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Abstract—The physical world consists of spatially varying media, such as the atmosphere and the ocean, in which light and
sound propagates along non-linear trajectories. This presents a challenge to existing ray-tracing based methods, which are widely
adopted to simulate propagation due to their efficiency and flexibility, but assume linear rays. We present a novel algorithm that
traces analytic ray curves computed from local media gradients, and utilizes the closed-form solutions of both the intersections
of the ray curves with planar surfaces, and the travel distance. By constructing an adaptive unstructured mesh, our algorithm
is able to model general media profiles that vary in three dimensions with complex boundaries consisting of terrains and other
scene objects such as buildings. Our analytic ray curve tracer with the adaptive mesh improves the efficiency considerably over
prior methods. We highlight the algorithm’s application on simulation of visual and sound propagation in outdoor scenes.
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1 INTRODUCTION

Non-linear media is ubiquitous in the physical world.
The atmosphere, even under stable conditions, has
spatially varying temperature, pressure, and humidity
[1]. There can be wind field or other weather patterns
that affect the atmosphere [2], [3], [4]. Similarly, the
ocean displays spatial variations in its key proper-
ties such as temperature, pressure, and salinity [5].
The propagation speed of sound or light wave at
a particular location is determined by the spatially
varying properties of the media. Refraction refers to
the change of propagation direction of a sound or
light wave because of a speed gradient; propagation
no longer follows linear paths under refraction. Such
refractive media is therefore also known as non-linear
media, and simulating propagation of light and sound
in non-linear media remains a challenging problem.

Non-linear media lead to significant acoustic effects
[6]. Take the diurnal change of sound propagation as
an example: during the day, when the temperature is
typically higher closer to the ground, sound waves are
refracted upward, creating a shadow zone with very
low level received sound (Figure 14a); when the tem-
perature gradient is inverted at night, sound waves
are refracted downward, intensifying the acoustic sig-
nals received by the listener. Downward refraction
combined with a reflective ground creates a set of
concentric circular patterns in the sound field around
a source. Outdoor acoustic applications such as noise
reduction, urban planning, and virtual reality for
training purposes require the propagation simulation
to account for those phenomena [7], [8].

Light propagation in outdoor scenes also follows
non-linear paths, which can become apparent un-
der certain conditions (e.g. the extreme temperature

gradients that produce mirages [9], [10], [11].) For
applications with high accuracy requirements, such as
satellite laser range-finding [12], [13], [14] and solar
radiation modeling [15], simulating the non-linear
propagation paths can be critical.

Ray tracing is a powerful tool for simulating prop-
agation. Traditionally, most ray tracing algorithms
compute linear propagation paths that change direc-
tions only at boundary surfaces [16]. Many previous
works (See Section 2.1) have adapted the linear ray
tracer for non-linear propagation by taking piece-wise
linear ray steps, effectively assuming a constant media
within each step. The size of the ray steps therefore is
constrained by the magnitude of variations within the
media, which hinders the performance of propagating
in greatly varying media or over large space. Cao et al.
[17] applied analytic ray formulation from geometric
optics on visual rendering, which shows promising
performance advantage over ray stepping. However,
their work does not target large scale general media
like the atmosphere, neither has it fully explored the
challenges of efficient propagation of both light and
sound in complex outdoor scenes.

Some of the prior models and simulator for acoustic
propagation [18], [5], [6] rely on the assumption of a
stratified media, or a media profile that only varies
in height and range, reducing the dimension of the
problem and making the computation more practi-
cal. Given such assumptions, the propagation can be
confined to a 2D plane to reduce the computational
overhead, if the media boundary can also be kept
simple, i.e. no complex 3D objects to reflect the sound
waves off the propagation plane. However, the media
profiles vary in a general manner in reality, and
are often altered significantly by complex-shaped 3D
objects like buildings or terrains.
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Main Results: In this paper, we present a fast algo-
rithm that traces analytic ray curves for propagation
in non-linear media. Our algorithm improves upon
existing methods as follows:

• We trace analytic ray curves as path primitives,
which leads to propagation in larger and fewer
segments of curves than linear rays. This is essen-
tially an extension of the idea in [17], but we use
different ray curve formulations (details in Sec.
3.1) that have simpler forms.

• We utilize the ray curve formulations to perform
closed-form intersections with complex 3D ob-
jects, enabling fast propagation in large outdoor
scenes with many obstacles.

• We construct adaptive unstructured tetrahedral
mesh based on the underlying media profiles,
and we make the media mesh conform to bound-
aries of scene objects, both of which contributes
to efficient ray curve traversal.

Our approach can perform interactive propagation
in fully general media and complex outdoor scenes on
a single CPU core (See Sec. 6.6 and 6.7). We validate
the accuracy and convergence of our ray tracer on
media profiles with analytic solutions (defined in
Sec. 3.1), and we demonstrate the performance and
applications on complex outdoor benchmarks with
realistic profiles (defined in Sec. 3.2). We show a better
performance-accuracy trade-off as compared to ray
stepping, higher order and adaptive numerical ray
integration, and other analytic ray curve methods.

2 PRIOR WORK
Ray tracing literature is vast because of its wide appli-
cations, including photorealistic rendering, geometric
acoustics, and scientific visualization. We divide the
discussion along two challenges for propagation in
non-linear media: (1) computing curved paths (Sec.
2.1), and (2) modeling varying media (Sec. 2.2). We
then review work that used analytic curves (Sec. 2.3).

2.1 Piecewise linear propagation paths
Early works in computer graphics [9], [10] rendered
atmospheric phenomena by modeling the atmosphere
with discrete layers. More general media is handled
by effectively tracing linear ray segments at each step
of a numerical integration of the ray equation, derived
from either Eikonal equation [19], [20] or Fermat’s
principle [21], [22]. Similar methods [23], [24] have
been proposed for modeling gravitational fields and
dynamic systems. Piecewise linear approximation of
curved paths are also at the heart of techniques such
as non-linear photon mapping [25], explicit wavefront
tracking [26], [11], and voxel-based ray marching [27].
Acceleration has been achieved by parallelism [28],
[11], [26], and spatial and temporal caching [29].

However, the step size of linear ray tracing is inher-
ently limited by the magnitude of media variations,

hindering its scalability with the size and complexity
of the media and the scenes. Higher order numerical
methods are adopted to improve the efficiency [21],
[22], [23], [24], [25], but the step size is still limited
by the underlying media profiles. Furthermore, each
advancement of the ray step with higher order solvers
can no longer be assumed to be a straight line, making
intersection tests with the scenes more complex.

In atmospheric and underwater acoustics, seismic
modeling, and related fields, techniques that trace
piece-wise linear rays have also been proposed (sur-
vey in [6], [5]) and adopted in practical tools [18]. The
ray step size limitation can again be a bottleneck; sim-
plifying assumptions on the media (e.g. profiles only
vary with height and range), or the scene objects (e.g.
conical hills) are often made ([18] e.g. by BELLHOP)
to keep computation costs feasible.

2.2 Data structures for non-linear media
Traditional ray tracing acceleration focuses on build-
ing tight-fitting hierarchical structures to enclose the
surfaces in the scenes (see surveys [16], [30]), assum-
ing a homogeneous medium. A noted exception is the
use of constrained Delaunay tetrahedralization (CDT)
by Lagae and Dutré [31], which adapts to the density
of surfaces in the scene without being hierarchical. On
the other hand, rendering participating media faces
the same challenge as that of simulating non-linear
media: both must characterize volumetric media in
addition to surfaces ([32], [33]). Adaptive structures
such as kd-trees [34], [35], adaptive grids [36], and
manually-graded tetrahedral mesh [37] have been
used to facilitate ray marching and/or sampling of
scattering events through participating media.

In volume rendering for scientific visualization,
polyhedral meshes are commonly used with either
ray casting [38], [39], [40], [41] or particle tracing [42].
Polyhedral meshes provide smooth interpolation of
the volumetric field [43] with its continuous structure,
in contrast to structures like octrees that can have
neighboring cells with different resolutions. Unstruc-
tured polyhedral mesh also lends itself to adaptive
cell sizes, which can either be constructed using a
global scheme [44] that varies cell sizes in the entire
mesh, or can be built dynamically using a top-down
or bottom-up approach, resulting in a multi-resolution
representation [45], [46]. Our algorithm uses a global
approach similar to [44] to construct the tetrahedral
mesh as a pre-process before ray traversal, while the
latter methods can be useful for modeling dynamic
media. A key difference between our approach and
the methods in the context of visualization is that,
volumetric ray casting generally does not account for
the non-linear refractive paths that the light follows.

In the separate context of meteorology and Earth
circulation modeling, unstructured mesh is advan-
tageous due to its adaptive nature and its flexibil-
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ity in terms of handling irregular domains. Conse-
quently unstructured meshes have been increasingly
adopted to replace regular grids in recent operational
models [47], [48]. Models that compute atmospheric
flow fields at high resolution[47], [48] can provide
detailed media profiles to serve as initial conditions
for propagation. Therefore, using unstructured mesh
in propagation algorithms makes it possible to couple
seamlessly with an atmospheric flow model as input.

2.3 Analytic curve trajectories
Analytic light paths have been derived in the context
of geometric optics for simple profiles of refractive
index [49], [50], [51]. Cao et al. [17] is perhaps the
first work in visual rendering to use the analytic
ray formulation derived in Qiao [52]. Cao et al. [17]
demonstrated the performance advantage over piece-
wise linear ray tracing, and used octrees for further
acceleration. However, their ray formulation does not
have a closed-form solution for intersections with
planar surfaces; instead they used bisection methods.

Analytic rays with a polynomial formulation is
proposed in [53] for artist-controlled lighting with
curved rays. The light paths are not physically-based
and cannot be easily extended to more realistic kinds
of light bending from refraction. Grave et al. [54]
visualize the effects of general relativity using an
analytic solution derived for the Gödel universe.

In computational acoustics, closed-form ray trajec-
tories have been derived for constant gradient in the
propagation speed, and in the squared refractive in-
dex. The term cell method refers to acoustic ray tracing
that subdivides media into cells and assumes analytic
ray paths in each cell, but it has only been used for
2D varying media modeled by regular triangular grid
with no obstacles [55], [56]. Our algorithm can be seen
as an extension of cell methods to a more general
propagation algorithm that can handle 3D varying
media and complex scene objects. Furthermore, we
improve the efficiency based on closed-form ray inter-
sections and use of an adaptive unstructured mesh.

3 BACKGROUND
A non-linear media profile can be described by
spatially-varying propagation speed c(x), or equiv-
alently by index of refraction n(x) = c0/c(x), for
each location x, where c0 is the reference propagation
speed. In this section, we first introduce a few simple
profiles with analytic ray solutions, two of which we
have adopted as the foundation of our ray curve
tracer. We then introduce models of general non-linear
media that corresponds to physical reality.

3.1 Profiles with analytic ray solutions
In ray tracing for wave propagation, rays are defined
as normal to the wavefront. The Eikonal equation for

ray trajectories is derived from the wave equation as:
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x = {x, y, z} is the Cartesian coordinates and s is the
arc-length along the ray.

The analytic ray trajectories are known for a set of
profiles with constant media gradient, and we give
the trajectories in a local coordinate system aligned
with the gradient direction. If we place the origin of
the coordinate system at the ray origin x, and take
the media gradient direction as the z-axis, the ray
trajectory is a plane curve that lies in the plane formed
by the z-axis and the initial ray direction d, i.e. the ray
plane. We then take the direction perpendicular to the
z-axis as the r-axis within the ray plane. Figure 1 plots
the analytic ray curves for the following profiles (see
Appendix A for detailed derivations):
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which is a circular curve in the ray plane.
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which is a parabolic curve in the ray plane.

• n-linear: The analytic ray curve for constant rn

was used in [17], although unlike the previous
two ray curves, it does not have an analytic so-
lution for intersection tests with planar surfaces.

There are also analytic solutions for the profiles that
produce superior and inferior mirages [57]. The two
profiles are also described in [17], and we use their
analytic solutions to validate our ray tracer:

• Inferior mirage (V-IM), with the squared refrac-
tive index: n2

(z) = µ

2
0 + µ

2
1(1� exp(��z)),

• Superior mirage (V-SM), with the squared re-
fractive index: n

2
(z) = µ

2
0 + µ

2
1exp(��z), with

constants µ0 = 1.000233, µ1 = 0.4584,� = 2.303.

3.2 Realistic profiles

The atmosphere and the ocean are two of the most
prominent non-linear media in outdoor scenes. We
hereby focus our discussion on atmospheric proper-
ties, but we would like to point out that media prop-
erties and propagation in the ocean are analogous.
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Fig. 1: Analytic ray curves in c-linear (circular curves), n-linear, and n

2-linear (parabolic curves) media profiles.
Our algorithm uses the circular and the parabolic curves as ray tracing primitives, while the n-linear curve
is used in Cao et al.[17]. The r-z plane is the ray plane defined in Section 3.1. Red and blue curves represent
different ✓0 (30°and 45°, respectively). The dashed curves trace out the ray paths if the launch angles are flipped
around the r-axis. The dotted part of c-linear curve shows the circular shape only and does not represent actual
trajectories (the ray will proceed in straight line after the direction becomes parallel to the r-axis).

Fig. 2: Adaptive meshes. Here we show two meshes generated for the hot spot (A-HS) in the top row and
upwind-over-hill (A-UW) profiles in the bottom row, respectively (both defined in Sec. 3.2). (a) Resampled
media points (showing half of the points to expose the sectional view), (b) Input media profiles, (c) Interpolated
media profiles from the meshes, (d) Absolute approximation errors, (e) Adaptive meshes. The input media
grid has 6.4⇥10

6 (200⇥200⇥160) points for A-HS, and 8⇥10

5 (100⇥100⇥80) points for A-UW. The meshes
are constructed from a resampled 4.3⇥ 10

4 points for A-HS, and 9.8⇥ 10

3 points for A-UW. With 100⇥ fewer
sample points than the input the adaptive meshes are able to achieve low approximation errors.

For both light and sound propagation speed, tem-
perature is a key determining factor. The atmospheric
sound speed given temperature, for example, is

c =

p
�R

d

T

v

, (4)
where � = c

p

/c

v

is the ratio of the specific heats,
R

d

is the gas constant of dry air, T

v

is the virtual
temperature considering humidity, and can typically
be approximated by the absolute temperature T .

A standard profile of atmospheric temperature and
pressure is available with the 1976 USA Standard
Atmosphere [1]. It can be de-standardized with the
following model for localized heat sources:

• Hot spot (A-HS) is computed by Eq. 4 with

combined temperature from [1] and Eq. 5,
T = T0 + (T

s

� T0)exp(�d/d0), (5)
where T0 = 273K, T

s

is the temperature at the
hot spot, d is the distance to the hot spot, and d0

is the dropoff length.
Alternatively, we can adopt a widely-used empirical

models of the atmosphere [6] that gives the sound
speed directly. The sound speed is modeled with a
stratified component c

str

and a fluctuation component
c

flu

, so that c = c

str

+ c

flu

. The stratified component
follows a logarithmic profile of the altitude z:

c

str

(z) = c0 + b ln

✓
z

z

g

+ 1

◆
), (6)

where c0 is the sound speed at the ground, and z

g

is
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the roughness length of the ground surface. Different
values of the parameter b lead to different profiles:

• Stratified profile, upward (A-LU) or downward
(A-LD) refractive, computed by Eq. 6 with n0 =
1, c0 = 340 m/s, and z

g

= 1 m. We take b = 1m/s

for A-LD and b = �1m/s for A-LU.
The fluctuation component models the random at-

mospheric temperature and wind speed turbulence:
c

flu

(x) =

X

i

G(k

i

) cos(k

i

· x+ '

i

), (7)

where k

i

is the wave vector describing the spatial
frequency of the fluctuation, '

i

is a random angle
2 [0, 2⇡], G(k

i

) is a normalization factor, and we have:
• Stratified-plus-fluctuation (A-LU+F, A-LD+F) A-

LU or A-LD combined with Equation 7.
For sound propagation, the wind profile plays a

role that is as important as the temperature[58], [59],
and the wind profile is significantly modified above
undulating terrains. For example, Jackson and Hunt
[60] derived closed-form wind profile for a hill of
the shape: f( x

L

) =

1
1+( x

L

2) , where x is the horizontal
distance from the apex of the hill, L is the radius of
the base of the hill. According to the Monin-Obukhov
similarity theory [2], the mean wind velocity follows
the logarithmic law with height z: u(z) =

u⇤
K

ln

z

z

g

,
where K is the von-Karmann constant, z

g

is the
aerodynamic roughness length, and u⇤ is the friction
velocity [3], [61]. The horizontal component of the
wind velocity over this particular hill shape, in ad-
dition to the mean velocity u(z), is given as:
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where �z is the distance above the hill, l is the
thickness of the hill’s influence region, in which the
flow above the ground is perturbed, and we have:

• Wind over hill (A-UW for upwind, A-DW
for downwind) u(z) + �u is combined with
temperature-induced sound speed profile based
on the 1976 USA Standard Atmosphere [1].

4 ALGORITHM

In this section, we present our ray tracing algorithm
with analytic ray curves and adaptive media mesh.

4.1 Mesh-based Ray Curve Tracer
The idea of our algorithm is to spatially decompose
the volume of a media profile with an unstructured
tetrahedral mesh, so that within each cell of the mesh
the media profile can be assumed to have constant
gradient. Based on the formulation of analytic ray
curves presented in Sec. 3.1, the propagation paths
within each cell of such a mesh follow one of the
analytic forms, depending on the particular media

gradient used to build the mesh. We thereby com-
pute the propagation paths consisting of segments of
analytic ray curves, and those segments traverse the
media cell-by-cell based on mesh connectivity.

The pseudo-code for the traversal of ray curves
through a tetrahedral mesh is given in Algorithm 1.
Given a ray origin, we first locate the tetrahedral cell
that contains the origin. This is commonly referred
to as point location, and it can be relatively expensive
for complex models when there are a large number
of cells. However, in most scenarios, each primary
ray originates from the same point (light or sound
source), and each secondary ray (after interacting
with boundary surfaces) originates from the same cell
where the previous ray that spawned it ends. The
point-location query is performed once per frame, and
the cost is amortized over all the rays.

1 Point Location: locate ray origin P in cell T ;
2 Compute analytic ray from media property of T ;
3 Intersect ray curve with T to find exit face F ;
4 if ray encounters boundary surface in T then
5 Surface interaction (e.g. reflection);
6 Go to Step 2 with T unchanged;
7 else if there is a tetrahedron T

0 incident to F then
8 Go to Step 2 with T = T

0;
9 else

10 ray exits the scene;
11 end

Algorithm 1: Ray Curve Traversal.

Once the initial cell is located, we retrieve the pre-
computed per-cell media gradient rm (see details
in Sec. 5.3). The direction of rm and the origin
and initial direction of a ray are used to define the
ray plane, and we can compute the curved trajectory
within the cell by Eq. 2 or 3 (Line 2, Algorithm 1).

The ray curves we use have closed-form intersec-
tion solutions with planar surfaces, e.g. the four faces
of the tetrahedral cell. The intersection point closest
to the ray origin is chosen as the exit point from the
cell, and the neighboring cell incident to the exit face
is taken as the next cell in the traversal (Line 7 in
Algorithm 1). We use its media properties to compute
the next segment of the curved ray path .

4.2 Adaptive Mesh

To further accelerate ray traversal, our goal is to con-
struct a tetrahedral mesh with graded cell sizes that
adapts to the spatial distribution of media properties,
hereafter referred to as an adaptive mesh. The cost of
computing a ray curve and its intersection within each
media cell is constant, therefore an adaptive mesh
leads to fewer cells and thus faster ray traversal.
We want to vary the cell sizes according to media
variations, based on the heuristics that the range of
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validity for the assumption of a constant media gra-
dient is inversely proportional to the magnitude of the
gradient. Given an input profile of propagation speed
c(x) for each grid point x, we compute the slowness
k(x) =

1
c(x) , and the gradient of the slowness rk(x)

by finite difference. We then compute the spatially-
varying target cell sizes d(x) such that � =

1
4rkd

2
(x),

with a global � that controls the overall variation
allowed in each cell. Details of mesh construction that
realize the target cell sizes are discussed in Sec. 5.1.

4.3 Embed Media Boundaries
During propagation, objects in the scenes (such as
terrains, buildings, and sound barriers) affect the
propagation paths of ray curves. Unlike axis-aligned
structures commonly used in ray tracing, (e.g. oc-
trees), tetrahedral mesh has flexible structures that can
embed surfaces of arbitrary orientations. We choose to
leverage this capability to embed surfaces in the mesh.

With surface-embedded mesh, no separate inter-
sections with surfaces are computed during the ray
traversal, and Line 4 in Algorithm 1 is merged with
Line 3. When a ray exits from a face of the cell that
corresponds to an embedded face, the current ray
traversal terminates and a secondary ray is spawned
reflecting off the embedded face.

While we observe that embedding the surfaces of-
ten brings speedup, because it unifies mesh traversal
and surface intersections and eliminates extra com-
putation, inserting constrained surfaces adds consid-
erable computational overhead to mesh construction.
We evaluate this trade-off between construction effi-
ciency and traversal efficiency individually for each
input scene, and we discuss the details in Sec. 5.2.

4.4 Surface Interactions
Given the ray trajectories in Equation 2 and 3, the
tangent direction at arbitrary point (e.g. an intersec-
tion point) along the ray curve can be evaluated
analytically for the circular curve:

dr

dz

=

(⇠

0
0(↵z + c0))p

1� ⇠

02
0 (↵x+ c0)

2
, (9)

and for the parabolic curve:
dr

dz

=

⇠

0
0p

�⇠

02
0 + ↵x+ n

2
0

. (10)

This gives the incident ray location and direction
when intersecting a surface, then different surface
interactions including reflection, Snell’s law refraction,
or BRDF-based sampling can be employed to generate
the direction of the next ray (Line 4, Algorithm 1).
Furthermore, the circular and parabolic ray curves
both have closed-form arc lengths, which can be used
to compute attenuation of propagated energy for light
(e.g. [62]) and for sound ([5]). A closed-form arc
length is also convenient for free path sampling to
simulate media scattering [34], [36]. While we focus
on the refractive characteristics of non-linear media

and specular boundary reflections and do not perform
BRDF sampling or media scattering in our benchmark
results, our ray formulation is compatible with more
complex surface interactions and media participation.

5 IMPLEMENTATION
There are multiple ways to construct an adaptive
mesh, to incorporate boundary surfaces, and to com-
pute per-cell media gradients. In this section, we give
details of our implementation and also discuss some
alternatives. Further discussions with experimental
results are available in Appendix B and C.

5.1 Construction of Adaptive Mesh
We assume that the input media profiles are available
on a three-dimensional uniform grid. The data points
on the grid are generated from real-world measure-
ments or from sampling a characteristic profile. We
will now describe our method of resampling an input
profile to generate a point set distributed according
to local magnitude of media variations; tetrahedraliza-
tion on such a point set generates an efficient structure
for both media representation and ray traversal.

1 Given the input media grid points G, initialize a
flag array that marks each point in G as false;

2 Initialize an empty point set S for output, and a
queue of points T , enqueue the center point x

i

;
3 while T is not empty do
4 dequeue x

i

;
5 if x

i

lies within the bounds of the profile then
6 compute a spherical region with center x

i

and radius d(x

i

);
7 if all samples in the spherical region are

marked false then
8 mark all such samples true;
9 add x

i

to S; enqueue ideal sites of x
i

with spacing d(x

i

) in T ;
10 end
11 end
12 end

Algorithm 2: Media sample redistribution for mesh
construction. The ideal sites are the locations of neigh-
bors in a FCC lattice [44].

As mentioned in Sec. 4.2, we compute a desired
cell size d(x) for each point location x within the
profile. Now we want to vary the spacing between
sample points according to d(x) when we resample
the input media profile. We use Algorithm 2 to obtain
the set of resampled points S from the profile G, in
a manner similar to the Atomic Meshing process [44].
Basically, a face-centered-cubic (FCC) lattice is grown
from the center of the space outward, placing each
new point away from existing samples by the spacing
d(x). The approximation errors that are introduced by
the resampling process are quantified in Section 6.2.
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5.2 Embedding of Boundary Surfaces
To embed surfaces, we insert them as boundary con-
straints and construct a constrained tetrahedral mesh.
Given a point set S with adaptive spacing computed
by Algorithm 2, and given the optional constrained
surfaces of the objects (P ) in the scene, we use the
method proposed by Si and Gärtner [63] and imple-
mented in the TetGen software package, to build a
Constrained Delaunay Tetrahedralization (CDT) with
S and P . The resulting CDTs have adaptively graded
cell sizes due to the distribution of S, and we ob-
serve well-shaped tetrahedral mesh with a maximum
radius-edge ratio below 2.0 in our benchmarks.

In our benchmarks, the resolution of surface primi-
tives is compatible with nearby media variation, lead-
ing to compact constrained meshes that are efficient to
traverse. However, if there are over-tessellated objects,
the constrained mesh generation algorithm can end
up choosing overly small cell sizes close to the objects’
surfaces and this affects the traversal performance.

There are two options to compensate this. We could
convert the explicit triangles of the object boundaries
to implicit surfaces, then construct a tetrahedral mesh
that conforms to the implicit surfaces, effectively re-
tessellating them (as in [64], input scenes already in
the forms of parametric or other implicit surfaces can
be handled similarly). This method keeps the perfor-
mance benefit of a unified traversal while achieving
proper cell size and compactness of the mesh. Or we
could link each cell to a list of boundary surfaces
that it overlaps with, similar to [17]; the ray traversal
of each cell then needs to iterate through this list to
compute intersections. This approach has the benefit
of simplicity, but might compromise traversal per-
formance. Furthermore, generating such links comes
with its own computational overhead. In Appendix C,
we report the experimental performance of both mesh
construction and traversal for the two options.

5.3 Gradient estimation
Given the spatial decomposition of the media profile
with our tetrahedral mesh, we need accurate estima-
tion of the media gradient within each tetrahedral cell
to compute the analytic ray trajectories entering that
cell. We adopt a cell-centered linear regression-based
method to estimate the gradient.

For media property m (e.g. c or n

2) defined over
the domain, and a mesh cell C with centroid x0, the
cell gradient rm should satisfy the equation system:2

664

(x1 � x0)
|

(x2 � x0)
|

(x3 � x0)
|

(x4 � x0)
|

3

775rm =

2

664

m(x1)�m(x0)

m(x2)�m(x0)

m(x3)�m(x0)

m(x4)�m(x0)

3

775 , (11)

where x

k

, k = 1, ..., 4 are the centroids of the 4
neighbors of C, m(x

k

) is the media property values
at those centroids. Written in matrix form:

Xrm = b, (12)

Optionally, the system can be weighted to take into
consideration of the irregular shapes of the mesh:

WXrm = Wb (13)
where W = diag{w

i

} is a 4 ⇥ 4 diagonal matrix
containing the weights of neighbor k of cell C. This
can be solved with linear least square (See Appendix
D for the explicit solution of the estimated gradient).

The average-based gradient estimation method
used in prior work [17] is faster to compute, but the
regression-based method, especially the weighted ver-
sion with inverse centroid distance, has been shown
to provide better accuracy for irregular shaped mesh
elements, and adapts well to lower-quality meshes
[65], [66]. Accuracy of the estimated gradient is par-
ticularly important for outdoor propagation, when
artifacts such as false caustics have been shown to
happen with discontinuous gradients [67].

6 RESULTS AND ANALYSIS
In this section, we highlight the applications of our
algorithm on light and sound propagation on bench-
marks with different media profiles and geometric
primitives. We analyze the errors of the adaptive mesh
approximating the underlying media (Sec. 6.2), and
the subsequent accuracy and convergence character-
istics of our ray curve tracer (Sec. 6.3). We compare
performance with numerical ray integration methods
(Sec. 6.4), as well as with the prior work[17] that
traces a different ray curve for visual rendering (Sec.
6.5). Our ray curve tracer enables fast propagation in
complex 3D scenes (Sec. 6.6), which is demonstrated
by outdoor sound simulation at a performance that
has not been achieved before (Sec. 6.7).

Except Fig. 3 right generated by the circular curve,
the results in this section is generated by the parabolic
curve. It is our observation that both curves yield
similar accuracy and performance, and we omit the
circular curve results to avoid duplications.

6.1 Benchmarks
Propagation in non-linear media is important for both
visual and acoustic applications, therefore we tested
our algorithm on visual (Figures 4, 11, 6, 10, , 7, and
Table 2) and acoustic (Figures 2, 5, 12, 13, 8, 14, 9,
15, and Table 3) benchmarks. Each of the benchmarks
consists of a media profile, and triangulated geometric
representation of the boundary surfaces.

6.1.1 Media profiles

We tested our algorithm on all the profiles listed in
Sec. 3. In particular, we perform validation and con-
vergence tests of the ray curve tracer with the profiles
that have analytic ray solutions (c-linear, n-linear, n2-
linear, Inferior mirage V-IM, and Superior mirage V-
SM). Visual results are generated for V-IM, V-SM,
and for the texture-based profile used in [17] (details
in Sec. 6.5). Acoustic results are obtained for Hot spot
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A-HS, Upward/downward refractive atmosphere A-
LU, A-LD, atmosphere with fluctuations A-LU+F, A-
LD+F, and Wind over hill A-UW, A-DW.

6.1.2 Geometric models

For validation tests, we exclude geometry in the scene
except a flat ground as required by the analytic so-
lutions. For visual comparisons we use the same 3D
elephant model used in [17]. For acoustic applications,
the Desert, Christmas, and Reservoir represent large-
volume outdoor scenes that have complex surface
geometry (e.g. varying terrains and buildings).

Scene # surfaces # medium points. # tetrahedra
Elephant 1,500 1,532 5,538

Desert (m) 8,000 23,632 144,976
Desert (h) 16,000 132,742 674,434

Christmas (m) 8,000 44,862 227,851
Christmas (h) 16,000 179,382 1,169,353

Reservoir 4,000 34,771 248,806

TABLE 1: Benchmarks. Desert and Christmas are
tested at two different resolutions, respectively,
marked by (m) for median and (h) for high resolution.

6.2 Error analysis of adaptive mesh
Assume that the media profile in refractive index n is
available as input on a regular grid of points x

G

, so
that n

G

= n(x

G

). In our adaptive mesh construction
(Algorithm 2), we resamples the media profile using a
smaller set of points S, and we construct a tetrahedral
mesh from the resampled set. The approximated refrac-
tive index ñ(x) at an arbitrary position x within the
domain is then obtained by Barycentric interpolation
with Equation 40. The approximation error is defined
as the difference E = n

G

� ñ

G

, where ñ

G

= ñ(x

G

).
The relative error is

E

rel

=

kn
G

� ñ

G

k
kn

G

k , (14)
where k · k denotes a 2-norm. The error is a function
of the size of S, which is controlled by the global �.

We perform error analysis with two media profiles
(A-HS and A-UW) (see Fig. 2), which illustrate the
capability of our adaptive mesh to capture different
profiles with accuracy. We plotted the point set S

color-coded by n

S

in Fig. 2(a), a slice of input n

G

in Fig. 2(b), a slice of the approximated ñ

G

defined
by S in Fig. 2(c), and the relative error in Fig. 2(d).
The constructed meshes for those profiles are shown
in Fig. 2(e), where finer cells can be seen concentrated
in regions of greater variations within the media.

Moreover, Fig. 12 in Appendix shows the approx-
imation error with the profile (A-LU+F). Given an
input grid of 2.09 ⇥ 10

5 points spanning a space of
160m⇥160m⇥160m with 1.25m grid spacing, we ob-
tain the resulting S with 23, 462 points by resampling
with � = 0.001. With 100 times fewer points than the
input grid, the approximated ñ

G

is able to capture the
features of n

G

, and the relative error is below 4⇥10

�4.
As shown in Fig. 12(e), the relative error decreases
with increasing size of S, controlled by �.

6.3 Error analysis of ray curve tracer
Close approximation of the media profile by the adap-
tive mesh leads to accuracy in the ray tracing results.
We use the ray hit points and the travel distance
along the ray paths, both crucial for light and sound
propagation, to quantify the ray tracing accuracy.

For validation purposes, we choose the profiles
defined in Sec. 3.1 that have known analytic ray so-
lutions, among which c-linear, n-linear, n2-linear, V-
IM, and V-SM have analytic solutions for trajectories
(and therefore ray hit points), and c-linear and n

2-
linear have analytic solutions additionally for ray arc-
length. In Fig. 3 and 4 we show the results of our
ray curve tracer on those profiles, which converge to
the corresponding analytic solutions with increasing
number of ray curve segments controlled by �.

The ray tracing results are computed for a source
1.5m above the ground, and rays are traced for eleva-
tion angles 2 [�⇡/4,⇡/4]. For visual profiles, results
are compared at a propagation range of 100m, while
for acoustic profiles, results are compared after propa-
gating for 10s in time. The media gradient magnitude
used are: ↵ = 0.1 for c-linear, ↵ = 0.02 for n-linear,
and ↵ = 0.01 for n-linear profiles.

6.4 Comparison to numerical ray integration
We compare the accuracy and convergence of our ray
curve tracer with numerical ray integration methods
including higher-order solver (4th order Runge-Kutta)
and an adaptive scheme (Dormand-Prince).

Fig. 4 and 5 demonstrate the advantages of the
ray curve tracer over numerical integration for visual
profiles V-IM, V-SM, and acoustic profiles A-LU, A-
LD. We use the analytic solutions of V-IM and V-SM
as ground truth to compute the relative error in Fig. 4,
and for A-LU and A-LD (Fig. 5) we use a converged
solution with 1 ⇥ 10

�7 tolerance of error computed
by our ray curve tracer as the ground truth. In both
figures our ray tracer results approach the ground
truth with increasing number of segments controlled
by �. The 4th order Runge-Kutta and Dormand-Prince
methods, however, have difficulty achieving compa-
rable accuracy even with decreasing step sizes.

Under the V-IM and V-SM profiles, we also per-
formed same-quality and same-speed comparisons
with rendered images. The image difference rendered
by the ray curve tracer and the numerical ray inte-
gration using Euler method (piece-wise linear rays)
is shown in Fig. 11 in Appendix. The performance of
curved ray tracer is an order of magnitude faster un-
der the same-quality comparison, while the piece-wise
linear rays lead to noticeable artifacts when running
at competitive speed (same-speed comparison).

6.5 Comparison to prior analytic ray curve
Cao et al.[17] proposed a ray tracer based on the
n-linear analytic ray curve and spatial decomposi-
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Fig. 3: Convergence of ray curve tracer. Given the analytic ray trajectories known for c-linear, n-linear,
and n

2-linear profiles, our ray curve tracer converge to the analytic solution (decreasing relative error) with
increasing number of segments controlled by �. Additionally, the relative error of ray arc-length are plotted
for c-linear and n

2-linear profiles (green lines), for which the analytic solutions of arc-length are also known.

Fig. 4: Comparison to numerical solvers on mirages. For inferior mirage V-IM (left) and superior mirage V-
SM (right) profiles, the results of our ray curve tracer (hitpoints plotted here) converge to the analytic solutions
with adaptively increasing segments controlled by �. The 4th order Runge-Kutta and Dormand-Prince methods
fail to approach the analytic solutions beyond a relative error of 1⇥ 10

�2.

Fig. 5: Comparison to numerical solvers on logarithmic acoustic profiles. With downward refractive A-LD
(left) and upward refractive A-LU (right) profiles, our ray curve tracer computes ray tracing hit points that
converge with adaptively increasing segments controlled by �. The 4th order Runge-Kutta and Dormand-Prince
methods again stop at a relative error of 1⇥ 10

�3 with arbitrarily large number of integration steps.

tion of the media with octrees, and we compare
our algorithm to it on various aspects. By adopting
different ray formulations, and by modeling general
media with adaptive unstructured mesh, we highlight
improvements in performance and accuracy.

We replicate the elephant benchmark used in [17]
with the texture-based profile of refractive indices.
For our ray tracer, we construct adaptive tetrahedral
meshes using the algorithm given in Sec. 5.1, and we
show two meshes constructed with different � and
therefore different resolutions in Fig. 10 in Appendix.
The adaptive mesh captures the spatially-varying me-

dia gradients corresponding to the texture. By tuning
�, the mesh-based ray curve tracer strikes a balance
between tracing performance and accuracy. This is
demonstrated by Fig. 6, where the convergence of
our ray curve tracing results is illustrated (Fig. 6(d)),
together with a visualization of the converged ray hit
points, exit directions, and path lengths (Fig. 6(a,b,c)).
We then compare four ray tracing configurations:

• Parabolic ray curve and adaptive mesh controlled
by � (our algorithm),

• n-linear ray curve and adaptive mesh built as-
suming per-cell constant gradient of n,
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(a) (b) (c) (d)

Fig. 6: Convergence of ray curve tracer results for the elephant benchmark[17]. (a,b,c) Converged ray tracing
results computed by our ray curve tracer, including visualized (a) hitpoints, (b) exit directions, and (c) path
lengths. (d) The ray curve tracer converges with decreasing relative error between consecutively decreasing �.

Method Rays/path Frame time
Parabolic ray + adaptive mesh 2.16 123 ms
n-linear ray + adaptive mesh 2.21 232 ms

n-linear ray + octree[17] 3.37 377 ms
Parabolic ray + non-adaptive mesh 8.91 619 ms

TABLE 2: Same-quality comparisons. We run our ray
curve tracer with � = 0.1, and tune the alternative
methods to achieve the same level of accuracy. The
performance is measured by the average number of
ray segments per path and by the total frame time.

• n-linear ray curve and octree, according to [17],
• Parabolic ray curve with a non-adaptive mesh.

We perform same-quality and same-speed compar-
isons among the four methods, in order to pin-
point the sources of performance difference. Ray trac-
ing efficiency and accuracy are compared between
parabolic and n-linear ray curves, between adaptive
mesh and octree, and between adaptive and non-
adaptive meshes, keeping the other configurations
constant for each pair-wise comparison.

The same-quality comparison results are reported in
Table 2. The latter three methods are tuned by their
respective parameters to match the accuracy of our
algorithm. In particular, the adaptive mesh built for
n-linear ray curve is tuned similar to using � in our
algorithm; Cao et al.’s method is controlled by the
parameters suggested in [17]; the non-adaptive mesh’s
resolution is increased uniformly. At comparable accu-
racy, our ray tracer takes significantly fewer segments
per propagation path and/or less total frame time.
The same-speed comparison results can be seen in
Fig. 7. It is shown that the results of the other three
methods are less accurate than of our ray tracer
running with comparable computation time.

It is our observation that the difference between
the parabolic and the n-linear ray, both with adaptive
mesh, is mainly due to the intersection cost. Our
ray formulation’s closed-form intersections with pla-
nar surface contributes to the performance advantage
over the n-linear ray[17], which requires bisection.
The runtime breakdown in Table 3 shows that bisec-
tion takes up a large portion of the traversal time.
We would also like to point out that our ray curves

Fig. 7: Same-speed comparisons. We run our ray
tracer with � = 0.1, tune all methods to run at the
same speed, and compare the accuracy. Columns (left
to right): Differences in hitpoints, exit directions, path
lengths, between Rows (top to bottom): n-linear curve
with adaptive mesh, n�linear curve with octree[17],
parabolic curve with non-adaptive mesh, respectively,
and our ray tracer. (Hitpoint and distance differences
are normalized by the size of the scene, while direc-
tion differences are the norm of the difference vector.)

also have closed-form solution for tangent direction
and arc length at any point along the ray. These are
useful for computing boundary interactions as well as
absorption and scattering, as explained in Section 4.3,
which are not taken into consideration in [17].

On the other hand, both the octree and the non-
adaptive mesh are less compact than the adaptive
mesh achieving the same level of accuracy, which
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(a) (b) (c) (d)

Fig. 8: Performance and scalability of ray curve tracing: (a) Tracing analytic ray curves vs. numerical
integration for A-LD, computing propagation paths to the same accuracy. Ray curve tracing scales better
with the magnitude of media variations. (b) A close-up view of the ”Ray Curves” line plot in (a) shows the
tracing time (red line) scaling with increasing mesh sizes (green line). The increasing mesh size is a result of
the adaptive mesh constructed at a finer resolution for increased media gradient, to keep the approximation
error at the same level. (c,d) Ray curve tracing scales sub-linearly with tetrahedral cell counts and number of
boundary surfaces in the mesh. Note that tracing time decreases with increasing surface primitives because
the average propagation distance before a ray bounces off a boundary surface is shortened.

Benchmark Frame time Compute Curves Tetra Intersect (time) Tetra Intersect (count) Bisection
Elephant 123 0.0175 (0.01%) 110.08 (88.06%) 51 +108.49

Desert (m) 219 0.0658 (0.03%) 211.39 (96.24%) 179 +247.70
Desert (h) 369 0.1033 (0.03%) 361.59 (97.92%) 254 +443.12

Christmas (m) 259 0.1037 (0.04%) 240.96 (92.89%) 188 +220.98
Christmas (h) 443 0.1948 (0.04%) 427.99 (96.64%) 296 +392.73

Reservoir 233 0.0892 (0.03%) 236.87 (93.79%) 182 +255.03

TABLE 3: Breakdown of curved-ray traversal time. Intersection costs dominate the frame time, while ray
curve formulation and computation cost is negligible. We also report the average number of tetrahedra that
each ray curve traverses. For comparison with [17], we trace n-linear rays for the same scene configurations,
and report the additional time that bisection takes in the rightmost column. Our ray formulations avoids the
bisection computation due to their analytic surface intersections. All timings are in milliseconds.

lead to higher ray tracing costs. To further investigate
the difference between the adaptive mesh we used
and the octree used in [17], we analyze the error in
media profile approximated by octrees using the same
profile A-LU+F as Figure 12. According to [17], we
merge octree nodes using two thresholds: �, max-
imum refractive index difference, and ", maximum
difference in gradients of the refractive index that are
allowed within a node. We vary both these thresholds
to generate octrees of different resolutions, and we
plot the corresponding relative error, computed as in
Sec. 6.2 (Fig. 13 in Appendix). Overall the resulting
octrees tend to have more nodes when they can
achieve the same level of error as tetrahedral meshes.
If comparable number of sample points are used, the
interpolated profile from the octree by finite difference
yields visibly less smooth media and larger errors
(Fig. 13).

6.6 Performance of ray curve tracer
We analyze the performance of our ray tracer in
greater detail (Figure 8), where we observe signifi-
cant improvement and better scalability over numer-
ical ray integration. For those results we use RK-
4 with the intersection test approximated by piece-
wise linear segments. All the timings are collected

on a single 3.2GHz CPU core. The running time
of curved ray traversal scales sub-linearly with the
number of tetrahedral cells in the mesh, as shown
in Figure 8(b,c). In contrast, the numerical ray in-
tegration performance decreases greatly with media
variation, and was capped at media gradient of the
magnitude 0.15 to keep the running time reasonable.

The performance also scales well with increasing
numbers of boundary surfaces (Figure 8(d)), which
demonstrates the culling efficiency of the mesh. On
the other hand, the numerical method incurs extra
costs on surface intersections, even when travers-
ing the same adaptive mesh used by the ray curve
tracer. Besides the extra ray steps taken by numer-
ical method, the other source of inefficiency is the
fact that when an intersection is detected, the latest
integration step needs to be restarted to go only as
far as this intersection point, which adds significant
amount of computation (see Table 3 under ”Tetra In-
tersect (count)” for the number of restarts needed for
numerical ray integration due to surface intersection).

6.7 Applications on outdoor acoustics
Ideally, outdoor acoustic simulations model fully gen-
eral media based on temperature and wind profiles, as
well as complex natural and man-made boundaries.
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Fig. 9: Outdoor acoustic applications. (a) Wire-frame rendering of the Reservoir scene, the green and red dots
are the two sound sources. (b) Side view of the adaptive mesh, notice the vertical gradation of cells as well
as the embedded terrain surfaces. (c,d) Illustrative upward- and downward-refractive ray trace for the two
sources, respectively. (e,f) The 3D pressure field computed based on the ray traced paths, here visualized in
stacks of slices. We compute 10k ray paths at 4 fps, and the 3D pressure field is generated at 1 fps.

Existing methods either ignore the non-linear media,
simplify the media by reducing the dimensions in its
variations (e.g. assuming it is stratified or has only
2D variations), or requires off-line computations. By
accelerating the ray models with analytic ray curves
and adaptive mesh, we achieve interactivity with a
3D varying media profile and complex boundaries.

In Fig. 14 in Appendix, we highlight our method ap-
plied to different atmospheric profiles and the outdoor
benchmarks Christmas and Desert. The ray plots in
Fig. 14(a, d) are generated with stratified profiles (A-
LU, A-LD), and the propagation paths do not deviate
from a 2D plane. In contrast, Fig. 14(b, c, e, f) illustrate
the ray paths with 3D fluctuations modeled in the
profiles (A-LU+F, A-LD+F), as well as interacting
with 3D geometry. For the Reservoir scene, which has
terrains that shape the propagated sound field in a
more significant way, we show the mesh constructed,
the ray curves traced, and the pressure field computed
from the propagation paths in Figure 9. Our interac-
tive ray curve tracer for computing propagation paths
enables fast generation of those acoustic field results.

7 LIMITATIONS AND FUTURE WORK
There are several limitations to our approach. The
first is that the adaptive unstructured mesh is pre-

computed. Therefore, our current implementation is
limited to static environments. In dynamic scenes,
our approach is limited to the cases where the media
property changes do not invalidate the topology of the
mesh. Secondly, the efficiency of tracing analytic ray
curves depends on the existence of spatial coherence
in media. Conceivably there will be a point when
a chaotic media has little coherence that the valid
range of analytic ray curves reduces to the same with
linear ray steps. However, most natural media used
for visual and acoustic simulation tends to be fairly
coherent and varies smoothly; in these cases tracing
analytic ray curves works quite well.

As future work, we would like to parallelize this
approach on a multi-core CPUs or many-core GPUs.
Each path of our analytic ray curves propagates inde-
pendently from each other, thererfore our algorithm
is as amenable to parallelism as linear ray tracing. We
would also like to explore dynamically adapting the
media mesh as in [45], [46], which can be useful for
simulation of fluctuating or turbulent media, and of
dynamic scenes. Another avenue for future work is
to combine our method of simulating refractive prop-
agation with complementary methods that simulate
scattering and absorption in participating media.
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8 CONCLUSIONS
We addressed the challenge of simulating sound and
light propagation in large outdoor scenes with general
varying media and complex media boundaries. We
developed an efficient ray-tracing based algorithm
that eliminates the need of making simplifying as-
sumptions about the media variations or the scenes.

In particular, we traced analytic ray curves that
overcome the step size limitation of linear rays, com-
puted closed-form intersections of the ray curves with
the scene objects, and constructed adaptive media
mesh for efficient representation of the underlying
general media profiles. The mesh is also able to
conform to the media/objects boundaries, so that
surface interactions can be computed seamlessly with
media traversal, and the terrain or obstacle-following
temperature and wind profiles, commonly found in
real-world measurements[58], [59], can be modeled.

We highlight the propagation results on outdoor
benchmarks with realistic atmospheric profiles and
complex obstacles, running at near interactive rates
on a single CPU core. Our algorithm enables fast
sound simulation in large outdoor scenes that were
not feasible with previous methods.
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APPENDIX A
DERIVATION OF ANALYTIC RAY CURVES
Here we provide the derivation of analytic ray curves
based on a locally constant gradient of the propaga-
tion speed c and of the squared refractive index n. The
analytic solutions in various forms have been derived
in different context including geometric optics [49],
[50], [51] and computational acoustics [5], [6].

A.1 c-linear profile
When the propagation speed c has a local gradient
rc, we take the direction of rc as the z-axis, and the
local media profile can be written as:

c(z) = c0 + ↵z. (15)
From Equation (1a) we have
d

ds
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We use the following symbols

⇠0 =

1

c

dx

ds

, ⌘0 =

1

c

dy

ds

, ⇣(s) =

1

c

dz

ds

, (17)
and we can see that ⇠0 and ⌘0 are constant along the
ray trajectory according to Equation (16). As a result,
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If we rotate the x-y plane around the z axis until ⌘0
becomes 0 and put the origin of the coordinate system
at the ray origin, the ray becomes a plane curve lying
in the plane formed by the z-axis and the initial ray
direction at the origin (Figure 1 in the paper), which
we call the ray plane. The other axis of the ray plane is
called axis r, and that ⇠

0
0 =

1
c

dr

ds

=

cos✓0
c0

, where ✓0 is
the angle between initial ray direction and the r axis.
In the ray plane, integrating dr
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along the ray gives
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We solve ⇣ from Equation (18) and plug it into Equa-
tion (19), which gives us a circular curve:
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A.2 n

2-linear profile
When the squared refractive index n

2 has a local gra-
dient rn

2, we denote the gradient direction direction
as the z-axis, so that:

n

2
(z) = n

2
0 + ↵z. (21)

From Equation (1b), and using a derivation analogous
to Equation (16), (17), and (18), we obtain:
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We perform a similar rotation to the ray plane with
axis r and z, and denote ⇠

0
0 = n

dr

ds

= n0cos✓0. As in
Equation (19), we obtain:
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We solve ⇣ from Equation (24) and plug it into Equa-
tion (25) to derive the ray trajectory:

r(z) =

2⇠

0
0

↵

✓q
�⇠

02
0 + n

2
0 + ↵z �

q
�⇠

02
0 + n

2
0

◆
, (26)

which is a parabolic curve.

APPENDIX B
ANALYTIC SOLUTIONS OF n-LINEAR AND MI-
RAGE PROFILES

In Sec. 3.1 we defined three media profiles: n-
linear, inferior mirage, and superior mirage, that have
known analytic solutions for trajectories, and those
solutions are used in Sec. 6.3, 6.4 as ground truth to
validate the ray tracing results of both our analytic
ray curve tracer and the numerical ray integration
methods we are compating to. Here we give those
analytic solutions for reference, more details and plots
can be found in prior work [17], [52], [57].

B.1 n-linear profile

With n-linear profile, n(z) = n0 + ↵z, ↵ = krnk, n0

is c at ray origin. Given the ray origin and initial
direction d, the trajectory is a plane curve that lies in
the ray plane, formed by z-axis which coincides with
the direction of rn and d. We denote the axis within
the ray plane that is perpendicular to z-axis as the r-
axis, and ✓0 is the angle between d and r axis. The
analytic trajectory in r-z coordinates can be derived
to be:
r(z) =

n0cos✓0

↵

ln(2cz + b+ 2↵

p
A+ bz + cz

2|z0, (27)
where A = n0

2
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2
, b = 2↵n0, c = ↵

2, when the angle
between d and the z-axis is less than ⇡/2.

When the angle between d and the z-axis is equal
to or greater than ⇡/2, the analytic trajectory can be
divided into two segments at the point f = (x

f

, z

f

),
where

z

f

=

n0 cos ✓0 � n0

↵

, x

f

= �r(z

f

). (28)
The two segments are: x = �r(z), 0  x  x

f

and
x = 2x

f

+ r(z), x > x

f

.

B.2 Inferior mirage

For the inferior mirage profile (V-IM) given in Sec. 3.1,
and in the coordinate system where z-axis represents
the height and r-axis represents the range, and the
origin of the coordinate system is taken to be at the
same range with the ray origin but with a height
on the ground. z0 is the height of the ray origin in
this coordinate, theta0 is the angle between ray initial
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direction d and r-axis, and the analytic trajectory has
been derived to be:
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when the angle between d and z-axis is less than ⇡/2.
When the angle between d and z-axis is equal to

or greater than ⇡/2, the trajectory is divided into two
segments by the point (x
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B.3 Superior mirage
For the superior mirage profile (V-IM) given in Sec.
3.1, the coordinate system is similarly defined where
z-axis represents the height, r-axis represents the
range, and the origin is at the same range with the
ray origin but with a height on the ground. z0 is the
height of the ray origin in this coordinate, theta0 is
the angle between ray initial direction d and r-axis,
and the analytic trajectory has been derived to be:
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when the angle between d and z-axis is less than ⇡/2.
When the angle between d and z-axis is equal to

or greater than ⇡/2, the trajectory is divided into two
segments by the point (x
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APPENDIX C
CONSIDERATIONS OF EMBEDDED MESH

The design choice of whether to embed the boundary
surfaces or not, as discussed in Section 5.2, depends
on whether the resolution of surface tessellations
matches the resolution of media variations. Here we
show this connection with the geometric representa-
tions used for acoustic benchmarks, Christmas and
Desert scenes. We tessellate the boundary surfaces in
these benchmarks to different resolutions, using the
same set of media samples, and construct a different
constrained tetrahedral mesh for each resolution.

As shown in Fig. 16(a), there is a particular range
of resolution for each scene at which the surface
tessellation and the adaptive media mesh resolution
match each other; other tessellation levels produce
lower-quality mesh with more cells. This effect is even

more apparent (Fig. 16(b)) when we build optimized
tetrahedral mesh with a quality threshold measured
in the average aspect ratio.

Even when we link boundary surfaces with the
media cells they overlap with, rather than embedding
them in the mesh, we can see from 16(c) and (d) that
a mismatch between surface tessellation and media
variation still leads to slower traversal. Even though
the mesh is not affected by the surface tessellation in
this scenario, the number of surface primitives that
overlap each media cell increases with finer surface
tessellation, which slows down the traversal.

While constrained mesh construction is more ex-
pensive than unconstrained mesh construction, the
linking of surfaces also results in significant cost in
terms of pre-processing, as shown in Figure 16(e).
Given a complex media profile with boundaries tes-
sellated at a compatible resolution, the lower traversal
time for mesh with embedded boundary surfaces may
be worth the extra construction cost.

APPENDIX D
GRADIENT ESTIMATION SOLUTIONS

With linear least square, the estimated gradient from
solving Equation (13) is:

rm(x0) =

4X
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Cartesian coordinates of x
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.
In contrast, with Green-Gauss gradient estimation

as used in [17], given a tetrahedral cell with media
properties m defined on its vertices {m

k

, k = 1, ..., 4},
the gradient within that cell is given by:

rm =

4X

k=1

A

k

m

k

T

N

k

, (40)

where T is the volume of the tetrahedral cell, and
A

k

, N

k

are the area and the normal of the face opposite
to vertex k, respectively.

This Barycentric interpolation leads to C

0-
continuity of the media property, m, across shared
faces, edges, and vertices of neighboring cells.
However, there can be discontinuity in the media
gradient between neighboring cells. It has been
mentioned as future work in [17] that continuity
in gradient could potentially remove certain visual
artifacts, and this improvement is even more
important for acoustic applications than visual ones.

APPENDIX E
COMPARISON OF MESHES GENERATED FROM
LOCAL GRADIENTS OF n, c, n2

For any general media profile, whether given in the
propagation speed c or in the refractive index n,
we could transform the input profile into equivalent
profiles of n, c, or n

2 based on the relation n = c0/c.
The media gradient in the form of rn, rc, or rn

2

can be computed respectively, and a different adaptive
mesh can be constructed using Algorithm 2 for each of
the gradient measures, to be traversed by the n-linear,
c-linear (circular), and n

2-linear (parabolic) rays.
In this Appendix we analyze the approximation er-

rors associated with each of the three kinds of meshes,
for the profiles A-LU+F and A-DU+F, in Figure 17
and 18, respectively. Overall the approximations of
the underlying media are at the same accuracy level
across different kinds of meshes with comparable
size (number of cells). One of the meshes may be
better at approximating specific media profiles, but
the differences are small. We therefore recommend
selecting among the three meshes on a per scene
basis, but since the difference is small, c-linear and
n

2-linear profiles may be better choices due to their
more efficient boundary intersections.

Fig. 10: Adaptive meshes generated for the elephant
model[17], the interior index-of-refraction following
the luminance of the brick texture. Meshes built with
two different � values are shown. The mesh cell sizes
can be seen to adapt to the underlying media gradient.
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(a) ray curves, 7.3 fps (b) ray stepping (size 1.0), 6.92 fps (c) ray stepping (size 0.05), 0.22 fps

(d) photograph of superior mirage (e) diff. between (a) and (b) (f) diff. between (a) and (c)

(g) ray curves, 8.9 fps (h) ray stepping (size 1.0), 8.2 fps (i) ray stepping (size 0.05), 0.35 fps

(j) photograph of inferior mirage (k) diff. between (g) and (h) (l) diff. between (g) and (i)

Fig. 11: Same-quality/same-speed comparisons between ray curve tracing and piece-wise linear ray tracing,
on visual benchmarks of superior mirages V-SM (a-f) and inferior mirages V-IM (g-l). The atmospheric media
is modeled with an adaptive mesh of 28,313 tetrahedral cell, covering a physical volume of 50m⇥50m⇥400m.
512 ⇥ 512 rays are traced from the viewer position for each image. (a,g) Ray curve tracing results, (d,j)
Photographs of similar phenomena, (b,h) Same-speed comparison, the size of ray steps is chosen to match the
performance of ray curve tracing, (e,k) Difference images, (c,i) Same-quality comparison, the size of ray steps
is chosen to match the rendering quality of ray curve tracing, (f,l) Difference images. The ray curve tracer is
more efficient than piece-wise linear rays when rendering at comparable quality. With same speed comparison
the artifacts from piece-wise linear rays are most visible in areas where trajectories are curved the most. All
frame rates are measured with single CPU thread.
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Fig. 12: Approximation error of adaptive meshes. Approximating the stratified-plus-fluctuation (A-LU+F)
atmospheric profile using re-sampled points S containing 100⇥ fewer points than the input profile. (a) The
positions of S color-coded by the index of refraction. (b,c) The original and approximated index of refraction
n

G

, ñ
G

on a slice, respectively. (d) Absolute error, |n
G

� ñ

G

|. (e) Relative error E

rel

= kn
G

� ñ

G

k/kn
G

k versus
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Fig. 13: Compare to approximation error using octree. We approximate the A-LU+F profile using octree, in
comparison to our method of adaptive mesh analyzed in Figure 12. We build an octree given the same input
media profile on a regular grid of 128⇥128⇥128 points, using the same method as [17]. For the particular octree
in (a-d) we use the threshold for differences in indices of refraction � = 0.003 and the threshold for differences
in index gradients " = 0.0003, to get similar numbers of samples (26,923) as in the re-sampled points S. (a) The
positions of centers of octree cells, color-coded by the refractive index. (b,c) The original and approximated
index of refraction n
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versus the number of octree cells. The original grid has 2.09⇥ 10

5 points.

(a) upward refraction (b) Christmas upward (c) Desert upward

(d) downward refraction (e) Christmas downward (f) Desert downward

Fig. 14: Acoustic propagation in the atmosphere. (a,d) 2-D views with stratified profiles A-LU, A-LD.
(b,c,e,f) Curved ray trajectories for Christmas and Desert benchmarks. Both upward (A-LU+F) and downward
refractive (A-LD+F) atmosphere with random fluctuations are simulated. We trace 10K rays for up to 3 surface
reflections at 4.5 fps for Desert(m) and 3.8 fps for Christmas(m). Here we show a representative set of ray
paths for each scene and condition. The detailed performance results are listed in Table 3.
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(a) hot spot (2D view) (b) upwind over hill (2D view) (c) downwind over hill (2D view)

(d) hot spot (3D view) (e) upwind over hill (3D view) (f) downwind over hill (3D view)

Fig. 15: Acoustic propagation. Illustrative ray paths are shown here for the acoustic profiles (defined in Sec.
3.2), including (a,d) Hot spot (A-HS) (the sphere shows the location and influence region of a heat source), (b,e)
Up-wind propagation (A-UW) and (c,f) Downwind propagation over a hill (A-DW). The acoustic propagation
trajectories deviate significantly from linear paths, and we show the out-of-plane propagation for A-HS, A-UW,
and A-DW each from two different views. Our curved ray tracer computes the resulting 3D paths accurately
at 10⇥ the speed of linear ray stepping.

(a) (b)

(c) (d) (e)

Fig. 16: Comparison between embedding and linking boundary surfaces. Tessellation of surfaces: (a) impacts
the sizes and quality of the constrained mesh, the mesh quality reaches a high point (low mean aspect ratio)
for tessellation that matches the surrounding media sample density. (b) impacts the sizes of quality meshes,
which are constrained meshes that are optimized to achieve a quality threshold. The size of quality mesh is
most compact when the tessellation matches the surrounding media sample density. (c) impacts the number
of surfaces overlapping with each tetrahedral cell, which need to be linked. (d) Average number of surface
links in turn impacts the traversal performance. (e) Tessellation of surfaces impacts the construction time of
both embedding and linking.
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(a)

(b)

(c)

Fig. 17: Comparisons of 3 analytic ray profiles: upward refractive atmosphere. With the A-LU+F profile
(defined in Sec. 3.2), we compute the same media profile in terms of c (sound speed), n (acoustic refractive
index, with reference c0 = 340m/s), and n

2, visualized in the leftmost column of a,b,c, respectively. The
adaptive meshes constructed according to Algorithm 2 are shown in the rightmost column of a,b,c, with the
control parameters � = 0.001, 0.35, 0.023, respectively. The control parameters are selected to achieve similar
level of approximation error (measured in n and visualized in the second column from right) in the interpolated
profiles over the three meshes. The resulting meshes have cell counts of 153867, 138965, 119670 respectively,
which are roughly on the same level, with the n

2-linear profile producing slightly more compact mesh than
the other profiles.
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(a)

(b)

(c)

Fig. 18: Comparisons of 3 analytic ray profiles: downward refractive atmosphere. With the profile A-LD+F
defined in Sec. 3.2, we repeat the experiment in Figure 17. The equivalent media profiles in terms of n, c, and
n

2 are shown in leftmost column in a,b,c, respectively. The adaptive meshes shown in the rightmost column
of a,b,c are constructed with the control parameter � = 0.001, 0.3, 0.002 respectively, achieving similar level
of approximation error. The resulting meshes have cell counts of 133735, 177958, 130759 respectively. With
this downward refracting profile, the mesh sizes are still on the same level, with n

2-linear profile producing
slightly more compact mesh than the other profiles.


