
Smooth and Collision-Free Navigation for Multiple Robots Under

Differential-Drive Constraints

Jamie Snape, Student Member, IEEE, Jur van den Berg, Stephen J. Guy, and Dinesh Manocha

Abstract— We present a method for smooth and collision-free

navigation for multiple independent robots under differential-

drive constraints. Our algorithm is based on the optimal
reciprocal collision avoidance formulation and guarantees both

smoothness in the trajectories of the robots and locally collision-

free paths. We provide proofs of these guarantees and demon-

strate the effectiveness of our method in experimental scenarios

using iRobot Create mobile robots navigating amongst each

other.

I. INTRODUCTION

Differential-drive robots are ubiquitous in robotics. These
robots use a simple drive mechanism that consists of two
drive wheels mounted on a common axis. Moreover, each
wheel can be independently driven in both forward and
reverse directions. From vacuum cleaners [1] to powered
wheelchairs [2], most mobile robots in practical service
have differential-drive constraints. Applications have been
as diverse as the inspection of walls [3], pharmaceutical
warehousing [4], and virtual tour guides [5].

Increasingly, robots are used not only in isolation, but as
part of a distributed system of multiple robots. Groups of
coordinated mobile robots may be used for surveillance, and
environmental monitoring, as well as search and rescue [6].
In such cases it is necessary to develop methods to compute
collision-free paths for each of these robots with respect to
other robots and obstacles. Moreover, the robot should move
smoothly. The smoothness property is important for many
mobile or practical service robots, as they must take into
account the physical limits of robot actuators and other safety
issues.

Most of the prior work in smooth and collision-free
navigation has been limited to single robots moving amongst
dynamic obstacles. There is extensive work on navigating
multiple robots, including global methods based on central-
ized or decoupled approaches [7] and local and reactive
methods [8], [9], [10] for computing collision-free paths.
However, most of these algorithms do not take into account
kinematic constraints, nor do they provide guarantees of
smoothness. The resulting paths may also have discontinu-
ities.

This work was supported in part by ARO contract W911NF-04-1-0088;
NSF awards 0636208, 0917040, and 0904990; DARPA/RDECOM contract
WR91CRB-08-C-0137; and Intel.

J. Snape, S. J. Guy, and D. Manocha are with the Department of Computer
Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
27599, USA. Email: {snape, sjguy, dm}@cs.unc.edu.

J. van den Berg is with the Department of Industrial Engineering and
Operations Research, University of California, Berkeley, Berkeley, CA
94720, USA. Email: berg@berkeley.edu.

Website: http://gamma.cs.unc.edu/ORCA-DD/.

Fig. 1. The kinematic model of a differential-drive robot. The center of the
robot is q = (x, y), its radius is r, and the distance between its wheels is
L. Each wheel is attached to a separate motor and may assume a different
speed. The effective center p = (X,Y) is located a distance D from q
and the effective radius is R.

In this paper, we present a new method for navigating mul-
tiple independent robots with differential-drive constraints in
the plane. Our algorithm is local and velocity-based. Each
differential-drive robot executes an independent continuous
cycle of sensing and acting. Our algorithm computes a new
velocity based on the current positions and velocities of the
other robots. The robots need not explicitly communicate
with each other.

The result of our algorithm is the control inputs, the two
wheel speeds, for a robot with differential-drive constraints.
Our method works by enlarging the radius used in navigation
in a precise way which provides additional maneuverability,
allowing us to handle the differential-drive constraints in a
smooth and collision-free manner. We combine this enlarged
radius with optimal reciprocal collision avoidance [11] to
obtain our algorithm.

To our knowledge, this the first algorithm that mathemat-
ically guarantees smooth and collision-free trajectories for
multiple independent robots navigating in a shared environ-
ment that is local and reactive and takes into account the
kinematic constraints of a differential-drive robot.

This rest of this paper is organized as follows. We first
summarize related work in Section II. In Section III, we
describe the kinematics of a differential-drive robot and
introduce the notion of effective center and effective radius
that we use to transform a velocity to control inputs for
such a robot. In Section IV, we combine this method with
optimal reciprocal collision avoidance to create our algorithm
for smoothly navigating multiple differential-drive robots
amongst each other. We highlight some of the mathematical
guarantees on the trajectories computed by our algorithm in
Section V. Finally, we describe an implementation of our
algorithm using iRobot Create mobile robots and describe

our experimental results in Section VI.

II. PRIOR WORK

In this section, we briefly survey prior work on motion
planning under kinematic constraints for single and multiple
robots and discuss other approaches for navigating multiple
robots.

Some of the earliest work on planning for robots with
kinematic constraints dates back to the classical Dubins
car [12]. This simplified car model is restricted to forward
motions with a fixed speed and bounded turning radius. The
Reeds-Shepp car [13] adds a reverse gear to the Dubins car,
while the simple car [14], [15] extends the model further
with variable speed in any direction.

Many works have examined the issue of a single robot nav-
igating through a cluttered environment containing dynamic
obstacles [9], [10]. Some of these approaches are based
on the notion of velocity obstacles [8] and its extensions
to navigating multiple robots and virtual agents [16], [17].
These navigation methods do not provide any mathematical
guarantees on the smoothness of the resulting trajectories.

The work of [18] proposes a reactive navigation scheme
based on a number of predefined discrete behaviors, while
[19] describes a local planner in which multiple robots
explicitly communicate with each other.

Other global navigation algorithms for multiple robots can
be classified into decoupled or centralized planners. Decou-
pled planners [7] consider each robot individually and then
modify their velocities as a post-process to avoid collisions
with each other. On the other hand, centralized planners
generate a single composite system by combining the degrees
of freedom of each robot and apply traditional single robot
navigation algorithms to that [14]. However, prior single
robot algorithms for smooth or continuous curvature paths
may not be applicable to such a composite system in terms
of computing smooth trajectories for each robot.

Recently, many algorithms have been proposed for nav-
igating multiple aerial [20] or aquatic robots [21] in three
dimensions. This follows the successful deployment of un-
manned aerial vehicles and autonomous underwater vehicles
for both civil and military applications [22].

Other work on the navigation of multiple robots with kine-
matic constraints has focused on follow-the-leader behavior
[23] and time-optimal trajectories [24]. Some of the methods
include a modified rapidly-exploring random tree planner
[25], and mixed integer nonlinear programming [26].

III. KINEMATICS OF A DIFFERENTIAL-DRIVE ROBOT

In this section, we give a brief overview of the kinematic
constraints of a differential-drive robot, which is applicable
to many contemporary mobile robot systems. Next we de-
scribe a method for transforming a velocity to the control
inputs of the robot, which are simply its two wheel speeds.

A. Kinematic Model
As illustrated in Fig. 1, the configuration of a differential-

drive robot is given by the position of its center q = (x, y)

and its orientation θ. Its configuration transition equations
[14] are given as

ẋ =
vl + vr

2
cos θ, ẏ =

vl + vr

2
sin θ, θ̇ =

vr − vl

L
, (1)

where constant L > 0 is the distance between the wheels
of the robot, and vl and vr are the signed speeds and
control inputs for its left and right wheels, respectively.
In addition, the speeds vl and vr are bounded such that
vl, vr ∈ [−vmax, vmax].

The robot is disc-shaped with radius r, and we assume that
it is sufficiently lightweight and its motors powerful enough
that it can attain any wheel speed vl or vr within a bounded
interval near instantaneously.

B. Effective Center and Effective Radius
We now show the precise method used to enlarge the

radius for navigation, which results in increased maneu-
verability for the robot, allowing smooth handling of the
kinematic constraints of a differential-drive robot.

Since the center q of a differential-drive robot is not fully
controllable, we adapt the approach of [27] and define the
“effective center” of such a robot to be a point p = (X,Y)
translated a distance D > 0 from q in a direction orthogonal
to the axle of the robot. Similarly, we have the “effective
radius” R > 0 such that R = r+D. The effective center and
effective radius are also shown on Fig. 1. Unlike the center
q, the effective center p may be translated in a direction
orthogonal to the orientation of the wheels of the robots and
is fully controllable.

It follows from the definition of the effective center that

X = x+D cos θ, Y = y +D sin θ.

Then, substituting equations (1) and applying the chain rule,
we have

Ẋ =

�
cos θ

2
+

D sin θ

L

�
vl +

�
cos θ

2
− D sin θ

L

�
vr,

Ẏ =

�
sin θ

2
− D cos θ

L

�
vl +

�
sin θ

2
+

D cos θ

L

�
vr.

(2)

This gives us a linear system of the form

v = M(θ) · u, (3)

where u = (vl, vr), v = (Ẋ, Ẏ), and M(θ) is a two-
dimensional matrix. Hence, we can obtain wheel speeds vl

and vr from a velocity v by solving u = M−1(θ) · v. Note
that D �= 0 and L �= 0 by definition, so the matrix M(θ) is
invertible for all θ.

Since the wheel speeds of the differential-drive robot are
bounded, u = (vl, vr) lies within an axis-aligned square S

with lower left vertex (−vmax,−vmax) and upper right vertex
(vmax, vmax). Hence, the set of velocities v that the robot
can attain is given by the linear transformation M(θ) · S.
It follows that if D = r, in which case the effective radius
is R = 2r, then this set of velocities is a square S� whose
center lies at v = (0, 0) and whose orientation depends on θ.
The incircle of S� therefore contains the velocities that can
be attained regardless of orientation θ.

(a) (b) (c)

Fig. 2. (a) A configuration of two disc-shaped robots A and B in the plane with radii rA and rB , positions qA and qB , effective radii RA and RB ,
and positions pA and pB of their effective center, respectively. (b) The velocity obstacle VOτ

A|B for A induced by B within the window of time τ = 2.
The sides of VOτ

A|B are tangent to a disc of radius RA +RB with center pB − pA and it is truncated by a disc of radius (RA +RB) / τ with center
(pB −pA) / τ . (c) The set of permitted velocities ORCAτ

A|B available to A for optimal reciprocal collision avoidance with B within the window of time
τ . The half-plane ORCAτ

A|B is bounded by a line perpendicular to w through vA + 1
2w, where w is from vA − vB to the closest point on ∂VOτ

A|B .

The result of this transformation is a fully controllable
point p = (X,Y). We can apply optimal reciprocal collision
avoidance to the disc centered at the effective center p with
a radius R that has been enlarged to encompass the robot
itself (Fig. 1).

IV. MULTI-ROBOT NAVIGATION

In this section, we combine our method for obtaining con-
trol inputs from a velocity with optimal reciprocal collision
avoidance to design a new algorithm for navigating multiple
independent differential-drive robots in the plane that takes
into account their kinematic constraints. We begin by review-
ing the notion of optimal reciprocal collision avoidance, and
then present our algorithm.

A. Optimal Reciprocal Collision Avoidance
Optimal reciprocal collision avoidance [11] is a velocity-

based local collision avoidance approach based on the notion
of velocity obstacles [8].

Consider the configuration of two disc-shaped robots in
Fig. 2(a). The velocity obstacle for A induced by B within
the window of time τ , denoted VOτ

A|B , is the set of velocities
of A relative to B that will cause a collision between A and
B at some moment before time τ has elapsed, assuming that
both robots maintain a constant trajectory within that time
interval:

VO
τ

A|B = {v | ∃t ∈[0, τ] :: t(v − vB)

∈ D(pB − pA, RA +RB)},

where D(p, R) is an open disc of radius R centered at p.
Hence, in the velocity space, the velocity obstacle within a

finite window of time takes the geometric form of truncated
cone, as shown in Fig. 2(b). In our calculations we use the
positions pA = (X,Y)A and pB = (X,Y)B of the effective
centers of A and B and their effective radii RA and RB ,
respectively. Moreover, the velocities of each robot are vA =
(Ẋ, Ẏ)A and vB = (Ẋ, Ẏ)B . We also assume that each
robot has complete knowledge of the environment, that is it
is aware of the exact position and velocity of all the other
robots at all times.

Now, if A and B each choose a velocity outside the veloc-
ity obstacle induced by the other, then they will be collision-
free for at least τ time. Therefore, the set of collision-
avoiding velocities for A given B within the window of time
τ is

CA
τ

A|B = {v |v �∈ VO
τ

A|B}.

While choosing vA from CAτ

A|B and vB from CAτ

B|A
ensures that A and B will not collide, their respective
trajectories may not be smooth due to oscillations in velocity
[16]. Optimal reciprocal collision avoidance resolves this
situation. The set of velocities ORCAτ

A|B ⊂ CAτ

A|B available
to A for optimal reciprocal collision avoidance with B within
the window of time τ is defined as follows.

Referring to Fig. 2(c), let w be the vector from vA − vB

to the closest point on the boundary of the velocity obstacle,
w = (argminv∈∂VOτ

A|B
�v − (vA − vB)�2) − (vA − vB),

where ∂VOτ

A|B is the boundary of VOτ

A|B and vA and vB

are the current velocities of A and B, respectively.
Now, let n be the outward normal of ∂VOτ

A|B at the point
vA − vB + u, and assume that both A and B adapt their
velocity by 1

2u to avoid colliding with each other. Then the
set of permitted velocities ORCAτ

A|B is

ORCA
τ

A|B = {v | (v − (vA + 1
2w)) · n ≥ 0}.

This is the half-plane of velocities shown in Fig. 2(c) and is
a strict subset of the collision-avoiding velocities CAτ

A|B . In
common with the velocity obstacle, both robots A and B can
construct ORCAτ

A|B and ORCAτ

B|A, respectively, without
communication with each other, requiring knowledge of only
the radius, position, and velocity of each other.

It follows that if A and B select velocities vA from
ORCAτ

A|B and vB from ORCAτ

B|A, respectively, then the
trajectories of A and B will be smooth and collision-free for
at least time τ .

B. Navigation Algorithm

Incorporating each of the previous components together,
we now present our algorithm.

Input A : List of differential-drive robots
loop

for all Ai ∈ A do

Sense qAi
= (x, y)Ai and vAi

Calculate pAi
= (X,Y)Ai

for all Aj ∈ A such that i �= j do

Sense qAj
= (x, y)Aj and vAj

Calculate pAj
= (X,Y)Aj

Construct ORCAτ

Ai|Aj

end for

Construct ORCAτ

Ai
from all ORCAτ

Ai|Aj

Compute preferred velocity vpref
Ai

Compute new velocity vnew
Ai

∈ ORCAτ

Ai
clos-

est to vpref
Ai

using linear programming
Compute control inputs uAi = (vl, vr)Ai from
vnew
Ai

by solving vAi = M(θ) · uAi

Apply control inputs to actuators of Ai

end for

end loop

Fig. 3. Our algorithm for smooth and collision-free multi-robot navigation
under differential-drive constraints.

Let A be a set of robots sharing an environment. Each
robot Ai ∈ A has a current position qAi

, a current velocity
vAi , and a fixed radius rAi . Moreover, each robot has an
effective center at position pAi

and effective radius RAi .
Then the set of permitted velocities available to a robot Ai

for optimal reciprocal collision avoidance with all robots
Aj such that j �= i within the window of time τ is the
intersection of half-planes

ORCA
τ

Ai
=

�

Aj∈A
i �=j

ORCA
τ

Ai|Aj
.

Furthermore, we define the preferred velocity vpref
Ai

of Ai

to be the velocity directed from the effective center pAi

towards its goal position pgoal
Ai

with a magnitude equal to
some preferred speed �vpref

Ai
�2. This is the velocity that Ai

would have selected had no other robots been in its way.
Then each robot Ai should choose the new velocity from
ORCAτ

Ai
that is closest to its preferred velocity, vnew

Ai
=

argminv∈ORCAτ
Ai

�v − vpref
Ai

�2. This may be calculated
efficiently using linear programming [11], and the control
inputs of the robot may then be calculated from vnew

Ai
using

the notion of effective center and effective radius described
in Section III-B.

The algorithm used by each robot is summarized by the
algorithm in Fig. 3.

V. MATHEMATICAL GUARANTEES

In this section, we highlight the mathematical guarantees
of smooth and collision-free trajectories offered by our
algorithm for navigating multiple independent robots with
differential-drive constraints. In particular, we provide a
proof that optimal reciprocal collision avoidance guarantees

that the motion of each robot is smooth, in the mathematical
sense.

A. Smooth Motion
The key property of our algorithm which distinguishes it

from other reactive methods, is that in addition to generating
collision-free paths, it guarantees that the motion of each
robot is smooth, that is the trajectory generated by the
velocities calculated by our algorithm is continuous.

We have the following new result for optimal reciprocal
collision avoidance.

Theorem 1: Given a small time step δt, the trajectory
vAi(t) generated by the sequence of velocities vAi in the
velocity space is continuous, that is vAi(t) ≈ vAi(t + δt),
where ≈ denotes “arbitrarily close to” as δt → 0.

The proof of Theorem 1 is by induction on the time step
δt. In the inductive step, we will prove that vAi(t + δt) ≈
vAi(t) ⇒ vAi(t + 2δt) ≈ vAi(t + δt), and in the base
case we will prove that vAi(δt) ≈ vAi(0) for a proper
initialization of the simulation. The proof requires several
additional results, which are presented first.

Lemma 2: The trajectory vpref
Ai

(t) generated by the se-
quence of preferred velocities vpref

Ai
in the velocity space

is continuous, that is vpref
Ai

(t) ≈ vpref
Ai

(t+ δt).
Proof: The preferred velocity vpref

Ai
of each robot is the

difference of the position pAi
of its effective center and its

goal position pgoal
Ai

. Since pAi
(t) is clearly continuous and

pgoal
Ai

is fixed, it follows that vpref
Ai

(t) is continuous.
Lemma 3: If the trajectory vAi(t) is continuous, that

is vAi(t) ≈ vAi(t + δt), then ORCAτ

Ai|Aj
(t) ≈

ORCAτ

Ai|Aj
(t+ δt).

Corollary 4: Let ORCAτ

Ai
(t) be the intersection of half-

planes ORCAτ

Ai|Aj
(t) at time t for all j �= i, then

ORCAτ

Ai
(t) ≈ ORCAτ

Ai
(t+ δt).

Proof: The half-plane ORCAτ

Ai|Aj
is a tangent to the

velocity obstacle VOτ

Ai|Aj
. Since VOτ

Ai|Aj
(t) is continuous,

as the position of the effective center pAi
(t) and, by as-

sumption, the velocity vAi(t) are continuous, it follows that
ORCAτ

Ai|Aj
(t) is continuous.

Lemma 5: The optimal reciprocal collision avoidance al-
gorithm selects the new velocity vAi based on the pre-
ferred velocity vpref

Ai
and the intersection of half-planes

ORCAτ

Ai
, that is vAi(t + δt) = f(vpref

Ai
(t), ORCAτ

Ai
(t)),

for some function f , the linear programming func-
tion. This function is continuous, that is if vpref

Ai
(t) ≈

vpref
Ai

(t + δt) and ORCAτ

Ai
(t) ≈ ORCAτ

Ai
(t + δt), then

f(vpref
Ai

(t), ORCAτ

Ai
(t)) ≈ f(vpref

Ai
(t + δt), ORCAτ

Ai
(t +

δt)).
Proof: The function f is a projection of vpref

Ai
(t) onto

ORCAτ

Ai
(t). Since vpref

Ai
(t) and ORCAτ

Ai
(t) are continuous,

it follows that f is continuous.
Proof: [Proof of Theorem 1] The inductive step pro-

ceeds as follows. From the optimal reciprocal collision avoid-
ance algorithm, vAi(t+2δt) = f(vpref

Ai
(t+δt), ORCAτ

Ai
(t+

δt)). Moreover, ORCAτ

Ai
(t+δt) ≈ ORCAτ

Ai
(t) from Corol-

lory 4 and vpref
Ai

(t+δt) ≈ vpref
Ai

(t) from Lemma 2. Now, the

function f is continuous, so f(vpref
Ai

(t + δt), ORCAτ

Ai
(t +

δt)) ≈ f(vpref
Ai

(t), ORCAτ

Ai
(t)), and by Lemma 5, it follows

that vAi(t+ δt) = f(vpref
Ai

(t), ORCAτ

Ai
(t)). Hence, vAi(t+

2δt) ≈ vAi(t + δt). By the assumption in Lemma 3 that
vAi(t) is continuous, so vAi(t + δt) ≈ vAi(t), it follows
that vAi(t+ 2δt) ≈ vAi(t+ δt), as required.

The base case of the inductive proof is vAi(δt) ≈ vAi(0).
This occurs if each robot is initialized with vpref

Ai
and

the starting position of its effective center is such that all
other robots are sufficiently distant so that vpref

Ai
is within

ORCAτ

Ai
. The robot may therefore keep vpref

Ai
in the first

step, and vpref
Ai

(t) will be continuous by Lemma 2.
Finally, we have following result for differential-drive

robots.
Lemma 6: If the trajectory vAi(t) generated by the se-

quence of velocities vAi = (Ẋ, Ẏ)Ai of the effective center
of the robot in the velocity space is continuous, then the
trajectory generated by the sequence of velocities (ẋ, ẏ)Ai

of the center of the robot is continuous.
Proof: By assumption, vAi = (Ẋ, Ẏ)Ai in (3) is

continuous. Referring to equations (2), it is easy to show
by induction on the time step δt that θ is continuous when
each robot is initialized as in the base case of the proof
of Theorem 1. Therefore, uAi = (vl, vr)Ai is continuous.
By equations (1), this implies that (ẋ, ẏ)Ai is continuous, as
required.

Hence, by Theorem 1 and Lemma 6, our algorithm gen-
erates smooth trajectories for each differential-drive robot.

B. Locally Collision-Free Paths
The guarantee given by [11] that optimal reciprocal col-

lision avoidance generates locally collision-free paths also
holds for differential-drive robots navigating using the notion
of effective center and effective radius.

Theorem 7: Given a small time step δt, the path qAi
(t)

generated by the sequence of positions qAi
in the plane is

collision free with all paths qAj
(t) for j �= i.

Proof: Choosing a velocity vAi within the intersection
of half-planes ORCAτ

Ai
ensures that the disc D(pAi

, RAi),
for effective center pAi

and effective radius RAi , is collision
free. The robot Ai is always completely contained by this
disc, so its path qAi

(t) is collision free.
We can only guarantee a collision-free velocity vAi will

be found when ORCAτ

Ai
�= ∅, although this has not been an

issue in practice.

VI. EXPERIMENTATION

In this section, we describe the implementation of our
algorithm and present the results of our experiments with
differential-drive robots in two scenarios.

A. Implementation
We implemented our algorithm on a set of four iRobot

Create programmable robots with Bluetooth wireless control
and camera-based centralized sensing, as shown in Fig. 4(a).

The iRobot Create is a differential-drive robot with two
powered wheels and a third passive caster wheel to maintain

balance. Each wheel is actuated individually with a maxi-
mum speed of 0.5 m/s in both forward and reverse directions.
Weighing less than 2.5 kg, the favorable power-to-weight
ratio of the robot allows it to accelerate rapidly to any speed
specified by our algorithm.

The iRobot Create does not have sufficient sensors to be
able to localize itself, so, for ease of implementation, we
tracked fiducial markers attached to each robot (Fig. 4(a))
using a ceiling-mounted video camera connected to a stan-
dard desktop computer via FireWire interface. The images
were captured at a resolution of 1024x768 and a refresh rate
of 30 Hz and were processed using the ARToolKit augmented
reality library [28] to determine the absolute position and
orientation of each robot. Velocity was inferred from these
measurements using a Kalman filter [29].

For convenience, all calculations were carried out on a
single computer. However, to ensure that our approach is
also applicable to a robot with its own on-board sensing
and computing, only the acquisition of the localization data
was performed centrally. Calculations for each robot related
to navigation were performed in separate, non-interacting
processes. The resultant control inputs were sent to each
robot over a Bluetooth virtual serial connection at a speed
of 57.6 kb/s and median latency of 0.5 s.

B. Experimental Results
We tested our approach in two scenarios:
1) Four robots are placed at the corners of a rectangular

environment. Their goal is to navigate to the corner
diagonally opposite. The robots will meet and have to
negotiate around each other in the middle.

2) The center of the environment is blocked by a dead
robot that has malfunctioned and is unable to move.
Scenario 1 is repeated, but the remaining robots must
avoid each other and the dead robot.

Traces of the robots are shown in Fig. 4(b) for Scenario 1.
The paths generated by our algorithm are collision free and
do not exhibit any oscillations in velocity. Each of the four
robots makes enough room for the other robots, resulting in
direct paths from starting position to goal position with a
minimal amount of deviation.

In Scenario 2, we demonstrate that our algorithm still gen-
erates smooth and collision-free paths, as shown in Fig. 4(c),
even when the direct path from the starting position to the
goal position for each robot is blocked by the dead robot.

VII. CONCLUSION

In this paper, we have described a method for obtaining
control inputs, the two wheel speeds, from a given velocity
for a robot with differential-drive constraints using the notion
of effective center and effective radius to overcome the
inherent limitation that the center of a differential-drive
robot is not fully controllable. We have combined this
formulation with optimal reciprocal collision avoidance to
derive our algorithm and proved that it guarantees smooth
and locally collision-free motion for multiple differential-
drive robots navigating in a shared environment. Each robot

(a) (b) (c)

Fig. 4. (a) Four iRobot Create mobile robots in our experimentation setting. (b, c) Traces of the robots in Scenarios 1 and 2, respectively. The shaded
disc in the center of (c) is the dead robot in Scenario 2.

is independent and is able to react to the other robots
without explicit communication by simply observing their
current positions and velocities. We have implemented our
method using iRobot Create mobile robots and shown its
effectiveness in two scenarios.

While other approaches [17], [27] exhibit empirically
smooth trajectories in limited examples, they provide no
mathematical guarantees that the trajectories will be smooth
in other circumstances. Furthermore, our algorithm is not
constrained to a finite set of behaviors [18], potentially
allowing any maneuver permitted by the kinematics of
each robot. Unlike other approaches which require explicit
communication between every robot [19], robots using our
algorithm can be fully independent, making all decisions
based only on their own observations. This allows, for
instance, fast computation and fault tolerance.

REFERENCES

[1] J. L. Jones, N. E. Mack, D. M. Nugent, and P. E. Sandin, “Autonomous
floor-cleaning robot,” U.S. Patent 6 883 201, 2005.

[2] E. Prassler, J. Scholz, and P. Fiorini, “A robotic wheelchair for crowded
public environments,” IEEE Robot. Autom. Mag., vol. 8, no. 1, pp. 38–
45, 2001.

[3] D. Longo and G. Muscato, “The Alicia3 climbing robot: A three-
module robot for automatic wall inspection,” IEEE Robot. Autom.
Mag., vol. 13, no. 1, pp. 42–50, 2006.

[4] P. Fiorini and D. Botturi, “Introducing service robotics to the phar-
maceutical industry,” Intell. Serv. Robot., vol. 1, no. 4, pp. 267–280,
2008.

[5] R. Philippsen and R. Siegwart, “Smooth and efficient obstacle avoid-
ance for a tour guide robot,” in Proc. IEEE Int. Conf. Robot. Autom.,
vol. 1, 2003, pp. 446–451.

[6] N. Michael, J. Fink, and V. Kumar, “Experimental testbed for large
multirobot teams,” IEEE Robot. Autom. Mag., vol. 15, no. 1, pp. 53–
61, 2008.

[7] K. Kant and S. W. Zucker, “Towards efficient trajectory planning: The
path-velocity decomposition,” Int. J. Robot. Res., vol. 5, no. 3, pp. 72–
89, 1986.

[8] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” Int. J. Robot. Res., vol. 17, no. 7, pp. 760–
772, 1998.

[9] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, pp. 23–33,
1997.

[10] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-
ments,” in Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., 2005, pp.
2210–2215.

[11] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics Research, ser. Tract. Adv.
Robot., M. Kaneko and Y. Nakamura, Eds. Springer, 2010, vol. 66.

[12] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” Amer. J. Math., vol. 79, pp. 497–516, 1957.

[13] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pac. J. Math., vol. 145, no. 2, pp. 367–393,
1990.

[14] S. M. LaValle, Planning Algorithms. Cambridge Univ. Pr., 2006.
[15] J.-C. Latombe, “A fast path planner for a car-like indoor mobile robot,”

in Proc. AAAI Nat. Conf. Artif. Intell., 1991, pp. 659–665.
[16] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity

obstacles for real-time multi-agent navigation,” in Proc. IEEE Int.
Conf. Robot. Autom., 2008, pp. 1928–1935.

[17] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha, “Independent
navigation of multiple mobile robots with hybrid reciprocal velocity
obstacles,” in Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., 2009, pp.
5917–5922.

[18] L. Pallottino, V. G. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized
cooperative policy for conflict resolution in multivehicle systems,”
IEEE Trans. Robot. Autom., vol. 23, no. 6, pp. 1170–1183, 2007.

[19] K. E. Bekris, K. I. Tsianos, and L. E. Kavraki, “A decentralized planner
that guarantees the safety of communicating vehicles with complex
dynamics that replan online,” in Proc. IEEE RSJ Int. Conf. Intell.
Robot. Syst., 2007, pp. 3784–3790.

[20] J. Snape and D. Manocha, “Navigating multiple simple-airplanes in
3D workspace,” in Proc. IEEE Int. Conf. Robot. Autom., 2010.

[21] D. B. Edwards, T. A. Bean, D. L. Odell, and M. J. Anderson, “A leader-
follower algorithm for multiple AUV formations,” in Proc. IEEE OES
Auton. Underw. Veh., 2004, pp. 40–46.

[22] P. Cheng, V. Kumar, R. Arkin, M. Steinberg, and K. Hedrick, “Co-
operative control of multiple heterogeneous unmanned vehicles for
coverage and surveillance,” IEEE Robot. Autom. Mag., vol. 16, no. 2,
p. 12, 2009.

[23] J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control
of formations of nonholonomic mobile robots,” IEEE Trans. Robot.
Autom., vol. 17, no. 6, pp. 905–908, 2001.

[24] D. J. Balkcom and M. T. Mason, “Time optimal trajectories for
bounded velocity differential drive vehicles,” Int. J. Robot. Res.,
vol. 21, no. 3, pp. 199–217, 2002.

[25] J. Bruce and M. Veloso, “Real-time multi-robot motion planning with
safe dynamics,” in Multi-Robot Systems. From Swarms to Intelligent
Automata, L. E. Parker, F. E. Schneider, and A. C. Schultz, Eds.
Springer, 2005, vol. 3, pp. 159–170.

[26] J. Peng and S. Akella, “Coordinating multiple robots with kinodynamic
constraints along specified paths,” Int. J. Robot. Res., vol. 24, no. 4,
pp. 295–310, 2005.

[27] B. Kluge, D. Bank, E. Prassler, and M. Strobel, “Coordinating the
motion of a human and a robot in a crowded, natural environment,”
in Advances in Human-Robot Interaction, ser. Tract. Adv. Robot.,
E. Prassler, G. Lawitzky, A. Stopp, G. Grunwald, M. Hägele, R. Dill-
mann, and I. Iossifidis, Eds. Springer, 2004, vol. 14, pp. 207–219.

[28] H. Kato and M. Billinghurst, “Marker tracking and HMD calibration
for a video-based augmented reality conferencing system,” in Proc.
IEEE ACM Int. Work. Augment. Real., 1999, pp. 85–94.

[29] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Trans. ASME J. Basic Eng., vol. 82, pp. 35–45, 1960.

