“Motion Planning and Proximity
Computations for Industrial Robots

Dinesh Manocha
Department of Computer Science
UNC Chapel Hill

dm@cs.unc.edu

http://gamma.cs.unc.edu

\ Collaborators
Jia Pan (UNC/Berkeley/Hong Kong Univ)

 Chonhyon Park (UNC)

 Ming Lin (UNC)

* Stephen Guy (UNC/Univ. of MN)

* Jamie Snape (UNC/Kitware)

* Jur Van Den Berg (UNC/Utah/Google)
* Sachin Chitta (Willow Garage/SRI)

* |loan Sucan (Willow Garage/Google)

Motion Planning

Widely studied in academic for 40+ years

Good algorithms and software tools

Technology transfer (CAD/CAM, games, simulation)

Limited use for industrial robots

Planning tools for Industrial Robotics:
Challenges

* Limited capabilities

* Limited development tools

Lack of portability and flexibility

Slow technology adoption

Collision & Proximity Queries

Geometric reasoning of spatial relationships
among objects (in a dynamic environment)

0>

Collision Detection Contact Points & Normals

Closest Points & Separation Distance Penetration Depth

Collision & Proximity Computations

* A key component of motion planning algorithms
(90% of total time)

Widely used in CAD/CAM, simulation and virtual
prototyping

Studied in academia for 30+ years

e Supported in robot simulation and CAD systems

?Our work on Proximity Computations

\Nf

J

e Fast algorithms for convex polytopes (1991 onwards)

* Bounding volume hierarchies for general polygonal
models (1995 onwards)

 Deformable models & self-collisions (2000 onwards)

e Use of GPUs and multi-core hardware (2005 onwards)

* Multi-robot planning and coordination (2008 onwards)

*¥\Prior work on Proximity Computations
N

Multiple software systems

I-Collide, RAPID, PQP, DEEP, SWIFT, SWIFT++,
DeformCD, PIVOT, Self-CCD, RVO, HRVO

http://gamma.cs.unc.edu/software/#collision
More than 120,000 downloads from 1995 onwards

Issued more than 55 commercial licenses (Kawasaki,
MSC Software, Ford, Honda, Sensable, Siemens, BMW,
Phillips, Intel, Boeing, etc.)

*¥\Prior work on Proximity Computations
N

Multiple software systems

* |-Collide, RAPID, PQP, DEEP, SWIFT, SWIFT++, DeformCD, PIVOT,
Self-CCD, RVO, HRVO

http://gamma.cs.unc.edu/software/#collision
e More than 120,000 downloads from 1995 onwards

e |ssued more than 55 commercial licenses (Kawasaki, MSC
Software, Ford, Honda, Sensable, Siemens, BMW, Phillips, Intel,

Boeing, etc.)

Widely used, but not on industrial robots

Recent Work: FCL

= A new collision and proximity computation
library

— Flexible: different object types/ queries
— Extensible: adding new algorithms is easy

— Efficiency: similar performance with the best
libraries

* Provide many functions from state-of-the-art
research, more in future

Point Cloud

Triangle
Mesh

Collision
Object

Geometric
Shape

Time Frame
Information

Traversal m—
Collision

Detection

Node

Initialization

http://gamma.cs.unc.edu/FCL/

Articulated
Body

Collision
Manager

Collision
Result

L: Supported Functions (Spring 2014)

Rigid Objects Point Clouds Deformable Articulated
Objects Objects

(Discrete)
Collision
Detection

Continuous Y Y Y Y
Collision
Detection

Self Collision Y Y Y Y
Detection

Penetration Y N N N
Estimation

Distance Y N Y Y
Computation

Broad-phase Y Y Y Y
Collision

FCL: Usage

* Independent code, but ROS interface is provided

e Available at http://gamma.cs.unc.edu/FCL

* Part of Movelt:
http://moveit.ros.org/wiki/Movelt!

®FCL Application: Optimal Inverse
‘ Whematics for Complex Path Planning

:::ROS

http://rosindustrial.org/

@N@Robot Sensors: Data Collection

Cameras

15 N@Robot Sensors: Data Collection

-y
P -

|||II|'“/

Laser Scanners

T, Handling Sensor Data

Human environments
Clutter, dynamic obstacles

Data from 3D sensors

Large number of points (~10k for laser scans, ~20k for
stereo)

Real-time computation important for fast online reactive
grasping, motion planning

Proximity computation important for many useful heuristics
in robotics

Efficient collision and proximity computation is essential for any
online robot operations in human environments

http://gamma.cs.unc.edu/POINTC/

Sensor Data

 Point cloud

e Output from laser/Kinect, etc.

e Cannot encode unknown regions

* Very large
* Octree (octomap)

e Store point cloud in a compact manner
e Support multi-resolution

* Encode occupied/free/unknown regions

C

‘Ac elerated Pipeline: Point-Cloud Data

* Directly collide with sensor data represented
by octree

Broa 1 Pt.ase o
Sensor data Proximity

Octree *» Boxes Struc ure

. Algorithms
Cons<.rucHon 8

(octree)

e We eliminate construction time in this
pipeline

http://gamma.cs.unc.edu/POINTC/

roximity & Planning with Industrial
Robots

http://rosindustrial.org/

Task Executions of Robots

* Advances in technology allow robots to perform
complex tasks

robotics ..

<PR2: fetching a beer from the fridge> <Baxter: $22k robot needs no programming>

Task Execution with Multiple Components

* Ataskis decomposed into many primitive
subtasks

g »

". J ——— .

o |~
- :

|4

L+ X
AN

<PR2: taking out a beer from the fridge>
(From Willow Garage)

Move the body to the fridge.

Move the left arm to the handle.

Move the body to open the fridge door.
Move the body to in front of the fridge.
Move the left arm to hold the door.
Move the right arm to the beer.

Grasp the bottle.

Move the right arm to the basket.
Release the bottle.

W oONOLREWDNRE

Most of the subtasks are moving
the robot to the next desired pose

Subtask Execution

* ‘Move the body to the fridge’ subtask

— Use sensors to recognize the objects and
obstacles in the environment

— Compute a collision-free path to the pose close to
the fridge

— Control motors to execute the computed motion

[Sense H Plan H Move]

Motion Planning: RRT Algorithm

e Serial RRT
tree expansion

Motion Planning: Challenges

* How to perform motion planning computation in
realtime?

* How to handle high DOF robots

NVIDIA & AMD GPU Compute

Accelerators
AMD Radeon 7970 NVIDIA GTX 680

3.79 Single Tflops 3.09 Single Tflops
947 Double Gflops 1.1 Double Tflops
2048 Stream Cores 1536 CUDA Cores

Commodity Tera-Flop Processor (peak performance)

i Heterogeneous Processing
=

3rd Generation Intel® Core™ Processor:

22nm Process
‘”":;" “'uk’"n System
. COI‘ Agent&

S Processor - . g : .
. ¥ : e : " .
Graphics © el S med¥eii et | Including | :

A DM, Display |
— @nd Misc. /O] =

[m m LSharsiL?'SachS:: ow om ! .
—H Jid Reallio] B

 omkbLELRLS fii'-»': Memory Controller I/0

New architecture with shared cache delivering more performance and
energy efficiency

CPU + GPU on the same chip

Parallel Poisson-RRT Algorithm

@ AND Parallel RRT Tree @ Poisson-RRT Tree

X goal

s

. . Xin . .
Y2 4 Y3
/ y3 Y2 < Y4
yi1 ,\Y4 V1
V

No nodes which are too close to each other

GPU-based RRT Planner

@ OMPL Benchmarks
24.9x
25 - M RRT (Single CPU core)
M GPU AND Parallel RRT
20 —]) 18.
" GPU Poisson-RRT 16.1x
Q
5 15 -
3 12.1x 12,
Q
Q
10 - 8.3
6.4x
s 4.2
O T T T T
Absolute planning time Easy Cubicle AlphaPuzzle Apartment
for GPU Poisson-RRT 0.028s 0.361s 1.314s 11.877s

High-DOF Realtime RRT Planning

http://gamma.cs.unc.edu/PoissonRRT/

!T\Real-Time Planning: High DOF Robots

High-DOF robots (40 DOF for humanoids)

Generate collision-free and smooth paths

Dynamics constraints (e.g. dynamic stability)

Moving obstacles (e.g. humans)

Motion Planning Algorithms

* Random sampling-based ¢ Optimization-based
algorithms algorithms

Wy, Real-Time Planning
e Use optimization-based techniques

* Formulate constraints

e Parallel computation on multi-core CPUs and
many-core GPUs

Parallel Trajectory Optimization

e Parallel optimization of multiple trajectories

— Use Multiple threads
e Start from different initial trajectories
* Trajectories are generated by quasi-random sampling

— Exploits the multiple CPU cores (multi-cores) or GPU-based
cores (many-cores)

http://gamma.cs.unc.edu/ITOMP/ITOMP ROS/

Real-Time High DOF Planning

http://gamma.cs.unc.edu/ITOMP

Parallel Trajectory Optimization

Performance improvement with number of cores

126.357

2 cores .51463

4 cores | 97.473

Mani-core 1 trajectory i) 522 739
GPU 1

Multi-core 1core
CPU

10 trajectories 1,012.881

0 200 400 600 800 1000 1200

Iteration / sec

Workspace Velocity Space

RVOA5(vg, vy) = {V'4 | 2V, — v, [¥] VOA;(vp)} [Berg et al. 2008]

MULTI-AGENT COLLISION
AVOIDANCE (ORCA)

Selected Agent

ORCA Constraints

Permitted Velocities

Actual Velocity

Desired Velocity

[Berg. Guy et al. 2010]

Multi-Robot Navigation

[Snape et al. 2009, 2011]

Reciprocal velocity-space
planning on robots

Challenges for robots

— Sensor Uncertainty Independent Navigation of
Multiple Mobile Robots with
Hybrid Reciprocal Velocity Obstacles

— Motion Uncertainty
— Kineodynamic Constraint

* |Implementation on iRobot * Janie snae
ur van aen oerg
Create Stephen J. Guy

Dinesh Manocha

ROS Library implementation
available University of North Carolina at Chapel Hill

http://gamma.cs.unc.edu/HRVO

Tf Iti-Robot Navigation: ROS Integratlon
L

- T
q.,
L

 —

<
- ’ T —
1

-t

=
=

@“p

'
%.a2%
S /
[Claes et al., 2011, Willow Garage]

RVO?2 Library

* Publically available Library: http://gamma.cs.unc.edu/RVO?2
6,500+ Downloads

* Licensed to Relic Entertainment, EA,Gameloft ...

 Widely used in game engines (Unity, UDK)

* Integrated into ROS

* Ports .
— ORCA — C++ o L.
— ORCA - C# sl A A e

— ORCA3D - C++

Multl Human L|ke Robots

http://gamma.cs.unc.edu/ITOMP

Going Forward

* Significant recent progress in algorithmic technology for motion
planning and proximity computations

* Good software tools: FCL, ROS, MovelT, OpenRAVE, etc.

* Applications
— Advanced manipulation
— Advanced perception
— Flexible automation

* Major Challenge: Interface with robot devices and industrial use

Ackowledgements

Army Research Office
National Science Foundation
Intel

Sandia Labs
Willow Garage

