f is a forcing term at point ~x and time t, and c is the speed of sound. In this

paper, we assume that the environment is homogeneous and the speed of sound

is constant in the media.

There are two classes of methods known for solving the acoustic wave equa-

tion. The first class encompasses geometric approaches to solving the equation.

These methods include such approaches as ray tracing techniques, image source

methods, and beam tracing [2, 15, 16]. Geometric approaches are viable for real

time applications, but cannot easily represent some wave phenomena such as

diffraction or scattering.

The second class of methods, the wave-based techniques, directly solve the

wave equation. These techniques provide accurate solutions to the acoustic

wave equation, suitable for scientific and engineering applications, but at a

large computational cost. These methods include finite difference time domain

(FDTD) [6, 33], finite element method (FEM) [42], and the boundary element

method (BEM) [11, 8]. Most current implementations of these methods are

limited to small domains (less than 10 000 m3) or low frequencies (e.g., less than
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2 kHz). There has also been some work in hybrid methods that combine wave-

based and geometric techniques [46].

The main challenge is that the computational cost of computing the sound

propagation in the environment scales with the 4th power of frequency and

linearly with the volume of the scene, while memory use scales with the 3rd

power of frequency and linearly with the scene volume. Since the human aural

range scales from 20 Hz to 20 kHz, large scenes such as a cathedral (10 000 m3

to 15 000 m3) would require tens of Exaflops of computation and tens of ter-

abytes of memory to compute using prior wave-based solvers. This makes high

frequency acoustic wave simulation one of the more challenging problems in

scientific computation [14].

Recently, there has been a lot of emphasis on reducing the computational

cost of wave-based methods. These techniques, called low dispersion techniques

use coarser computational meshes or decompositions in order to evaluate the

wave equation. One example of a low dispersion algorithm is the Adaptive

Rectangular Decomposition method (ARD)[29, 25], a solver for the 3D acoustic

wave equation in homogeneous media. ARD is a domain decomposition method

that subdivides the computational domain into rectangular regions. One of the

main advantages of ARD is the greatly reduced computational and memory

requirements over more traditional methods like FDTD [26].

Despite these computational advantages, the ARD method still requires a

great deal of computing power and memory in order to evaluate the wave equa-

tion for the full range of human hearing on large architectural or outdoor scenes.

In order to deal with these requirements, a parallel distributed version of ARD

was developed [26]. However, this approach was limited to smaller scenes and

compute clusters and still had high computational requirements. The approach

did not take into account the cost of communication between cores and suffered

from numerical instability.
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Main results

We present MPARD, a Massively Parallel Adaptive Rectangular Decompo-

sition method capable of computing 3D sound propagation through large archi-

tectural and outdoor scenes for pressure field computations at large frequencies

(at least 10 kHz) and is designed to utilize tens of thousands of CPU cores.

Scaling to this number of CPU cores with such a large domain introduces

many challenges, including communication cost, numerical stability, and reduc-

ing redundant computations. MPARD addresses all of these in a novel method

that:

• Uses a hypergraph partitioning approach for load balance and communi-

cation reduction among multiple nodes

• Introduces a modified domain decomposition algorithm to improve the

numerical accuracy of our wave-based simulator

• Uses a multi-stage program pipeline for scene preprocessing and runtime

computation

MPARD is capable of computing the acoustic propagation in large indoor

scenes (20 000 m3) up to at least 10 kHz at around 80 s per time step on 1024

cores. The algorithm has been tested to and scales up to at least 16000 cores,

where each time step of a 5 kHz scene takes around 0.2 s. We have analyzed

many aspects of our parallel algorithm including the scalability over tens of

thousands of cores, the time spent in different computation stages, communi-

cation overhead, and numerical errors. To the best of our knowledge, this is

one of the first wave-based solver that can handle such large domains and high

frequencies.

2. Previous work

There has been considerable research in the area of wave-based acoustic

solvers, including the field of parallel solvers, domain decomposition approaches,
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and low-dispersion acoustic solvers. In this section, we provide a brief overview

of some of these approaches.

2.1. Parallel wave-based solvers

Parallel wave-based solvers are used in a multitude of scientific domains,

including the studying of seismic, electromagnetic, and acoustic waves. A large

category of these solvers are parallel FDTD solvers either for large clusters

[17, 43, 47, 48] or for GPUs [31, 36, 40, 41, 45, 35, 19]. A category of parallel

methods are also based on finite-element schemes [13, 5].

Additionally, there are several parallel methods developed for specific ap-

plications of the wave equation. PetClaw [1] is a scalable distributed solver

for time-dependent non-linear wave propagation. Other methods include dis-

tributed finite difference frequency-domain solvers for visco-acoustic wave prop-

agation [27], discontinuous Galerkin solvers for heterogeneous electromagnetic

and aeroacoustic wave propagation [4], scalable simulation of elastic wave prop-

agation in heterogeneous media [3], etc.

2.2. Domain decomposition

MPARD, like ARD, is a domain decomposition method. Domain decom-

position approaches subdivide the computational domain into smaller domains

that can be solved locally. The solver uses these local solutions to compute a

global solution of the scientific problem. Many of these approaches are designed

for coarse grain parallelization where each subdomain or a set of subdomains is

computed locally on a core or a node on a large cluster.

Domain decomposition approaches tend to fall into two categories: overlap-

ping subdomain and non-overlapping subdomain methods [10].

Existing domain decomposition approaches in computational acoustics in-

clude parallel multigrid solvers for 3D underwater acoustics [32], pseudospec-

tral acoustic solvers [19, 49], and the non-overlapping subdomain ARD ap-

proach [29]. Additional non-overlapping approaches include Trefftz methods

that can be decomposed for parallelization [28] and line source decomposition

methods for ESM (equivalent source method) techniques [18].
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2.3. Low dispersion acoustic solvers

The goal of low dispersion methods is to reduce computation cost by using

coarser computational meshes. A wide variety of approaches exist including an

interpolated wideband scheme [22], extended pseudospectral methods for 3D

domains [20], and a variety of low dispersion BEM approaches [34]. Waveguide

approaches similarly reduce computation costs by reducing the computational

grid size [44, 37, 38].

Our approach is primarily based on the ARD method [29] which partitions

the computational domain into rectangular regions. It utilizes the property that

the wave equation has a closed form solution in a homogeneous rectangular do-

main. Therefore, the only numerical error originates from the interfaces between

these rectangular regions, allowing a much coarser grid size.

3. ARD Background

In this section, we provide a brief overview of the ARD method and a de-

scription of the parallel ARD pipeline. More details about these methods are

available in [29, 25, 26].

Table 1 summarizes the problem size limitations of previous ARD algorithms,

including parallel ARD. Previous algorithms have been limited to problem sizes

under 3 kHz on large architectural scenes. The MPARD algorithm, on the other

hand, is capable of operating on frequencies an order of magnitude greater

than previous ARD methods. However, all algorithms are based on the same

fundamental principles.

3.1. Adaptive Rectangular Decomposition

Adaptive Rectangular Decomposition (ARD) is a sequential wave-based time

domain method for solving the 3D acoustic wave equation (Equation 1). ARD

is limited to homogeneous environments, where the speed of sound c does not

vary.
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Solver No. Cores Maximum Frequency on Cathedral

ARD [29] 1 1000 Hz to 2000 Hz

GPUARD [25] 480 CUDA cores 1650 Hz

Parallel ARD [26] 1024 3000 Hz

MPARD 16384 10 000 Hz

Table 1: Comparison between different ARD techniques include MPARD, the method we

introduce. We use the Cathedral scene as a benchmark, which is 19 177 m3 in volume. We

show the highest frequency used to obtain results using these techniques. In the case of

GPUARD memory becomes a limiting factor, while in ARD computation time is. Parallel

ARD has difficulty scaling past 1000 cores because of the limitations listed in Section 3.2.3. In

this paper, we introduce the MPARD technique, which can scale to much higher frequencies

(10 kHz) and a much higher number of cores.

ARD is a domain decomposition approach. It takes advantage of the fact

that the analytic solution of a 3D rectangular domain in a homogeneous me-

dia is known [23]. The ARD solver computes this analytic solution inside the

rectangular regions and patches the results across the boundaries between these

regions using an FDTD stencil.

After the sound pressure in each rectangular subdomain is computed, sound

propagation across the interfaces between subdomains must be calculated. ARD

uses a (6,2) FDTD stencil in order to patch together subdomains.

The pressure field computation assumes a perfectly reflective boundary con-

dition for the rectangular regions and the interface stencils. However, this is

an unrealistic assumption for real-world scenes, which have a variety of differ-

ent absorbing materials and walls (the free space boundary condition can be

modeled as a fully absorptive wall).

ARD implements the Perfectly Matched Layer (PML) scheme, a modified

form the wave equation that absorbs propagating waves [30]. PML subdomains,

using this modified wave equation, are generated from wall regions and the

boundary of the scene and use the same interface scheme to transfer pressure

waves between subdomains. The boundary conditions of the ARD method are

not frequency dependent, and ARD must be executed for each frequency band.
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Frequency-dependent boundary conditions are an open problem for the ARD

method.

3.2. Parallel ARD

The parallel ARD method is an adaptation of the ARD method for dis-

tributed compute clusters and shared memory machines [26]. MPARD is based

on the same framework as parallel ARD, so this section will go over relevant

implementation details.

3.2.1. Parallel algorithm

The parallel ARD pipeline is similar to the serial implementation discussed

in Section 3.1. Because the subdomains in the ARD decomposition are non-

overlapping, the local computation for each rectangular subdomain can be run

independent of any other subdomain. Therefore, each core can update a set of

subdomains independently of any other core. These subdomains are referred

to as local subdomains for a particular core and are fully in memory for that

core. Subdomains not present on a core are referred to as remote subdomains;

only metadata is stored for these rectangular regions. This metadata generally

includes which rank (core id) owns the subdomain and what interfaces the sub-

domain is spanned by. The core that is responsible for the local update of a

rectangular region is referred to as the owner of that subdomain.

However, interfaces between subdomains still need to be evaluated. Each

interface can span between two and six subdomains (the interface is three grid

cells deep on either side of the boundary between subdomains), but only one

core needs to carry out the interface computation. This core is referred to

as the owner of the interface. The owner of the interface is generally also the

owner of one of the rectangular regions that the interface spans. Before interface

evaluation is performed, the owner of the interface needs all the pressure terms

from the subdomains spanned by the interface. Not all of these subdomains are

local; some may be resident on other cores. Therefore, the core evaluating the

interface needs to retrieve the pressure data from other cores. Similarly, once
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the interface is resolved, the results need to be sent back to the cores owning the

subdomains spanned by the interface. Finally global update for each rectangular

region is computed with the results from the interface handling. This means

that the final global pressure computation requires two data transfers per remote

interface.

3.2.2. Load balancing

Due to the greedy nature of the rectangular decomposition algorithm, some

rectangles can be quite large. Additionally, because of the stairstepping artifacts

of curved geometric surfaces, the decomposition algorithm can generate some

very small subdomains that are a single grid cell in each dimension. Because

the evaluation cost of the local update of a subdomain is linearly related to the

volume of that subdomain, the discrepancy in subdomain sizes can cause load

imbalance problems where all the cores wait for one core to finish computing

the local update. In fact, without modifying subdomain sizes, increasing the

number of cores does not provide any speedup at all [26].

Parallel ARD implements a load balancing scheme that modifies the sizes

of the rectangles to be less than a certain threshold volume (for example the

total scene volume divided by the number of cores). Splitting is implemented by

dividing any rectangle greater than a certain volume into two smaller rectangles.

The splitting plane is chosen so that one of the rectangles is just below the

threshold volume. This approach can minimize the interface area added under

some circumstances, but does not take into account the shape of the subdomains.

This can cause numerical stability issues, as discussed in Section 4.2.

Finally rectangular subdomains are assigned to cores using a simple bin-

packing approach where the total volume assigned to each core is roughly equal.

The bin-packing approach only considers the total volume assigned to each core

and does not take into account communication cost of the core assignment.
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3.2.3. Limitations of parallel ARD

While parallel ARD has been shown to work well for smaller clusters up to

1000 cores, it has many limitations when scaling to very large clusters with tens

of thousands of cores:

• Parallel ARD does not take into account the cost of communication be-

tween cores

• Parallel ARD suffers from numerical instability when a large number of

cores is used

• Parallel ARD initializes interface information in the simulation itself, which

can take hours on larger scenes

Large indoor and outdoor scenes at high frequencies on a large number of

cores suffer from these issues. On some of our test scenes, hundreds of gigabytes

of interface data are be created. This means a significant increase in com-

munication cost that is dependent on the assignment of subdomains to cores.

Additionally, the Parallel ARD splitting scheme creates thin (less than 3 grid

cells thick) and badly formed partitions when splitting the larger partitions.

This occurs when the splitting threshold is lower than the smallest surface area

of a given partition. Finally, the initialization time ARD requires to compute

hundreds of gigabytes of interface data can take hours. On larger clusters where

computation time is a valuable resource, this is time wasted.

4. MPARD

In order to compute the acoustic field over time for large or high-frequency

scenes, MPARD introduces a new parallel algorithm for the ARD method de-

signed to run on tens of thousands of cores. The algorithm includes a modi-

fied subdomain assignment scheme that takes into account the communication

costs between cores, a modified domain decomposition and splitting stage that

increases numerical stability, and new preprocessing stages for computing meta-

data for interfaces and PML subdomains.
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4.1. Communication efficiency

Each interface in the scene covers two or more subdomains (for example, if

the subdomains on either side are especially thin, the 6th order stencil may cover

more than two). When subdomains on an interface are owned by different cores,

the pressure terms required by the interface and the forcing terms generated by

the interface need to be communicated.

MPARD uses asynchronous communication calls to avoid blocking while

sending messages. When a core completes an operation (either a subdomain

update or an interface update), it can send off a message to the cores that

require the computed results. The sending core does not have to wait for the

message to be received and can continue working on the next computation.

When receiving data, a core can place the message on an internal queue until

it needs the data for that operation. As a particular core finishes working on a

subdomain, it sends off an asynchronous communication message to cores that

require the pressure field of that subdomain for interface computation. As the

message is being sent, that particular core begins to process the next subdomain,

sending off a message upon completion. At the same time the receiving core is

working on its own subdomains. The incoming message is stored on an internal

queue for use when needed.

Another important thing to note is that in general ARD’s communication

cost of evaluating all the interfaces is proportional to the surface area of the

rectangular region while the cost of evaluating each subdomain is proportional

to the volume of the subdomain. This implies a rough O(n2) running time for

interface evaluation (where n is the length of one side of the scene) while local

update has an O(n3) running time. This means that as the size of the scene

or the simulation frequency increases, the computation cost of local update

dominates over the communication cost of transferring pressure and forcing

values for interface evaluation. On the other hand the finer grid size of larger

complex scenes can introduce many more interfaces which causes an increase in

the cost of communication.

In order to evaluate these interfaces, communication is only required when
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(a) (b) (c) (d)

Figure 1: The relationship between computational elements of MPARD (rectangular subdo-

mains and interfaces) and the hypergraph structure. (a) shows an example scene of three

subdomains with three interfaces (shown in grey). The organization of the resulting hyper-

graph is shown in (b), while (c) shows the hypergraph with the node weights determined by

the sizes of the rectangles and the hyperedge weights determined by the size of the interfaces.

Subfigure (d) shows an example partitioning of the simple graph, taking into account both

the computation cost of each node and the cost of each interface.

resolving the interface between two or more subdomains that lie on different

cores. As a result, minimizing the number of these interactions can greatly

reduce the total amount of communicated data.

This can be performed by ensuring that neighboring subdomains that are

part of the same interface are located on the same core. Due to the complexity

of the scene and the interactions between different rectangular regions, this is

not feasible. However, we can use a heuristic algorithm to minimize the number

of interfaces that span across multiple cores.

This problem can be reworded as a hypergraph partitioning problem. Our

hypergraph can be represented as the pair H = (X,E) where X, the nodes

of the hypergraph are the rectangular regions of our decomposition, while the

hyperedges E represent the interfaces between the rectangular regions. Hyper-

edges are used rather than regular edges because an interface can actually cover

more than two subdomains (see Section 3.2.1).

The goal of the hypergraph partitioning algorithm is to divide the hyper-

graph into k regions such that the cost function of the hyperedges spanning

the regions is minimized [9]. In ARD, the partitioning algorithm can be run

to divide our computational elements (interfaces and rectangles) into k regions,

where k is the number of processors used in the simulation. As a result, the
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interface cost between cores is minimized.

Additionally, because the hypergraph partitioning algorithm attempts to

generate k regions of equal cost, the heuristic serves as a way of load balancing

the assignment of work to cores. The cost of evaluating a rectangular region

is linearly related to the volume of the region. Therefore, we can input the

volume of each rectangular subdomain as the weight parameter for a node in

the hypergraph.

We implemented a hypergraph partitioning scheme through the PaToH (Par-

titioning Tool for Hypergraphs) library in order to minimize core-to-core com-

munication and equally distribute computation load across all cores [9]. We

pass the rectangular regions into the PaToH partitioner as vertices with weights

equal to the respective subdomain volumes. The hyperedges are defined by the

interfaces connecting separate subdomains. By partitioning the resulting hy-

pergraph, the resulting core assignments will reduce overall computation cost,

since neighboring vertices will tend to be assigned to the same core and they

will not require communication. This also allows for a balanced load distribu-

tion by assigning each core roughly equal volume, which is linearly related to

computation time. We use the following connectivity metric to determine the

cost of communication across boundaries:

C(Π) =
∑

n∈NE

wn(λn − 1), (2)

where C(Π) is the cost of a particular partitioning Π, NE is the set of cut

hyperedges, wn is the weight of hyperedge n, and λn is the connectivity of the

hyperedge. This metric is particularly useful because it prioritizes hyperedges

that connect many vertices and is such directly proportional to the computation

cost.

4.2. Load balancing and numerical stability

The splitting algorithm for load balancing introduced in parallel ARD min-

imizes the number of extra interfaces created by splitting in some cases. The
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larger of the resulting subdomains is exactly below the maximum volume thresh-

old of the splitting algorithm.

However, on a cluster with a higher number of cores and where the volume

threshold can be relatively small, this splitting algorithm can introduce a series

of very small and thin rectangles. Small and thin rectangles can create numerical

instability during interface resolution. These errors are caused by the interaction

between multiple overlapping interfaces.

In this particular case, it is more advantageous to have wider rectangular

subdomains that may introduce more interface area rather than degenerate

rectangles which can result in numerical issues.

We introduce a new splitting scheme for load balancing that is particularly

useful for reducing numerical instability at interfaces for higher numbers of cores.

Our new approach favors well-formed subdomains that are more cuboidal in

shape rather than long and thin rectangles.

Each rectangular region that has a volume greater than some volume thresh-

old Q is subdivided by the new algorithm. Q is determined by the equation

Q =
V

pf
, (3)

where V is the total air volume of the scene in spatial discretization units,

p is the number of cores the solver is to be run on, and f is the balance factor.

It is usually the case that f = 1, although this can be changed to a higher

value if smaller rectangles are desired for the hypergraph partitioning heuristic.

However, in general, smaller values of Q increase the overall interface error of

the solver since it increases the total interface area.

4.3. Interface and PML computation

An important step of the ARD and parallel ARD methods is the initialization

of interfaces and PML regions. This generally involves determining subdomain

adjacency and which grid cells are in an interface. This computation is linear

with respect to the number of grid cells in the scene – that is, it scales linearly

with the volume of the scene and with the 4th power of frequency. At higher
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2: The MPARD pipeline. The input geometry (a) is voxelized in the first step (b). The

rectangular decomposition step divides the domain into multiple non-overlapping subdomains

(c). The splitting step then splits these subdomains when they are greater than the volume

threshold Q (d). These partitions are then processed by the interface initialization stage which

computes interface metadata (e). The final preprocessing stage allocates subdomains to nodes

using the hypergraph partitioning (f). Finally, the simulation is run (g).

frequencies, the interface and PML setup can consume several hours of time

before any actual simulation steps are run.

In order to reduce the running time of the simulation, MPARD introduces

a new preprocessing step in which the interfaces can be initialized offline. This

preprocessing step occurs after any splitting and load balancing, after the de-

composition for the scene is final.

Additionally, this extra preprocessing step allows for further memory opti-

mization in MPARD. With the kind of global metadata computed in the pre-

processing, each core only needs to load the exact interfaces and PML regions

it needs for its computations.

4.4. MPARD Pipeline

MPARD introduces new preprocessing stages and a modified simulation

stage. The pipeline overview can be found in Figure 2. The scene input (Fig-

ure 2(a)) is first voxelized (Figure 2(b)). Next, the rectangular decomposition

fills the available air space with rectangular subdomains using a greedy algo-

rithm (Figure 2(c)). Next, our new splitting algorithm that avoids degenerate
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subdomains splits rectangular regions that are larger than the volume thresh-

old (Figure 2(d)). After interface regions are calculated (Figure 2(e)), we assign

subdomains to cores using hypergraph partitioning (f). Finally, our solver reads

the preprocessing data and runs the simulation for a set number of time steps.

4.4.1. Voxelization

The voxelization stage takes in a triangle mesh representing the environment

in which we want to compute the sound propagation. Because MPARD targets

large and high frequency scenes that may consume a large amount of memory,

we use a CPU method for voxelization. We implement an accurate and minimal

method (meaning voxels should fully cover the geometry but not more than

necessary) as introduced by Huang et al. [21].

The spatial discretization for the voxelization is determined by the min-

imum simulated wavelength and the required number of spatial samples per

wavelength, which is typically between 2 and 4 [29]. Therefore, the voxelization

only needs to be run once per desired maximum frequency.

4.4.2. Decomposition

The decomposition stage then reads the voxel field and determines the lo-

cation of the different cuboidal subdomains. The process is a greedy approach,

attempting to expand each rectangular subdomain into as large a volume as

possible under the constraints of the wall voxels.

At very high frequencies, such as 10 kHz, this process can take several days

to complete but only needs to run once for a given voxel input.

4.4.3. Core allocation and subdomain splitting

The next stage of the preprocessing is the core allocation and subdomain

splitting stage. In addition to a decomposition computed in the previous stage,

this step also requires the number of cores the solver will run on. This stage uses

the input values to compute a hypergraph partitioning for the decomposition

in addition to splitting any rectangular regions that have volumes greater than

the volume threshold Q.
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The core allocation stage then determines the assignment of subdomains to

cores by using the hypergraph partitioning assignment or alternatively a simple

bin-packing algorithm. This load balancing step ensures that each core has a

roughly equal amount of work to complete during the acoustic simulation.

The allocation and splitting stage must be run for each decomposition for

each desired core configuration.

4.4.4. Interface and PML preprocessing

The final stage of preprocessing computes interfaces and creates PML regions

from wall voxels. This stage takes as input a modified decomposition from the

core allocation and splitting stage in addition to a refinement parameter r that

can be used to subdivide voxels in the final acoustic simulation. This allows us

to run at r times the frequency the decomposition was run at. However, this is

at the expense of some accuracy where high frequency geometric features of the

scene that may affect sound propagation cannot be accurately represented.

One additional caveat of the interface and PML preprocessing file is file read

performance in the simulator. The interface file can be several GBs in size, and

thousands of CPU cores reading the file can cause a bottleneck. As a solution,

we use the file striping feature of the Lustre file system [39] to increase file read

performance over all cores.

The interface and PML initialization stage only needs to be run once for

each core configuration.

5. Results and analysis

Our method was tested on two computing clusters: the large-scale Blue

Waters supercomputer [7] at the University of Illinois and the UNC KillDevil

cluster. Blue Waters is one of the world’s leading compute clusters, with 362240

XE Bulldoze CPU cores and 1.382 PB of memory. The KillDevil cluster has

9600 CPU cores and 41 TB of memory.

Our primary experiments were performed on the Sibenik Cathedral scene

and the Village scene (Figure 2). Both scenes provide a challenge for the un-
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Scene Name Volume Frequency Number of Triangles

Cathedral 19 177 m3 5 kHz, 10 kHz 55415

Village 362 987 m3 1.5 kHz 358

Table 2: Dimensions and complexity of the scenes used in our experiments. The input triangle

mesh is voxelized according to the simulation frequency.

(a) Sibenik Cathedral Scene (b) Village Scene

Figure 3: The scenes used in our experiments.

derlying ARD solver. Cathedral has many curved surfaces, creating very small

rectangular regions in the rectangular decomposition. Additionally, the large

areas in the center of the cathedral creates very large rectangular subdomains.

Furthermore, the size of the scene is around 20 000 m3, making communicating

the sound propagation of the scene at high frequencies with wave-based meth-

ods very challenging. For example, a 10 kHz voxelization of the cathedral has

almost 4 billion voxels. On the other hand, Village is mostly a large open area

with a few buildings (Figure 3). Village is also much larger than cathedral. The

size of the scene (362 000 m3) presents many computational challenges, partic-

ularly with computing interfaces. The scene contains over 100GB of interface

data compared to 40GB in the 10 kHz Cathedral scene. On the other hand, the

cathedral scene contains many more partitions (176k compared to 31k), making

communication more of a challenge.

We were able to run the MPARD solver on the cathedral scene up to 10 kHz.

Figure 4 shows the average running time of each stage of our algorithm on this

scene in comparison to the 5 kHz. The wait time for interface terms shows the
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(a) Local Timings

(b) Communication Timings

Figure 4: The average running time of each stage of our solver on a 10 kHz scene compared to

the 5 kHz scene. These results were obtained on 1024 cores. The communication timings show

the various stages of interface evaluation and communication. Remote Interface evaluation is

the compute cost of the interface, while the Forcing Term Wait time is the communication cost

of transferring forcing terms from the interface to the spanned subdomains, and the Pressure

Term Wait time is the communication cost of transferring pressure terms to the interface from

the spanned subdomains.
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Figure 5: Scalability results from 1024 to 16384 cores on the 5 kHz cathedral scene. We obtain

close-to-linear scaling in this result. The base speedup is 1024 on 1024 cores (assuming 1024

cores is 1024 times faster than one core) since the scene will not fit in memory on a lower

number of cores.

necessity for optimizing communication at higher frequencies.

5.1. Scalability results

The primary scalability experiment was done on the cathedral scene at 5 kHz.

The experiment was executed on the Blue Waters supercomputer up to 16384

cores. The main purpose of this experiment is to understand the performance

of MPARD at very high number of cores. Figure 5 shows the performance of

MPARD on the cathedral scene for 1024 cores all the way up to 16384 cores.

With this kind of compute power, we are able to compute each time step on

Cathedral in 0.193 75 s for a 5 kHz scene.

The Village scene also shows scalability up to 8192 cores. The dominating

cost in the village scene is the computation time of the interfaces (Figure 7).

We show sublinear scaling in this case, with compute times as fast as 0.6761 s

per time step for a 1.5 kHz scene.
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Figure 6: Scalability results from 1024 to 8192 cores on the 1.5 kHz village scene. We obtain

sublinear scaling in this result. The base speedup is 1024 on 1024 cores since the scene will

not fit in memory on a lower number of cores.

Figure 7 shows a plot of how the interface area generated by our splitting

scheme increases as the number of cores used in the splitting algorithm increases.

We show a comparison between the Cathedral and Village scenes.

5.2. Comparisons and benefits

In comparison to standard methods like FDTD, ARD does not require as

fine of a computational grid. Traditional FDTD methods generally require a

spatial discretization that is 1/10 the minimum wavelength (although the low-

dispersion methods listed in Section 2.3 aim to lower this requirement). In

comparison ARD can use a much coarser grid size, around 1/2.6 times the

minimum wavelength [29, 25]. This means that ARD can inherently be 24− 50

times more memory efficient than FDTD and up to 75− 100 times faster [26].

5.2.1. Comparsion with GPU ARD

MPARD provides advantages over previous GPU parallel ARD approaches.

Large scenes at high frequencies require terabytes of memory that are easily
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Figure 7: Interface area generated by our splitting scheme for the Village and Cathedral

scenes. The interface area tapers off as the number of cores increases.
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Figure 8: Communication cost comparison between MPARD and parallel ARD on a 5 kHz

cathedral scene. In this case, the large number of interfaces in the cathedral scene means that

the reduction in communication cost using MPARD is much larger.

available on large compute clusters but are not available on GPUs [25]. Secondly,

MPARD scales over a much larger number of cores while GPU ARD is limited

to a single machine and a shared memory architecture.

5.2.2. Comparison with Parallel ARD

Communication costs In order to examine the benefits of hypergraph par-

titioning, the total size of all messages averaged per core sent during a single

simulation time step of both scenes was computed. The scenes had cores as-

signed through the parallel ARD bin-packing approach and the other had cores

assigned through the MPARD hypergraph partitioning approach [26]. Figure 8

shows the results of this experiment on a 5 kHz scene where the hypergraph

partitioning approach has a 10x reduction in communication costs per core for

1024 cores and a 3x reduction per core for 16384 cores. The village scene, half

as large in memory also had a reduction in communication costs (Figure 9).

Subdomain splitting Figure 10 shows the difference in decomposition be-
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Figure 9: Communication cost comparison between MPARD and parallel ARD on a 1.5 kHz

village scene. The village scene has fewer interfaces so there is less reduction in communication

cost, but MPARD still is more efficient in this case.

(a) Parallel ARD (b) MPARD

Figure 10: 2D slice comparison between parallel ARD and MPARD splitting methods. Notice

the series of thin rectangles that are generated in parallel ARD [26] and can result in numerical

stability problems because of the width of the partition. MPARD does not have similar

problems and is more stable than parallel ARD. This result was computed on a decomposition

for 1024 cores on a 500 Hz scene.
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tween the old conservative approach and the new subdivision approach on the

Cathedral scene. Both scene decompositions were run on 1024 cores to show the

difference between the two approaches at a high number of cores. The parallel

ARD approach creates a series of very thin rectangles along the edge of the

interface while the new splitting scheme creates more cuboidal subdomains.

As discussed in Section 3.2.3, the thin rectangular decomposition can cause

numerical instability. This numerical instability is not present in MPARD sim-

ulations. Even as the number of cores increase to 16000, the error of sampled

impulse responses does not exceed 5% (see Figure 11). The error was computed

using the following metric:

n∑
i=1

(
p

′

i(~x)− pi(~x)
)2

n∑
i=1

p2i

, (4)

where pi is the reference pressure computed in Equation 1 at listener position ~x

without partition splitting, p
′

i is the pressure computed with partition splitting,

and n is the total number of time steps.

A comparison in Figure 12 between a reference single-threaded impulse re-

sponse and the impulse response calculated on a 16384 core run shows how

various features of the impulse responses match. Figure 13 shows how the error

of the full pressure field varies over 2000 time steps, until most of the sound

dissipates. For the full-field error, we used the mean-squared error metric for

each time-step:

1

m

m∑
j=1

(
p

′

j − pj
)2

(5)

where m is number of grid points in the volume, pj is the reference pressure at

grid index j, and p
′

j is the computed pressure at grid index j.

This shows MPARD’s stability and accuracy over the whole course of a full

simulation. For these experiments, we followed a similar experimental setup as

previous work that have validated the serial ARD technique [24]. This work

focused on the village scene, a digital reproduction of a village in which the
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Figure 11: Error of an impulse response taken around 10 m away from the source on the

Village scene using the MPARD method for a single band impulse at 225 Hz. The impulse

response is calculated for 1024 cores all the way to 16384 cores. Subdomain splitting increases

as the number of cores increases, so the error also increases. Even for an extreme number of

cores (16384), the error is limited to around 5%.

propagation of various sound sources was measured. The measured impulse re-

sponses at various listener positions were compared to impulse responses com-

puted by the ARD method. The comparison was done by comparing average dB

and comparing spectrograms with dynamic time warping to account for slight

differences in the arrival times of different wave forms. We compared our results

directly to the serial ARD implementation of this scene, and so did not have to

use dynamic time warping techniques.

6. Conclusion and future work

MPARD is a massively parallel approach showing scalability up to 16000

cores and is capable of calculating pressure fields for large scenes with frequen-

cies up to 10 kHz. MPARD introduces several improvements over parallel ARD,

reducing communication cost by assigning cores with a hypergraph partition-
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Figure 12: Comparison of impulse responses 10 m away from a 225 Hz source. The reference

impulse response uses the serial implementation of ARD [24], while the simulated impulse

response uses a subdomain partitioning for 16384 cores. We show that the impulse response

matches closely with the serial implementation validated in Mehra et al. [24].
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Figure 13: Error of the full field MPARD simulation over time on a 16384 core simulation

excited by a single source at 225 Hz. The error is introduced by spurious reflections and

dispersion, but does not accumulate as time increases. The error was computed using the

mean-squared error for each time step.
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ing scheme, providing better numerical stability for higher numbers of cores,

and implementing an extended preprocessing pipeline that reduces the usage of

valuable cluster resources for redundant calculations.

In the future, although we have shown the ability to compute very high

frequency scenes, we would like to test the method on more scenes including

even larger architectural and outdoor scenes at high frequencies. There has

already been some work on hybrid sound propagation, using geometric methods

for higher frequencies and ARD for lower frequencies [46], so we would like to

expand on this for large outdoor scenes.

Scaling to large outdoor scenes such as cities or towns poses many techni-

cal challenges. Although we reduce communication costs between cores with

a hypergraph partitioning technique, a hybrid shared/distributed memory ap-

proach may reduce communication costs even further. Additionally, we could

take advantage of the computational power of GPUs for a fully heterogenous

computing algorithm.
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