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Abstract In this paper, we present a formal approach to reciprocal n-body collision

avoidance, where multiple mobile robots need to avoid collisions with each other

while moving in a common workspace. In our formulation, each robot acts fully in-

dependently, and does not communicate with other robots. Based on the definition

of velocity obstacles [5], we derive sufficient conditions for collision-free motion

by reducing the problem to solving a low-dimensional linear program. We test our

approach on several dense and complex simulation scenarios involving thousands

of robots and compute collision-free actions for all of them in only a few millisec-

onds. To the best of our knowledge, this method is the first that can guarantee local

collision-free motion for a large number of robots in a cluttered workspace.

1 Introduction

Collision avoidance is a fundamental problem in robotics. The problem can gen-

erally be defined in the context of an autonomous mobile robot navigating in an

environment with obstacles and/or other moving entities, where the robot employs a

continuous cycle of sensing and acting. In each cycle, an action for the robot must be

computed based on local observations of the environment, such that the robot stays

free of collisions with the obstacles and the other moving entities, while making

progress towards a goal.1
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1 Note that the problem of (local) collision-avoidance differs from motion planning, where the

global environment of the robot is considered to be known and a complete path towards a goal

configuration is planned at once [18], and collision detection, which simply determines if two

geometric objects intersect or not (see e.g. [17]).
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The problem of collision avoidance has been well studied for one robot avoid-

ing static or moving obstacles. In this paper, we address the more involved and less

studied problem of reciprocal n-body collision avoidance, where collisions need to

be avoided among multiple robots (or any decision-making entities). This problem

has important applications in many areas in robotics, such as multi-robot naviga-

tion and coordination among swarms of robots [20]. It is also an key component in

crowd simulation for computer graphics and VR [11, 21], modeling of non-player

characters in AI, studying flocks of birds and fish in biology [23], and real-time (air)

traffic control [16]. In this paper, we propose a fast and novel method that simulta-

neously determines actions for many (possibly thousands of) robots that each may

have different objectives. The actions are computed for each robot independently,

without communication among the robots or central coordination. Yet, we prove

that our method guarantees collision-free motion for each of the robots.

We use a simplified robot model, where each robot is assumed to have a sim-

ple shape (circular or convex polygon) moving in a two-dimensional workspace.

Furthermore, we assume that the robot is holonomic, i.e. it can move in any direc-

tion, such that the control input of each robot is simply given by a two-dimensional

velocity vector. Also, we assume that each robot has perfect sensing, and is able

to infer the exact shape, position and velocity of obstacles and other robots in the

environment.

Main results: We present a rigorous approach for reciprocal n-body collision

avoidance that provides a sufficient condition for each robot to be collision-free for

at least a fixed amount of time into the future, only assuming that the other robots use

the same collision-avoidance protocol. Our approach is velocity-based. That implies

that each robot takes into account the observed velocity of other robots in order to

avoid collisions with them, and also that the robot selects its own velocity from

its velocity space in which certain regions are marked as ‘forbidden’ because of the

presence of other robots. Our formulation, “optimal reciprocal collision avoidance”,

infers for each other robot a half-plane (in velocity-space) of velocities that are

allowed to be selected in order to guarantee collision avoidance. The robot then

selects its optimal velocity from the intersection of all permitted half-planes, which

can be done efficiently using linear programming. Under certain conditions with

densely packed robots, the resulting linear program may be infeasible, in which case

we select the ‘safest possible’ velocity using a three-dimensional linear program.

We experimented with our approach on several complex simulation scenarios

containing thousands of robots. As each robot is independent, we can fully paral-

lellize the computation of the actions for each robot and report very fast real-time

running times. Furthermore, our experiments show that our approach achieves con-

vincing motions that are smooth and collision-free.

The rest of this paper is organized as follows. We start by discussing previous

work in Section 2. In Section 3, we formally define the problem we address in

this paper. We derive the half-plane of permitted velocities for optimal reciprocal

collision avoidance of a robot with respect to another robot in Section 4, and show

how this approach is used to navigate among multiple robots in Section 5. We report

experimental results in Section 6 and conclude in Section 7.
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2 Previous Work

The problem of collision avoidance has been extensively studied. Many approaches

assume the observed obstacles to be static (i.e. non-moving) [2, 4, 6, 7, 13, 14, 24],

and compute an immediate action for the robot that would avert collisions with the

obstacle, in many cases taking into account the robot’s kinematics and dynamics. If

the obstacles are also moving, such approaches typically repeatedly “replan” based

on new readings of the positions of the obstacles. This may work well if the obstacles

move slower than the robot, but among fast obstacles (such as crossing a highway),

the velocity of the obstacles need to be specifically taken into account. This problem

is generally referred to as “asteroid avoidance”, and approaches typically extrapolate

the observed velocities in order to estimate the future positions of obstacles [8, 9,

12, 19, 22, 28].

The problem of collision avoidance becomes harder when the obstacles are

not simply moving without considering their environment, but are also intelligent

decision-making entities that try to avoid collisions as well. Simply considering

them as moving obstacles may lead to oscillations if the other entity considers all

other robots as moving obstacles as well [15, 26]. Therefore, the reactive nature of

the other entities must be specifically taken into account in order to guarantee that

collisions are avoided. Yet, the robot may not be able to communicate with other

entities and may not know their intents. We call this problem reciprocal collision

avoidance, and is the focus of this paper.

Velocity obstacles (VO) [5] have been a successful velocity-based approach to

avoid collisions with moving obstacles; they provide a sufficient and necessary con-

dition for a robot to select velocity that avoids collisions with an obstacle moving at

a known velocity. This approach was extended for robot-robot collision avoidance

with the definition of Reciprocal Velocity Obstacles (RVO) [10, 26], where both

robots were assumed to select a velocity outside the RVO induced by the other robot.

However, this formulation only guarantees collision-avoidance under specific con-

ditions, and does not provide a sufficient condition for collision-avoidance in gen-

eral.2 In this paper, we present the principle of optimal reciprocal collision avoid-

ance (ORCA) that overcomes this limitation; ORCA provides a sufficient condition

for multiple robots to avoid collisions among one another, and thus can guarantee

collision-free navigation.

We note that it is possible to provide a sufficient and necessary condition for

multiple (say n) robots to select collision-avoiding velocities, by defining a com-

posite velocity obstacle in the 2n-dimensional space of velocities of all n robots

[1]. However, this is not only computationally impractical, it also requires central

coordination among robots. This is incompatible with the type of distributed multi-

robot navigation we focus on in this paper, in which each robot independently and

simultaneously selects its velocity from its own 2-D velocity space.

2 In fact, both robots selecting a velocity inside each other’s RVO is a sufficient condition to end

up in a collision.
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3 Problem Definition

The problem we discuss in this paper is formally defined as follows. Let there be a

set of n robots sharing an environment. For simplicity we assume the robots are disc-

shaped and move in the plane R
2 (the definitions and algorithms we present in this

paper can easily be extended to translating polygons, and also to higher dimensions).

Each robot A has a current position pA (the center of its disc), a current velocity

vA and a radius rA. These parameters are part of the robot’s external state, i.e. we

assume that they can be observed by other robots. Furthermore, each robot has a

maximum speed vmax
A and a preferred velocity v

pref
A , which is the velocity the robot

would assume had no other robots been in its way (for instance a velocity directed

towards the robot’s goal with a magnitude equal to the robot’s preferred speed). We

consider these parameters part of the internal state of the robot, and can therefore

not be observed by other robots.

The task is for each robot A to independently (and simultaneously) select a new

velocity vnew
A for itself such that all robots are guaranteed to be collision-free for at

least a preset amount of time τ when they would continue to move at their new ve-

locity. As a secondary objective, the robots should select their new velocity as close

as possible to their preferred velocity. The robots are not allowed to communicate

with each other, and can only use observations of the other robot’s current position

and velocity. However, each of the robots may assume that the other robots use the

same strategy as itself to select a new velocity.

We name this problem “reciprocal n-body collision avoidance”. Note that this

problem cannot be solved using central coordination, as the preferred velocity of

each robot is only known to the robot itself. In Section 4, we present a sufficient

condition for each robot to select a velocity that is collision-free for (at least) τ

time. In Section 5 we show how we use this principle in a continuous cycle for

multi-robot navigation.

4 Reciprocal Collision Avoidance

4.1 Preliminaries

For two robots A and B, the velocity obstacle VOτ
A|B (read: the velocity obstacle for

A induced by B for time window τ) is the set of all relative velocities of A with

respect to B that will result in a collision between A and B at some moment before

time τ [5]. It is formally defined as follows. Let D(p,r) denote an open disc of radius

r centered at p;

D(p,r) = {q |‖q−p‖ < r}, (1)

then:

VOτ

A|B = {v |∃t ∈ [0,τ] :: tv ∈ D(pB −pA,rA + rB)} (2)
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(a) (b) (c)

Fig. 1 (a) A configuration of two robots A and B. (b) The velocity obstacle VOτ

A|B (gray) can

geometrically be interpreted as a truncated cone with its apex at the origin (in velocity space)

and its legs tangent to the disc of radius rA + rB centered at pB − pA. The amount of truncation

depends on the value of τ ; the cone is truncated by an arc of a disc of radius (rA + rB)/τ centered

at (pB − pA)/τ . The velocity obstacle shown here is for τ = 2. (c) The set of collision-avoiding

velocities CAτ

A|B(VB) for robot A given that robot B selects its velocity from some set VB (dark gray)

is the complement of the Minkowski sum (light gray) of VOτ

A|B and VB.

The geometric interpretation of velocity obstacles is shown in Fig. 1(b). Note that

VOτ

A|B and VOτ

B|A are symmetric in the origin.

Let vA and vB be current the velocities of robots A and B, respectively. The def-

inition of the velocity obstacle implies that if vA − vB ∈ VOτ
A|B, or equivalently if

vB − vA ∈ VOτ

B|A, then A and B will collide at some moment before time τ if they

continue moving at their current velocity. Conversely, if vA − vB 6∈ VOτ

A|B, robot A

and B are guaranteed to be collision-free for at least τ time.

More generally, let X ⊕Y denote the Minkowski sum of sets X and Y ;

X ⊕Y = {x + y |x∈ X , y ∈ Y}, (3)

then for any set VB, if vB ∈ VB and vA 6∈ VOτ

A|B ⊕VB, then A and B are guaranteed

to be collision-free at their current velocities for at least τ time. This leads to the

definition of the set of collision-avoiding velocities CAτ

A|B(VB) for A given that B

selects its velocity from VB (see Fig. 1(c)):

CAτ
A|B(VB) = {v |v 6∈VOτ

A|B ⊕VB} (4)

We call a pair of sets VA and VB of velocities for A and B reciprocally collision-

avoiding if VA ⊆ CAτ

A|B(VB) and VB ⊆ CAτ

B|A(VA). If VA = CAτ

A|B(VB) and VB =

CAτ

B|A(VA), we call VA and VB reciprocally maximal.
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4.2 Optimal Reciprocal Collision Avoidance

Given the definitions above, we would like to choose sets of permitted velocities

VA for A and VB for B such that CAτ

A|B(VB) = VA and CAτ

B|A(VA) = VB, i.e. they

are reciprocally collision-avoiding and maximal and guarantee that A and B are

collision-free for at least τ time. Also, because A and B are individual robots, they

should be able to infer their set of permitted velocities without communication with

the other robot. There are infinitely many pairs of sets VA and VB that obey these

requirements, but among those we select the pair that maximizes the amount of

permitted velocities “close” to optimization velocities v
opt
A for A and v

opt
B for B.3 We

denote these sets ORCAτ

A|B for A and ORCAτ

B|A for B, and formally define them as

follows. Let |V | denote the measure (i.e. area in R
2) of set V ;

Definition 1 (Optimal Reciprocal Collision Avoidance). ORCAτ
A|B and ORCAτ

B|A

are defined such that they are reciprocally collision-avoiding and maximal, i.e.

CAτ

A|B(ORCAτ

B|A) = ORCAτ

A|B and CAτ

B|A(ORCAτ

A|B) = ORCAτ

B|A, and such that for

all other pairs of sets of reciprocally collision-avoiding velocities VA and VB (i.e.

VA ⊆CAτ

A|B(VB) and VB ⊆CAτ

B|A(VA)), and for all radii r > 0,

|ORCAτ

A|B ∩D(v
opt
A ,r)| = |ORCAτ

B|A ∩D(v
opt
B ,r)| ≥

min(|VA ∩D(vopt
A ,r)|, |VB ∩D(vopt

B ,r)|).

This means that ORCAτ

A|B and ORCAτ

B|A contain more velocities close to v
opt
A

and v
opt
B , respectively, than any other pair of sets of reciprocally collision-avoiding

velocities. Also, the distribution of permitted velocities is “fair”, as the amount of

velocities close to the optimization velocity is equal for A and B.

We can geometrically construct ORCAτ

A|B and ORCAτ

B|A as follows. Let us as-

sume that A and B adopt velocities v
opt
A and v

opt
B , respectively, and let us assume that

that causes A and B to be on collision course, i.e. v
opt
A −v

opt
B ∈ VOτ

A|B. Let u be the

vector from v
opt
A −v

opt
B to the closest point on the boundary of the velocity obstacle

(see Fig. 2):

u = ( argmin
v∈∂VOτ

A|B

‖v− (vopt
A −v

opt
B )‖)− (vopt

A −v
opt
B ), (5)

and let n be the outward normal of the boundary of VOτ

A|B at point (v
opt
A −v

opt
B )+u.

Then, u is the smallest change required to the relative velocity of A and B to avert

collision within τ time. To “share the responsibility” of avoiding collisions among

the robots in a fair way, robot A adapts its velocity by (at least) 1
2
u and assumes that

3 We introduce these optimization velocities to generalize the definition of ORCA. Nominally, the

optimization velocities are equal to the current velocities, such that the robots have to deviate as

little as possible from their current trajectories to avoid collisions. Other choices are discussed in

detail in Section 5.2.
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Fig. 2 The set ORCAτ
A|B of permitted velocities for A for optimal reciprocal collision avoidance

with B is a half-plane delimited by the line perpendicular to u through the point v
opt
A + 1

2
u, where

u is the vector from v
opt
A −v

opt
B to the closest point on the boundary of VOτ

A|B.

B takes care of the other half. Hence, the set ORCAτ

A|B of permitted velocities for A

is the half-plane pointing in the direction of n starting at the point v
opt
A + 1

2
u. More

formally:

ORCAτ

A|B = {v |(v− (v
opt
A +

1

2
u)) ·n ≥ 0}. (6)

The set ORCAτ

B|A for B is defined symmetrically (see Fig. 2). The above equations

also apply if A and B are not on a collision course when adopting their optimization

velocities, i.e. v
opt
A −v

opt
B 6∈VOτ

A|B. In this case, both robots each will take half of the

responsibility to remain on a collision-free trajectory.

It can be seen that ORCAτ

A|B and ORCAτ

B|A as constructed above are in fact opti-

mal according to the criterion of Definition 1. Agents A and B can infer ORCAτ

A|B

and ORCAτ
B|A, respectively, without communicating with each other, as long the

robots can observe each other’s position, radius, and optimization velocity. In Sec-

tion 5.2, we discuss reasonable choices for the optimization velocity of the robots.

5 n-Body Collision Avoidance

In this section we show how to apply the ORCA principle as defined above to per-

form n-body collision avoidance among multiple moving robots, and discuss how

we can incorporate static obstacles in this framework.
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Fig. 3 A schematic overview of the continuous cycle of sensing and acting that is independently

executed by each robot.

5.1 Basic Approach

The overall approach is as follows. Each robot A performs a continuous cycle of

sensing and acting with time step ∆ t. In each iteration, the robot acquires the radius,

the current position and the current optimization velocity of the other robots (and

of itself). Based on this information, the robot infers the permitted half-plane of

velocities ORCAτ

A|B with respect to each other robot B. The set of velocities that

are permitted for A with respect to all robots is the intersection of the half-planes

of permitted velocities induced by each other robot, and we denote this set ORCAτ
A

(see Fig. 4):

ORCAτ
A = D(0,vmax

A )∩
⋂

B 6=A

ORCAτ

A|B. (7)

Note that this definition also includes the maximum speed constraint on robot A.

Next, the robot selects a new velocity vnew
A for itself that is closest to its preferred

velocity v
pref
A amongst all velocities inside the region of permitted velocities:

vnew
A = argmin

v∈ORCAτ
A

‖v−v
pref
A ‖. (8)

We will show below how to compute this velocity efficiently. Finally, the robot

reaches its new position;

pnew
A = pA + vnew

A ∆ t, (9)

and the sensing-acting cycle repeats (see Fig. 3).

The key step in the above procedure is to compute the new velocity vnew
A as

defined by Equations (7) and (8). This can efficiently be done using linear program-

ming, as ORCAτ
A is a convex region bounded by linear constraints induced by the

half-planes of permitted velocities with respect to each of the other robots (see Fig.

4). The optimization function is the distance to the preferred velocity v
pref
A . Even

though this is a quadratic optimization function, it does not invalidate the linear

programming characteristics, as it has only one local minimum.

We use the efficient algorithm of [3], which adds the constraints one by one in

random order while keeping track of the current optimal new velocity. The algorithm
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(a) (b)

Fig. 4 (a) A configuration with eight robots. Their current velocities are shown using arrows. (b)

The half-planes of permitted velocities for robot A induced by each of the other robots with τ = 2

and with v
opt
∗ = v∗ for all robots (i.e. the optimization velocity equals the current velocity). The

half-planes of E and C coincide. The dashed region is ORCAτ
A, and contains the velocities for A

that are permitted with respect to all other robots. The arrow indicates the current velocity of A.

has an expected running time of O(n), where n is the total number of constraints in

the linear program (which equals the number of robots in our case). The fact that we

include a circular constraint for the maximum speed does not significantly alter the

algorithm, and does not affect the running time. The algorithm returns the velocity

in ORCAτ
A that is closest to v

pref
A , and reports failure if the linear program is infea-

sible, i.e. when ORCAτ
A = /0. If the optimization velocities for the robots are chosen

carefully (as we will discuss in Section 5.2), ORCAτ
A will never be empty, and hence

there will always be a solution that guarantees that the robots are collision-free for

at least τ time.

We can increase the efficiency of selecting velocities by not including the con-

straints of all other robots, but only of those that are “close” by. In fact, robots B

that are farther away from robot A than (vmax
A + vmax

B )τ will never collide with robot

A within τ time, so they can safely be left out of the linear program when comput-

ing the new velocity for robot A. A minor issue is that robot A does not know the

maximum speed of other robots, but this can be worked around by “guessing” the

maximum speed of other robots to be equal A’s own. We can efficiently find the set

of close-by robots whose constraints should be included using a kD-tree.
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(a) (b) (c)

Fig. 5 (a) A dense configuration with three robots moving towards robot A. The current velocities

of the robots are shown using arrows; robot A has zero velocity. (b) The half-planes of permitted

velocities for robot A induced by each of the other robots with τ = 2 and v
opt
∗ = v∗ for all robots.

The region ORCAτ
A is empty, so avoiding collisions within τ time cannot be guaranteed. (c) The

half-planes of permitted velocities for robot A induced by each of the other robots with τ = 2 and

v
opt
∗ = 0 for all robots. The dashed region is ORCAτ

A.

5.2 Choosing the Optimization Velocity

One issue that we have left open is how to choose v
opt
A for each robot A. In order for

the robots to infer the half-planes without communication, v
opt
A must be observable

to other robots. Here, we discuss some reasonable possibilities:

• v
opt
A = 0 for all robots A. If we set the optimization velocity to zero for all robots,

it is guaranteed that ORCAτ
A is non-empty for all robots A (see Fig. 5(c)). Hence,

the linear programming algorithm as described above will find a velocity for all

robots that guarantees them to be collision-free for at least τ time. This can be

seen as follows. For any other robot B, the point 0 always lies outside the velocity

obstacle VOτ

A|B (for finite τ). Hence the half-plane ORCAτ

A|B always includes at

least velocity 0. In fact, the line delimiting ORCAτ

A|B is perpendicular to the line

connecting the current positions of A and B.

A drawback of setting the optimization velocity to zero is that the behavior of

the robots is unconvincing, as they only take into account the current positions of

the other robots, and not their current velocities. In densely packed conditions,

this may also lead to a global deadlock, as the chosen velocities for the robots

converge to zero when the robots are very close to one another.

• v
opt
A = v

pref
A (i.e. the preferred velocity) for all robots A. The preferred velocity

is part of the internal state of the robots, so it cannot be observed by the other

robots. Let us, for the sake of the discussion, assume that it is somehow possi-

ble to infer the preferred velocity of the other robots, and that the optimization

velocity is set to the preferred velocity for all robots. This would work well in

low-density conditions, but, as the magnitude of the optimization velocity in-

creases, it is increasingly more likely that the linear program is infeasible. As
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in most cases the preferred velocity has a constant (large) magnitude, regardless

of the density conditions, this would lead to unsafe navigation in even medium

density conditions.

• v
opt
A = vA (i.e. the current velocity) for all robots A. Setting the optimization to

the current velocity is the ideal trade-off between the above two choices, as the

current velocity automatically adapts to the situation: it is (very) indicative of the

preferred velocity in low-density cases, and is close to zero in dense scenarios.

Also, the current velocity can be observed by the other robots. Nevertheless,

the linear program may be infeasible in high-density conditions (see Fig. 5(b)).

In this case, choosing a collision-free velocity cannot be guaranteed. Instead,

we select the ‘safest possible’ velocity for the robot using a 3-D linear program

(which we discuss in Section 5.3).

5.3 Densely Packed Conditions

If we choose v
opt
A = vA for all robots A, there might not be a single velocity that

satisfies all the constraints of the linear program in situations where the density of

the robots is very high. In other words, the set ORCAτ
A is empty (see Fig. 5(b)),

and the algorithm of Section 5.1 returns that the linear program is infeasible. In this

case, choosing a collision-free velocity cannot be guaranteed. Instead, we select the

‘safest possible’ velocity for the robot, i.e. the velocity that minimally ‘penetrates’

the constraints induced by the other robots. More formally, let dA|B(v) denote the

signed (Euclidean) distance of velocity v to the edge of the half-plane ORCAτ

A|B. If

v ∈ ORCAτ

A|B, then dA|B(v) is negative. We now choose the velocity that minimizes

the maximum distance to any of the half-planes induced by the other robots:

vnew
A = argmin

v∈D(0,vmax
A )

max
B 6=A

dA|B(v). (10)

Geometrically, this can be interpreted as moving the edges of the half-planes

ORCAτ

A|B perpendicularly outward with equal speed, until exactly one velocity be-

comes valid.

We can find this velocity using a three-dimensional linear program. For each

other robot B, the distance function dA|B(v) is a plane in the three-dimensional (v,d)
space. We now look for a point (v∗,d∗) that lies above all planes induced by the

distance functions, and has a minimal d-value. Our new velocity vnew
A is then set to

v∗.

We can use the same randomized algorithm as above to solve this 3-D linear

program. It still runs in O(n) expected time, where n is the number of other robots.

In fact, we can project the problem down on the v-plane, such that all geometric

operations can be performed in 2-D. The 3-D linear program is always feasible, so

it always returns a solution.
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(a) (b) (c)

Fig. 6 (a) A configuration of a robot A and a line-segment obstacle O. (b) Geometric construction

of the velocity obstacle VOτ

A|O for τ = 2. (c) The delimiting line of the half-plane ORCAτ

A|O is

tangent to VOτ

A|O at the closest point on its boundary to v
opt
A , which equals 0 in the case of obstacles.

Note that in these dense cases, the new velocity selected for the robot does not

depend on the robot’s preferred velocity. This means that the robot ‘goes with the

flow’, and its behavior is fully determined by the robots surrounding the robot.

5.4 Static Obstacles

So far we have only discussed how robots avoid collisions with each other, but

typical multi-robot environments also contain (static) obstacles. We can easily in-

corporate those in the above framework. We basically follow the same approach as

above, with a key difference being that obstacles do not move, so the robots should

take full responsibility of avoiding collisions with them.

We can generally assume that obstacles are modeled as a collection of line seg-

ments. Let O be one of such line segments, and let A be a robot with radius rA

positioned at pA. Then, the velocity obstacle VOτ

A|O induced by the obstacle O is

defined as (see Fig. 6(a) and (b)):

VOτ

A|O = {v |∃t ∈ [0,τ] :: tv ∈ O⊕−D(pA,rA)}. (11)

Agent A will collide with obstacle O within τ time if its velocity vA is inside VOτ

A|O,

and it will be collision-free for at least τ time if its velocity is outside the velocity

obstacle. Hence, we could define the region of permitted velocities for A with re-

spect to O as the complement of VOτ

A|O. However, this would disallow us to use the

efficient linear programming algorithm of Section 5.1, as the complement of VOτ

A|O

is a non-convex region. Therefore, we define the set of permitted velocities for A
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(a) (b)

Fig. 7 Trace of robots in two small behavioral simulations. Robots are shown as colored disks

which are light at their initial positions and darken as time progresses. (a) Trace of two simulated

robots passing each other. (b) Trace of five simulated robots crossing each other to antipodal points

in a circle.

with respect to O as the half-plane ORCAτ

A|O whose delimiting line is the tangent

line to VOτ

A|O at the closest point to v
opt
A on the boundary of VOτ

A|O (see Fig. 6(c)).

In case of obstacles, we choose v
opt
A = 0 for all robots A. This guarantees that

there always exists a valid velocity for the robot that avoids collisions with the ob-

stacles within τ time. We can typically use a smaller value of τ with respect to obsta-

cles than with respect to other robots, as robots should typically not be ‘shy’ to move

towards an obstacle if this is necessary to avoid other robots. On the other hand, the

constraints on the permitted velocities for the robot with respect to obstacles should

be hard, as collisions with obstacles should be avoided at all cost. Therefore, when

the linear program of Section 5.1 is infeasible due to a high density of robots, the

constraints of the obstacles are not relaxed.

We note that the half-planes of permitted velocities with respect to obstacles as

defined above only make sure that the robot avoids collisions with the obstacle; they

do not make the robot move around them. The direction of motion around obstacles

towards the robot’s goal should be reflected in the robot’s preferred velocity, which

could be obtained using (efficient) global path planning techniques.

6 Experimental Results

To test our technique we ran several simulations. We performed both small-scale

simulations to test local behavior and large-scale simulations to analyze perfor-

mance scaling.

Behavioral Results: We first show two scenarios which highlight how robots

smoothly avoid collisions with each other on the local level. In the first, shown in

Fig. 7(a), two robots exchange position. When the robots notice that a collision

is imminent (i.e. it will happen within τ time), they change velocities to smoothly
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Fig. 8 Simulation of 1,000 agents trying to move through the center of a circle to antipodal posi-

tions. Robots smoothly move through the congestion that forms in the center.

Fig. 9 Snapshots from simulation of 1,000 virtual agents evacuating an office as part of a crowd

simulation.

avoid it. The second scenario shows five robots whose goal is to move across a circle

to the antipodal position. As Fig. 7(b) shows, the robots smoothly spiral around each

other to avoid collisions.

Performance Results: In order to test the performance of our method we ran

two large-scale simulations. The first test was a simulation of 1,000 agents in a large

circle moving to antipodal positions as shown in Fig. 8. For the second test, shown in

Fig. 9, we incorporated our optimal reciprocal collision avoidance formulation into

the existing crowd simulation framework of [10]. In this simulation, virtual agents

attempt to evacuate an office environment. The preferred velocity for each agent is

set to follow a globally-planned path out of the office.

Because each agent makes independent decisions, we are able to efficiently paral-

lelize the simulation by distributing the computations for agents across multiple pro-

cessors. We used OpenMP multi-threading to parallelize key computations across

eight Intel Xeon 2.66GHz (Clovertown) cores. Fig. 10(a) shows how our method

scales across various numbers of cores in the Office scenario. There is a fairly good

scaling in all scenarios – with best observed results in nearly linear scaling for a

large number of agents where the constant system overhead becomes far less signif-

icant in the overall computation time.

In terms of absolute performance, Fig. 10(b) shows the running time for various

numbers of agents for both simulations. For 5,000 agents on eight cores, it takes

8 ms (125 frames per second) to solve the collision-avoidance linear program for

every agent in the large circle simulation, and 15.6 ms (64 frames per second) to

update every agent in the office evacuation simulation.
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(a) (b)

Fig. 10 Performance Graphs: (a) Performance scaling on the evacuation simulation for 1 to 8

cores. (b) Runtime for various number of agents on 8 cores (lower is better). Both simulations

scale approximately linearly with the number of agents.

7 Conclusion and Future Work

In this paper, we have presented an efficient method that provides a sufficient con-

dition for multiple robots to select an action that avoids collisions with other robots,

though each acts independently without communication with others. Our approach

to reciprocal n-body collision avoidance exhibits fast running times and smooth,

convincing behavior in our experiments.

We have used a simple robot model, in which kinematics and dynamics are ig-

nored. An important extension for future work is to take such constraints into ac-

count. We can either do this as a post-processing step, in which the computed new

velocity is ‘clamped’ to what the kinematic and dynamic constraints allow. This

would not strictly guarantee avoiding collisions anymore, but it may work well in

practice [25]. A more thorough solution would be to take these factors intrinsically

into account in the derivation of the permitted velocities for the robots. [27] and [19]

provide some interesting ideas in this direction.

In this paper, we have demonstrated results for only 2-D environments. However,

all definitions and the algorithm can be extended to 3-D. This may be interesting

for applications such as autonomous aerial vehicles, or flocking simulation of birds

or fish. Another important direction for future work is to implement the presented

framework on real robots and incorporate sensing uncertainty. This has been done

for reciprocal velocity obstacles in [25]. We believe that we can relatively easily

replace the RVO formulation by our ORCA formulation in that implementation.
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