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Outdoor sound propagation benefits from algorithms that can handle, in a computationally efficient

manner, inhomogeneous media, complex boundary surfaces, and large spatial expanse. One recent

work by Mo, Yeh, Lin, and Manocha [Appl. Acoust. 104, 142–151 (2016)] proposed a ray tracing

method using analytic ray curves as tracing primitives, which improved the performance of propa-

gation paths computation over rectilinear ray tracers. In this paper, an algorithm is developed that

extends the performance improvement to field computation; it combines the analytic ray curve

tracer with fast pressure computation based on the Gaussian beam model. The algorithm is vali-

dated against published results on benchmarks in atmospheric and ocean acoustics, and its applica-

tion is demonstrated on a scene with terrains and buildings of realistic complexity and under a

variety of atmospheric conditions. This algorithm is able to compute characteristic sound fields for

fully general media profiles and complex three dimensional scenes at close-to-interactive speed.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4977005]
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I. INTRODUCTION

Sound propagation in outdoor environments,1–3 includ-

ing atmospheric and underwater acoustics, must deal with

spatially varying as well as moving media. The media pro-

files used as input to sound propagation can come from

empirical models, real-world measurements, or from com-

putational flow simulation. Obstacles’ shape and material

properties play an important role as well, especially for

scenes with complex terrains or area with dense man-made

structures. As data that describe the media conditions and

the scene obstacles become increasingly available with ever

richer details, methods for outdoor sound propagation needs

to be able to account for the full scale of those data.

Existing methods face many challenges in handling

such complexity; they either make assumptions that preclude

a fully general medium or complex obstacles in the scene, or

they become prohibitively expensive with large, general

scenes. Models such as fast field program (FFP), parabolic

equation (PE), and normal modes fall in the former category,

while methods like finite difference time domain (FDTD),

finite elements method (FEM), and boundary element

method (BEM) belong to the latter.

Geometric acoustics (GA)4 methods like ray models are

known for their efficiency in handling boundary surfaces

under the assumption of homogeneous media and rectilinear

paths. Recent works5,6 has also attempted to accommodate

inhomogeneous media by tracing parabolic ray curves as

primitives, which significantly accelerates path computation.

On the other hand, ray models suffer from artifacts in caus-

tics and shadow zones when computing fields; while models

such as the Gaussian beam7 perform better in this regard.

However, the performance of Gaussian beam can be

hindered by the underlying numerical path integration,

which remains slow for inhomogeneous media.

We combine the performance of the analytic ray curve

tracer6 and the accuracy of the Gaussian beam7 into an algo-

rithm for outdoor sound propagation. In particular:

(1) We compute analytic solutions to on-ray pressure as

well as near-ray fields based on the parabolic ray formu-

lation (Sec. III), which leads to efficient field computa-

tion that matches the efficiency of the path computation.

(2) We combine the Gaussian beam model with the analytic

ray tracer and validate the approach on two dimensional

(2D) benchmarks8,9 that are widely used in atmospheric

and ocean acoustics. Our algorithm is able to replicate

the published reference results generated by alternative

techniques (Sec. IV).

(3) We apply the algorithm on a three dimensional (3D)

scene consisting of thousands of surface primitives

modeling terrains and buildings for a set of different

atmospheric conditions, which demonstrates its effi-

ciency in computing characteristic sound fields (Sec. V).

Overall, we provide a validated solution to outdoor

sound propagation that augments a fast analytic ray tracer

with equally fast analytic field computations. This algo-

rithm takes general media and scene input and computes

the full 3D sound field at close-to-interactive speed, making

it useful for a wide range of outdoor sound applications

(Sec. VI).

II. PRIOR WORK

Outdoor sound propagation has been studied extensively

in underwater3 and atmospheric acoustics.1 Here we first

review numerical methods that provide full wave solutions,

including hybrid schemes aiming at reducing the higha)Electronic mail: qmo@cs.unc.edu
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computation cost of wave-based methods. Next, we review

ray-based methods and their advantages and limitations for

outdoor scenarios.

A. Wave-based methods

Early methods, including FFP and PE, provide

frequency-domain, full-wave solutions that account for the

inhomogeneous media, but depend upon simplifying

assumptions about the media and scene configurations. In

scenarios that meet those assumptions, these models have

been thoroughly validated10–13 and often serve as reference

solutions to test other models.

Among the general numerical methods that handle arbi-

trary media and obstacles, one widely used method is the

FDTD method, which solves the linearized Euler equa-

tion.14,15 FDTD has been coupled with flow simulation;16,17

it has been applied with various ground conditions,18 ter-

rains,19–21 and complex obstacles.22–24 As a time-domain

method, it is also used for pulse propagation.23,25 The main

disadvantage of FDTD is its limited scalability with domain

volume or frequency; this limitation makes it prohibitively

expensive for large-scale broadband simulation, and limits

its usefulness for wide area to low-frequency cases.26

Methods such as pseudo spectral time domain (PSTD)27,28

and transmission line matrix (TLM)29–31 are more efficient,

but they are still fundamentally limited by the cost of discre-

tizing a large domain.

To address the scalability problem, many hybrid meth-

ods have been developed. Some use FDTD in confined areas

and apply PE to propagation over long range and relatively

sparse space.32–34 Others, such as BEM or the equivalent

source method (ESM), were employed to limit the computa-

tion either to boundary surfaces or to volumes that bound

scatterers tightly. But these methods introduced new issues.

BEM, which must be coupled with specialized Green func-

tion for refractive media, scales poorly with surface area and

frequency. ESM, when coupled with ray models35 to handle

large domains, does not scale well with the number or com-

plexity of scatterer objects. A more recent method, adaptive

rectangular decomposition (ARD),36,37 took advantage of

the analytic solution of the wave equation in a rectangular

domain, but it requires constant sound speed within each

spatial subdivision, which is not easily adapted to a general

medium profile.

B. Geometric acoustics methods

GA methods4 are widely used in room acoustics38 to

handle high-order surface interactions under the assumption

of a homogeneous medium. Examples include the image

source method,39,40 ray tracing,41,42 beam tracing,43 and path

tracing.44

Ray models have also been applied to inhomogeneous

media3 by numerically integrating the ray equations. While a

sparse set of rays can be efficiently traced to plot out the

propagation paths, long-range propagation and pressure field

computation that requires dense rays become expensive.

When the ray models are used to compute the pressure field,

they are known to have issues in the caustic zones and in the

shadow zones. The Gaussian beam approach,7 which was

developed in seismology and applied on underwater45 and

atmospheric46 acoustics, improves the accuracy in caustics

and shadow zones. However, when the underlying paths are

still computed by numerical ray integration, the performance

is limited by the integration step sizes. One recent work6

achieved significant performance improvement by replacing

the numerical ray integration with segments of parabolic ray

curves. We give an overview of this ray tracer in the next

section, and then introduce our algorithm, which combines

this ray tracer with the Gaussian beam.

III. ALGORITHM

An overview of our algorithm is illustrated in Fig. 1.

Our algorithm is built upon an efficient ray tracer that out-

puts propagation paths made up of segments of analytic

curves (Sec. III A). We compute a set of additional variables

for each ray segment by analytic evaluations of constant

cost, which extends the path-computation efficiency to pres-

sure computation. These variables are subsequently used for

computing pressure both on the ray paths (Sec. III B) and in

the near-ray regions (Sec. III C). Here we adopt the term ray
paraxial defined by �Cerven�y7 to refer to the near-ray regions,

and we use a paraxial Gaussian beam model to approximate

the field near a central ray. The mathematical derivation that

leads to this algorithm is a special case of the more general

ray theory discussed in depth in �Cerven�y’s comprehensive

work;7 details can be found in Appendixes A–F to this paper.

A. Analytic ray curve tracer

Given a medium profile with a spatially varying sound

speed Vð~xÞ, we assume a locally constant gradient of V�2:

Vð~xÞ�2 ¼ A0 þ ~A �~x within a certain range around ~x. The

trajectory of ray originating from ~x with initial direction ~t0

can be shown to be a parabolic curve that lies in the plane

with the normal of ~A �~t0 [the ray plane, see Fig. 2(a)]. The

intersection between the parabolic ray curve and any planar

surface can be solved analytically, and key properties such

as position ~x, tangent direction ~t, the travel time T, and the

slowness vector ~p ¼ rT (the direction of which coincides~t)
can be computed for any point along the ray by analytic

evaluations of constant cost (Appendix A).

This analytic ray formulation enables a ray tracer that

computes propagation paths in a general medium consisting

of consecutive segments of parabolic curves. In smooth

media, the assumption of constant rV�2 generally holds for

a range larger than the assumption of constant V, enabling

the ray curve tracer to advance in longer segments than recti-

linear ray tracer; this is one of the key sources of perfor-

mance improvement. Adaptive segment sizes based on on-

the-fly media sampling, as well as acceleration structure that

bounds surfaces and ray curves, lead to further speedup that

amounts to one to two orders of magnitude improvements

over numerical ray integration on 3D scenes.6

The ray curve tracer uses the heuristic that the range of

validity dð~xÞ for a local rV�2 should be proportional to

krV�2k, so that the constant gradient assumption remains

valid for a relatively small spatial range in areas of great
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media variation. Controlled by a global parameter d, we

compute dð~xÞ from d ¼ 1
8
krV�2kd3ð~xÞ. The on-the-fly

medium-gradient sampling also enables us to handle vector

wind field by adding the wind speed ~wð~xÞ projected onto the

ray direction~t : Vð~xÞ þ ~wð~xÞ �~tð~xÞ.

B. Dynamic ray tracing

Dynamic ray tracing, as defined by �Cerven�y,7 keeps

track of how a set of derivatives in ray-centered coordinates

progress among propagating rays; the derivatives are subse-

quently used to compute pressure and travel time along the

ray. We perform dynamic ray tracing analytically for each

segment of parabolic ray curve, which achieves efficiency in

pressure computation that matches the efficiency of the ana-

lytic ray tracer.

First we define the coordinates involved. The ray-cen-
tered coordinates q1, q2, q3 are defined for any point along a

particular ray X with origin at that point. The q3-axis follows

X; the q1-axis and q2-axis are taken to be perpendicular to

the q3-axis as well as being perpendicular to one another.

Transformation from the ray-centered coordinates qk to

Cartesian coordinates xi is accomplished by the 3� 3 matrix

Ĥ ; Ĥik ¼ @xi=@qk; i; k ¼ 1; 2; 3, and Ĥ
�1 ¼ Ĥ

T
transforms

Cartesian coordinates back to ray-centered coordinates.

The derivatives we seek in dynamic ray tracing capture

the changes in spatial relationships among rays traveling

through a medium profile. Consider a system of rays start-

ing from a source and parameterized by ray parameters c1,

c2, taken here as the azimuth /0 and elevation i0 angles.

The 2� 2 matrices Q and P are defined with elements QIJ

¼ð@qI=@cJÞT¼const;PIJ¼ð@p
ðqÞ
I =@cJÞT¼const; I;J¼1;2, which

are derivatives of the ray-centered coordinates and the

slowness vector in the ray-centered coordinates with

respect to the ray parameters. Correspondingly, Q̂
ðxÞ

and

P̂
ðxÞ

are defined with elements Q
ðxÞ
iJ ¼ð@xi=@cJÞT¼const;P

ðxÞ
iJ

¼ð@p
ðxÞ
i =@cJÞT¼const, in Cartesian coordinates, Ĥ

ðxÞ
is

defined with elements H
ðxÞ
iJ ¼ ĤiJ , i¼1, 2, 3, J¼1, 2, and

FIG. 2. (Color online) (a) Analytic ray

curve segment in the ray-plane. Rays

of two different initial directions ~t0

are drawn. (xf, zf) is the vertex of the

parabola. We assume a locally constant

rV�2, the assumption’s range of valid-

ity (dotted circle) determines the extent

of the ray segment (Sec. III A). (b), (c)

Analytic dynamic ray tracing: analytic

evolution of P, Q are performed for

each segment by transforming into

and evolving in Cartesian coordinates

before transforming back to ray-

centered coordinates (Sec. III B). The

unit basis ~e1 ; ~e2 ; ~e3 and ~n1 ; ~n2 ; ~n3 are

defined in Appendix C.

FIG. 1. (Color online) Algorithm overview. Given an input media profile and boundary surfaces, the analytic ray tracer (Ref. 6) output propagation paths

made up of segments of parabolic curves (reviewed in Sec. III A). Our algorithm (the two boxes on the right) then perform dynamic ray tracing that evaluates

a set of derivatives analytically and efficiently for pressure along the path (Sec. III B), and the pressure for field point R is computed by summing paraxial con-

tributions from each path based on the Gaussian beam model (Sec. III C).
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Q̂
ðxÞ ¼ĤQ; P̂

ðxÞ ¼ĤP. Along a parabolic ray curve, Q̂
ðxÞ

and P̂
ðxÞ

can be evolved analytically (Appendix B), and

Ĥ
ðxÞ

can also be evolved analytically (Appendix C); we

thereby achieve analytic evolution of P and Q (Appendix

D) [see Figs. 2(b) and 2(c)].

The pressure amplitude Pray at any point s along the ray

given P(s0) at source s0 is

Pray sð Þ ¼
q sð ÞV sð ÞJ s0ð Þ
q s0ð ÞV s0ð ÞJ sð Þ

" #1=2

P s0ð Þ; (1)

where q is the density of the medium, and J¼ det Q is the ray
Jacobian [�Cerven�y,7 Eq. (3.10.53)]. P and Q are also used in

computing the paraxial field, as explained in Sec. III C.

C. Field computation with Gaussian beam

We use Gaussian beam model to approximate paraxial

fields in the vicinity of ray paths; this involves computing par-

axial travel time and paraxial pressure amplitude, both of

which benefit from the efficient dynamic ray tracing described

in Sec. III B above. As shown in the rightmost block of Fig. 1,

we gather all segments of ray curves that pass in the vicinity

of a given field point, compute the paraxial pressure ampli-

tude and travel time from each segment, and sum up the con-

tribution (Appendix F). For a field of large volume, we save

the costs of locating vicinity ray segments for each field point

by reversing the process, distributing the pressure contribution

from each beam to the field points it covers.

Based on the definition of P and Q, we introduce the

2� 2 matrix:

M ¼ PQ�1; MIJ ¼ ð@p
ðqÞ
I =@qJÞT¼const; I; J ¼ 1; 2:

(2)

Recall that the slowness vector ~p is the first derivative of T;

M is, therefore, the second derivative of T with respect to

ray-centered coordinates. For a point R0 in the vicinity of a

ray X, the paraxial travel time at R0 can be computed given

the T at a point R on X:

T R0;Rð Þ ¼ T Rð Þ þ 1

2
qT R0ð ÞM Rð Þq R0ð Þ; q ¼ q1; q2ð ÞT ;

(3)

when X? is the plane perpendicular to X that passes R0, and

point R is the intersection of the ray X and X?. The deriva-

tives of T can also be approximated in Cartesian coordi-

nates, in which case any point Rc on the ray that is close to

R0 can be selected, saving the costs of computing X? and R
(Appendix E).

The Gaussian beam model computes a paraxial ampli-

tude centered on the ray with a Gaussian drop-off, which is

achieved by allowing the matrix M to be complex:

M¼Re(M)þ iIm(M). Im(M) is chosen to be positive defi-

nite as described in Ref. 7, so that

pbeam R0ð Þ ¼ Pray Rð Þexp �ix �T Rð Þ � 1

2
qT R0ð ÞRe M Rð Þð Þq R0ð Þ

� �� �
exp � 1

2
xqT R0ð ÞIm M Rð Þð Þq R0ð Þ

� �
: (4)

IV. VALIDATION

We validated our algorithm on two benchmark scenes of

atmospheric and oceanic sound propagation. The first bench-

mark was proposed8 with reference results generated by a

few different methods that agree with each other, and has

since been widely adopted by other atmospheric acoustics

works for validation purposes. The second benchmark comes

from ocean acoustics, with the representative Munk profile

and a conical seamount as bathymetry. Results have been

reported for the Munk profile in many works, and one of the

latest works9 contains reference results generated by normal

modes. We compute 2D pressure fields for these benchmarks

and compare the results directly with published results in the

literature. Although the ray-based method is a high-

frequency approximation, we achieve good agreement with

the reference results, and we were able to replicate the char-

acteristic interference patterns for frequency as low as

10 Hz. After establishing the validity of our method with

these benchmarks, we demonstrate the application of our

method to a realistic 3D scene with more complex media

conditions in Sec. V. For all benchmarks, we compute the

sound field in terms of the transmission loss (TL), which is

defined as TLð~xÞ ¼ 20 log jpð~xÞ=p0ðr ¼ 1 mÞj, where

jp0ðrÞj ¼ 1=4pr is the pressure modulus at a distance r from

the source in free space.

A. Benchmark A (inhomogeneous atmosphere, flat
ground with impedance)

In Attenborough et al.,8 a set of benchmark cases for

outdoor sound propagation is proposed, and results generated

by a range of methods show good agreements, including

FFP, PE, normal modes, ray and beam tracing. The boundary

surface in the scene is a flat ground with impedance, while

the media is inhomogeneous with three different profiles.

1. Media profile

Sound speed V(x) at spatial location x with height z(x) is

given by

Case 1: Downward refractive V(x)¼ 343þ 0.1z(x) (m/s);
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Case 2: Upward refractive V(x)¼ 343 � 0.1z(x) (m/s);

Case 3: Combine case 1 and 2 with V(z¼ 0)¼ 343 (m/s),

dV¼ 0.1 for z(x)< 100 m, dV¼�0.1 for 100 m< z (x)

< 300 m, and constant V for z(x)> 300 m.

2. Ground impedance

A four parameter model is used to compute the impedance

of the flat ground, and the same parameters from Attenborough

et al.8 are used. Results: As shown in Figs. 3 and 4, our algo-

rithm is able to replicate the interference pattern for this set of

media conditions at three different frequencies. 1D range plot

and 2D vertical field of resulting TL is included for direct com-

parison with figures in Ref. 8. In particular, the side-by-side

comparison of 1D range plot in Fig. 3 shows that our results

match the reference results across all three conditions and all

three frequencies. Previous work based on Gaussian beams was

reported to have difficulties with upward refractive conditions

FIG. 3. (Color online) Benchmark A Range-TL plot: Source height hs¼ 5 m, receiver height hr¼ 1 m, range 10 km. Columns contain results for media profiles

case 1, 2, and 3, while rows contain results for frequency 10, 100, and 1000 Hz. The results computed by our algorithm are plotted on top of the reference

results from Figs. 12–14 (Ref. 8).

FIG. 4. (Color online) Benchmark A 2D Field: Source height hs¼ 5 m, receiver height hr¼ 1 m, frequency 10 Hz. 2D vertical field of height up to 1 km and

range up to 10 km is visualized on the left, and the corresponding contour plot is shown on the right for comparison with Fig. 15 (Ref. 8).
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at ranges over 200 m,46 but our method achieves high accuracy

for such condition (case 2) over a range of 10 km. This is poten-

tially because that the previous method limited the beam width

to avoid truncation of reflected beams, which in turn caused the

beams reaching the receiver to be overly narrow. Our method

does not rely on explicit construction of beams (we compute the

listener’s location within a beam by directly computing the geo-

metric relationships between the listener and the central ray of

the beam), and therefore does not need to clip the beams against

reflection surfaces nor to limit the beam width. For this bench-

mark our ray method produces results of accuracy approaching

wave-based methods, which have not been achieved by existing

ray-based methods. Furthermore, the number of rays required

for this benchmark is as low as 21 rays for the reported results,

more rays can be traced to compute more accurate pressure

fields.

B. Benchmark B (Munk profile with conical seamount)

We validate our algorithm on an underwater bench-

mark with the standard Munk profile and a conical sea-

mount as bathymetry. The Munk profile is an idealized

profile that describes the sound speed variation for depth

up to 5000 m. This benchmark spans a much larger range

and depth than the atmospheric benchmark above, has a

non-linear sound speed variation, and contains a seamount

obstacle in the scene. Published results for this bench-

mark, computed by normal modes, can be found in prior

work.9

1. Media profile

V zð Þ ¼ 1500 1þ � ~z � 1þ e�~zð Þ½ �; � ¼ 0:00737;

~z ¼ 2 z� 1300ð Þ
1300

:

FIG. 5. (Color online) Benchmark B 2D field: Source depth 100 m, frequency 10 Hz. 2D vertical field of TL is visualized for depth up to 5 km and range up to

200 km, compared to Fig. 9 (Ref. 9).

FIG. 6. (Color online) Benchmark B 1D plot: Source depth 100 m, fre-

quency 10 Hz. 1D TLs are plotted for the source depth (100 m) and the depth

of 4000 m (clearing the top of the conical seamount). See dashed lines in

Fig. 5 for the corresponding depths plotted here. Reference plots are gener-

ated from Fig. 9 (Ref. 9).
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2. Bathymetry

Conical seamount: range 100 km, height 1000 m, radius

of base 20 km.

3. Bottom impedance

Fluid half space with compressional speed of 2000 m/s,

density of 1 g/cm3, and attenuation of 0.1 dB/k.

4. Results

The vertical 2D field is visualized in Fig. 5, and 1D

fields at two sample depths are plotted in Fig. 6. For this

underwater benchmark with extensive volume, our ray tracer

successfully replicated the characteristics of the field by trac-

ing 200 rays with launch angles uniformly distributed within

p/6 of the horizontal direction, focusing on the long-range

propagating paths. Results are compared with the published

results computed by normal modes available in prior work.9

The biggest discrepancy happens in the range of 0–20 km,

potentially due to the limited ray launch angles.

V. APPLICATION ON COMPLEX OUTDOOR SCENE

A. Scene configuration

1. Media

We generate a general medium profile based on a com-

monly used empirical model of the atmosphere.1 The acoustic

index of refraction in the atmosphere (n¼V0/V, where V0 is

the reference sound speed) is modeled with a stratified

component nstr and a fluctuation component nflu, so that

n¼ nstrþ nflu. The stratified component follows a logarithmic

profile of the altitude z : nstrðzÞ ¼ V0=fV0 þ b ln½ðz=zgÞ þ 1�g,
where zg¼ 1 m is the roughness length of the ground surface,

and a typical value for b is 1 m/s for a downward-refracting

atmosphere and �1 m/s for an upward-refracting atmosphere.

The fluctuation component at position ~x can be computed as

nf luð~xÞ ¼
P

iGð~kiÞcosð~ki �~x þ aiÞ, where ~ki ¼ ðki cos/i sinhi;
ki sin/i sinhi;ki coshiÞ is the wave vector describing the spa-
tial frequency of the fluctuation, and ki¼ iDk for

i¼ 1;2;…;N: /i and ai are random angles between 0 and 2p,

hi is a random angle chosen so that coshi are distributed uni-

formly between 1 and �1. Gð~kiÞ is a normalization factor

computed using the Gaussian spectrum with the correlation

length a¼1.0m and the standard deviation l0 of the refrac-

tive index l to be l0
2 ¼ 1� 10�5. This model represents sim-

plified conditions assuming isotropic atmosphere and fixed

correlation length of turbulence. Profiles generated by more

complex models can be substituted as input to our algorithm.

2. Scene objects

We use a computer-modeled 3D scene consisting of

undulating terrains with a reservoir and buildings. A wire-

frame rendering of the scene, with the two sound-source

locations marked by dots, can be found in Fig. 7(a). The

scene has a physical dimension of 220 m� 150 m� 50 m,

and is represented by 4000 triangular surface primitives. Our

algorithm can simulate propagation for any scenes that can

be modeled or scanned into surface representations similar

to the one demonstrated here.

FIG. 7. (Color online) Outdoor scene and field results for two source locations: (a) Wireframe rendering of the Reservoir scene. One of the dots represents a

sound source located on the slope, and the other dot represents a sound source in the valley. (b) Slices of sound TL field visualized for the source on slope. (c)

Slices of sound TL level visualized for the source in the valley. Frequency 10 Hz.
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B. Results

We compute sound fields for two source locations [Fig.

7(a)], one on the slope of the reservoir, the other in the center

of the valley. For this scene, the sound field displays charac-

teristics resulting from the interaction of sound waves with

the medium itself and with obstacles in the scene. We show

a stack of slices in Fig. 7 for visualization purposes, while

the full 3D field is computed by our algorithm. A source fre-

quency of 10 Hz is used for all the visualized results in order

to keep the field pattern easy to interpret. Our algorithm gen-

erate the sound fields at close to interactive rates (679 ms/

frame tracing 1K initial rays for the 220� 150� 50 field

points). At this rate, insights about field characteristics can

be gained by varying the scene configurations and observe

the field changes. Details on performance of our method can

be found by referring to Ref. 6. It should be noted that ray

tracing methods are typically used when the wavelengths are

much smaller than the sizes of media inhomogeneities,

which do not hold for this test scene at 10 Hz.

The diurnal changes in the atmosphere typically lead to

an upward refractive condition during the day, and a down-

ward refractive condition at night. We generate the sound

field for the source on the slope of the reservoir, and a source

in the center of the valley, for upward and downward refrac-

tive conditions, respectively, and visualize the difference [Fig.

8 and Figs. 9(a) and 9(b)]. We can see that relative to upward

refractive condition, the downward refractive condition leads

to increased sound pressure level at several ring-shaped

regions at different distances from the source, which corre-

spond to the locations where the sound wave is bent down-

ward, hits the ground, and then is reflected back up. Wind

plays an important role in atmospheric sound propagation,

creating extra variations in the sound speed profile, and inter-

acts with physical obstacles that further complicate the sound

field. For the sound source on the slope, we also simulate the

sound field for up-wind and down-wind conditions [Figs. 9(c)

and 9(d)], which yields similar patterns as the relative differ-

ence between upward and downward refractive media.

Our ray tracer accounts for vector wind field by dynami-

cally sampling the medium profile during ray traversal (see

Ref. 6). We show this capability with the sound source in the

valley, and visualization of the difference in sound field

between a north and a south wind, and between a west and

an east wind, respectively (Fig. 10). The wind fields are gen-

erated to follow vertically logarithmic profiles with wind

FIG. 8. (Color online) Source in the valley: Downward-refractive media. (a) Horizontal slice and (b) vertical slice, both of which pass the source location.

Frequency 10 Hz.

FIG. 9. (Color online) Relative sound pressure level for source on the slope. Upward vs downward refraction: (a) top view of a horizontal slice of the field; (b)

front view of a vertical slice of the same field as (a). Up wind vs down wind: (c) top view of a horizontal slice of the field; (d) front view of a vertical slice of

the same field as (c). Frequency 10 Hz.
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speed wðzÞ ¼ 1:826 lnðzÞ þ 4:16 in the four directions,

respectively, so that the expected differences in propagated

fields among them are easy to interpret. The pressure differ-

ence is most prominent in the form of crescent-shaped ridges

along the north-south axis (vertical in the image) and the

west-east axis (horizontal in the image), respectively.

VI. DISCUSSIONS

This algorithm is complementary to many existing

sound propagation techniques and can be extended or com-

bined in multiple ways. With the analytic ray curve tracer6

as a component, our method inherits its many potential

extensions, such as: augmenting GA methods with capability

to handle inhomogeneous media; forming hybrid method

with ESM based on frequency and spatial subdivision (simi-

lar to Yeh et al.35); using the ray tracer for wide area assess-

ment that guides the application of numerical methods only

in areas of interest. As in other ray models, extensions47,48 to

our method can also be built to account for dynamic turbu-

lence fields. It is also possible to accommodate sound sour-

ces other than a point source, such as complex sources or

sources with directivity;49,50 this can be achieved by using

the techniques of Gaussian beam expansion.

As a ray-based model, this algorithm inherits the limita-

tions that it is a high-frequency approximation, not a full-wave

solution. The analytic ray tracer relies on spatial coherence in

the medium to perform efficiently. The Gaussian beam model

that is used to compute the sound field relies on carefully cho-

sen parameters that control the beam width,45 and it is best

determined on a per-scene basis.

VII. CONCLUSION

This paper combines an analytic ray curve tracer6 and

the Gaussian beam model to form an efficient solution for

outdoor sound field computation. Based on the parabolic ray

formulation,6 we use analytic solutions to compute on-ray

pressure and paraxial fields in combination with a Gaussian

beam model. The analytic ray tracer’s path-computation effi-

ciency is matched by our pressure-computation efficiency,

and the combined algorithm can simulate the propagated

sound field for large 3D outdoor scenes with general input

media and complex obstacles. This algorithm is validated on

2D benchmarks with inhomogeneous media profiles that are

widely used in atmospheric and underwater propagation.

The results computed by our algorithm are verified against

published results, generated by validated methods including

FDTD, PE, and normal modes. The capability of this algo-

rithm is further demonstrated with a complex 3D scene

under a variety of media conditions that would present scal-

ability challenges to existing methods. Results that reflect

the characteristics of the scene and media are generated at

close-to-interactive speed. As future work we hope to obtain

measured data or to run large scale numerical simulation to

further validate and gauge the speedup of the algorithm, and

to apply this algorithm on more challenging outdoor scenar-

ios, including fully dynamic scenes.
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APPENDIX A: ANALYTIC EVOLUTION OF RAY
TRAJECTORIES

With ray parameter r defined by dr ¼ V2dT ¼ Vds, the

ray trajectories xi, slowness pi, and travel time T can be

evolved analytically from r0 to any r along the ray:

xi rð Þ ¼ xi0 þ pi0 r� r0ð Þ þ
1

4
Ai r� r0ð Þ2; (A1)

pi rð Þ ¼ pi0 þ
1

2
Ai r� r0ð Þ; (A2)

T rð Þ ¼ T r0ð Þ þ V�2
0 r� r0ð Þ þ

1

2
Aipi0 r� r0ð Þ2

þ 1

12
AiAi r� r0ð Þ3: (A3)

APPENDIX B: ANALYTIC EVOLUTION OF CARTESIAN
P AND Q

The characteristic system of the Hamiltonian for of the

Eikonal equation gives:

dpi

dr
¼ 1

2

@

@xi
V�2ð Þ; dT

dr
¼ pkpk ¼ V�2: (B1)

From Eq. (B1) and because partial derivative @/@c com-

mutes with d/dr, a simple dynamic ray tracing system can be

derived as follows (subscript J for c is omitted):

FIG. 10. (Color online) Vector wind for source in the valley: (a) Difference in horizontal field of sound pressure level between a north and a sound wind. (b)

Difference in horizontal field of sound pressure level between an east and a west wind. (c) Difference in vertical field of sound pressure level between an east

and a west wind. Frequency 10 Hz.
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d

dr
Q

xð Þ
i ¼ P

xð Þ
i ;

d

dr
P

xð Þ
i ¼

1

2

@2

@xi@xj
V�2ð ÞQ xð Þ

j : (B2)

For constant media gradient of V�2, Eq. (B2) can be solved

analytically for any point R at r along the ray X if Q̂
ðxÞ

and

P̂
ðxÞ

are known at any other point S at r0 along the ray X:

P
ðxÞ
iJ ðxiÞ ¼ P

ðxÞ
iJ ðSÞ;

Q
ðxÞ
iJ ðRÞ ¼ Q

ðxÞ
iJ ðSÞ þ ðr� r0ÞPðxÞiJ ðSÞ: (B3)

APPENDIX C: ANALYTIC EVOLUTION
OF TRANFORMATION MATRIX

For constant gradient of V�2, Ĥ can be solved analyti-

cally for any point R from any other point S along X. This

is achieved by computing the ray-centered coordinates unit

basis ~e1 ; ~e2 , and ~e3 that constitutes Ĥ, as Ĥik ¼ @xi=@qk

¼ @qk=@xi ¼ eki; i; k ¼ 1; 2; 3;…. Consider a set of ortho-

normal unit vectors ~n1 ; ~n2 ; ~n3 defined along ray X, parame-

terized by r. Let ~n3ðrÞ ¼ VðrÞ~pðrÞ follow the tangent of

the ray, ~n2ðrÞ is selected to be perpendicular to the ray

plane, ~n1 is then defined by ~n1 ¼ ~n2 � ~n3 . Because the ray

is a planar curve for constant gradient V�2; ~n2ðrÞ ¼ ~n2ðr0Þ.
Given Eqs. (A1)–(A3),

~n1 rð Þ ¼ ~n2 rð Þ � ~n3 rð Þ ¼ ~n2 rð Þ � V rð Þ~p rð Þ

¼ ~n2 r0ð Þ � V rð Þ ~p r0ð Þ þ
1

2
~A r� r0ð Þ

� �
: (C1)

As ~e3 coincides with ~n3 ; ~e1ðrÞ; ~e2ðrÞ can be determined from

~e1ðr0Þ; ~e2ðr0Þ and the evolution of ~n1 ; ~n2 from r0 to r is

~e1ðrÞ¼ ~e1ðr0Þ � ~n1ðr0Þ½ �~n1ðrÞþ ~e1ðr0Þ � ~n2ðr0Þ½ �~n2ðrÞ;

~e2ðrÞ¼ ~e2ðr0Þ � ~n1ðr0Þ½ �~n1ðrÞþ ~e2ðr0Þ � ~n2ðr0Þ½ �~n2ðrÞ:
(C2)

APPENDIX D: EVOLUTION OF RAY-CENTERED PAND Q

(1) Take initial condition for P, Q. Assuming a point source

S and /0 and i0 as the ray parameters c1, c2:

QðSÞ ¼ 0; PðSÞ ¼ 1=VðSÞ 1 0

0 sin i0

� �
.

(2) Transform P, Q into P̂
ðxÞ

and Q̂
ðxÞ

with Ĥ ,

(3) Analytically evolve P̂
ðxÞ

and Q̂
ðxÞ

by Eq. (B3),

(4) Analytically evolve Ĥ by Eq. (C2),

(5) Transform the evolved P̂
ðxÞ

and Q̂
ðxÞ

back to P, Q with

the evolved Ĥ
T
.

APPENDIX E: CARTESIAN PARAXIAL TRAVEL TIME

For a field point R, and a point on the ray cRc of the ray

parameter c1, c2, denote the Cartesian coordinates of R0 and

Rc by xiðR0Þ and xiðRcÞ, and xi(R, Rc)¼ xi(R) � xi(Rc), the

quadratic expansion of T from T(Rc) is

T R;Rcð Þ ¼ T Rcð Þ þ xi R;Rcð Þp xð Þ
i Rcð Þ

þ 1

2
xi R;Rcð Þxj R;Rcð ÞM xð Þ

ij Rcð Þ; (E1)

where Mij are the elements of the 3� 3 matrix M̂
ðxÞ

:

M̂ðRcÞ ¼ ĤðRcÞ
MðRcÞ

M13ðRcÞ
M23ðRcÞ

M13ðRcÞ M23ðRcÞ M33ðRcÞ

0
B@

1
CA

� Ĥ
TðRcÞ: (E2)

Here M(Rc) is defined in Eq. (2). The remaining elements

can be derived7 to be

M13ðRcÞ ¼ �ðv�2v;1ÞRc
; M23ðRcÞ ¼ �ðv�2v;2ÞRc

;

M33ðRcÞ ¼ �ðv�2v;3ÞRc
; (E3)

v ¼ Vðq1; q2; sÞ½ �q1¼q2¼0;s¼sðRcÞ;

v;i ¼ @Vðq1; q2; sÞ=@qi½ �q1¼q2¼0;s¼sðRcÞ: (E4)

v,i can be solved by transforming to Cartesian coordinates

first: v;i ¼ @V=@qi ¼ Hki@V=@xk, and @V/@xk can be solved

analytically for constant gradient of V�2 by

@V�2=@xk ¼ �2V�3@V=@xk ¼ Ak ) @V=@xk

¼ � 1

2
V3Ak: (E5)

APPENDIX F: GAUSSIAN BEAM SUMMATION

The contributions of Gaussian beams are then summed

up by integral superposition:

pðR;xÞ ¼
ð ð
D
Uðc1; c2ÞPrayðRcÞ exp ixTðR;RcÞ

� �
dc1dc2:

(F1)

The weighting function U is derived to be

Uðc1; c2Þ ¼ ðx=2pÞ �detðMðRcÞ �MaðRcÞÞ
� �1=2

� jdetQaðRcÞj (F2)

¼ ðx=2pÞ �detðQaTðM�MaÞQaÞ
� �1=2

: (F3)

Matrices with suffix a (Ma, Pa, Qa) represents the matrices

of the actual ray field X(c1, c2) [Eq. (2)]. They should be dis-

tinguished from the complex-valued M used to describe the

Gaussian beams [in Eq. (4)].

The choice of Re(M) is related to the curvatures of the

wavefront and the choice of Im(M) is related to the width of

the amplitude profile. They can be specified at Rc or any

other point along the central ray c to control the shape of the

beam. Techniques discussed in Ref. 51 are helpful for a

good choice of M.
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