
Fast and Bounded Probabilistic Collision
Detection for High-DOF Robots

in Dynamic Environments

Chonhyon Park, Jae Sung Park, and Dinesh Manocha

University of North Carolina, Chapel Hill, NC 27599, USA,
{chpark,jaesungp,dm}@cs.unc.edu

http://gamma.cs.unc.edu/PCOLLISION

Abstract. We present a novel approach to performing probabilistic col-
lision detection between a high-DOF robot and imperfect obstacle repre-
sentations in dynamic, uncertain environments. These uncertainties are
modeled using Gaussian distributions. We present an efficient algorithm
for bounded collision probability approximation. We use our probabilistic
collision algorithm for trajectory optimization in dynamic scenes for 7-
DOF robots. We highlight its performance in challenging simulated and
real-world environments with robot arms operating next to dynamically
moving human obstacles.

1 Introduction

Robots are increasingly being used in living spaces, factories, and outdoor en-
vironments. In such environments, various elements of or parts of the robot
tend to be in close proximity to humans or other moving objects. This proxim-
ity gives rise to two kinds of challenges in terms of motion planning. First, we
have to predict the future actions and reactions of moving obstacles or agents in
the environment to avoid collisions with the obstacles. Therefore, the collision
avoidance algorithm needs to deal with uncertain and imperfect representations
of obstacle motions. Second, the computed robot motion still needs to be reason-
ably efficient and all such collision computations have to be performed at almost
realtime rates.

Various uncertainties arise from control errors, sensing errors, or environ-
mental errors (i.e. imperfect environment representation) in the estimation and
prediction of environment obstacles. Typically, these uncertainties are modeled
using Gaussian distributions. In this paper, we limit ourselves to environmental
errors. Current motion planning algorithms use probabilistic collision detection
algorithms to compute appropriate trajectories with imperfect obstacle represen-
tations. Typically, these uncertainties are modeled using Gaussian distributions
and stochastic algorithms are used to approximate the collision probability [4,
12, 16, 17]. However, it is almost impossible to guarantee a perfect collision-free
trajectory as the Gaussian distributions corresponding to the obstacle positions
have non-zero probabilities in the entire workspace.

Many of the stochastic algorithms used to approximate the collision proba-
bility [4, 12] tend to be computationally expensive or limited to 2D workspaces.
Most prior planning approaches for high-DOF robots perform exact collision
checking with scaled objects that enclose the potential object volumes [3, 5,
13, 24]. Although these planning approaches can guarantee probabilistic safety
bounds, they tend to overestimate the collision probability. This overestimation
can either result in less optimal trajectories or may fail to compute a feasible tra-
jectory in the limited planning time in dynamic scenes. Therefore, it is desirable
to balance the safety and efficiency in terms of the planned trajectory.
Main Results: In this paper, we present a novel approach to perform proba-
bilistic collision detection. In particular, we present an algorithm for fast approx-
imation of collision probability between the high-DOF robot and obstacles. Our
approach computes more accurate probabilities as compared to prior approaches
that perform exact collision checking with enlarged obstacle shapes. Moreover,
we can guarantee that our computed probability is an upper bound on the ac-
tual probability. Moreover, we present a trajectory optimization algorithm for
high-DOF robots in dynamic, uncertain environments based on our probabilis-
tic collision detection, and a practical belief space estimation algorithm that
accounts for both spatial and temporal uncertainties in the position and motion
of each obstacle in dynamic environments. We have evaluated our planner using
7-DOF robot arms operating in a simulation and a real workspace environment
with high-resolution point cloud data corresponding to moving human obstacles,
captured using a Kinect device1.

The paper is organized as follows. Section 2 gives a brief overview of prior
work on probabilistic collision detection and motion planning. We introduce the
notation and describe our probabilistic collision detection algorithm in Section 3.
We describe the trajectory planning algorithm in Section 4. We highlight plan-
ning performance in challenging human environment scenarios in Section 5.

2 Related Work

In this section, we give a brief overview of prior work on probabilistic collision
detection and trajectory planning in dynamic environments.

2.1 Probabilistic Collision Detection

Collision detection is an integral part of any motion planning algorithm and
most prior techniques assume an exact representation of the robot and obsta-
cles. Given some uncertainty or imperfect representation of the obstacles, certain
algorithms perform probabilistic collision detection. Typically, these uncertain-
ties are modeled using Gaussian distributions, and stochastic techniques are
used to approximate the collision probability [4, 9, 12]. In stochastic algorithms,
a large number of sample evaluations is required to compute an accurate collision
probability.

1 https://developer.microsoft.com/en-us/windows/kinect

If it can be assumed that the sizes of the objects are small, the collision
probability between objects can be approximated using the probability at a
single configuration and corresponds to the mean of the probability distribution
function (PDF) [6]. This approximation is fast, but the computed probability
cannot provide a bound; i.e. it can be higher or lower than the actual collision
probability, and the error increases as the object becomes larger.

For high-dimensional spaces, a common approach to check collisions for im-
perfect or noisy objects is to perform exact collision checking with a large volume
that encloses the object poses [3, 19]. Prior approaches generally enlarge an ob-
ject shape, which may correspond to a robot or an obstacle, to compute the
space occupied by the object for a given standard deviation. This may corre-
spond to a sphere [5] or a sigma hull [13]. These approaches tend to compute a
bounding volume for the given confidence level. However, the computed volume
overestimates the probability and can be much bigger than the actual volume
corresponding to the confidence level. Therefore, these approaches can result in
a failure to find existing feasible trajectories for motion planning.

Other approaches have been proposed to perform probabilistic collision de-
tection on point cloud data. Bae et al. [1] presented a closed-form expression for
the positional uncertainty of point clouds. Pan et al. [16] reformulated the proba-
bilistic collision detection problem as a classification problem and computed per
point collision probability. However, these approaches assume that the environ-
ment is mostly static. Other techniques are based on broad phase data structures
that handle large point clouds for realtime collision detection [17].

2.2 Planning in Dynamic and Uncertain Environments

There is considerable literature on motion planning in dynamic scenes. In many
scenarios, the future positions of the obstacles are not known. As a result, the
planning problem is typically solved using replanning algorithms, which inter-
leave planning with execution. These methods include sampling-based plan-
ners [22], grid searches [15], and trajectory optimization [19].

Applications that require high responsiveness use control-based approaches [11],
which can compute trajectories in realtime. They compute the robot trajectory
in the workspace of the robot, according to the sensor data. However, the map-
ping from the Cartesian trajectory to the trajectory in the configuration space
of high-DOF robots can be problematic as there can be multiple configurations
for a single pose defined in the Cartesian workspace. Furthermore, control-based
approaches tend to compute less optimal robot trajectories as compared to the
planning approaches that incorporate the estimation of the future obstacle poses.
Planning algorithms can compute better robot trajectories in applications in
which a good prediction about obstacle motions in a short horizon can be ob-
tained.

The unknown future obstacle positions are one of the source of uncertainties.
POMDPs (partially-observable Markov decision processes) provide a mathemat-
ically rigorous and general approach for planning under uncertainty [10]. They
handle the uncertainty by reasoning over the belief space. However, the POMDP

formulation is regarded as computationally intractable [18] for problems that are
high-dimensional or have a large number of actions. Many efficient approxima-
tions use Gaussian belief spaces, which are estimated using Bayesian filters (e.g.,
Kalman filters) [14, 23]. Gaussian belief spaces have also been used for the mo-
tion planning of high-DOF robots [3, 24], but most planning algorithms do not
account for environment uncertainty or imperfect obstacle information. Under
the conditions of dynamic environments, planning with uncertainty algorithms
are mainly limited to 2D spaces [2, 7].

3 Probabilistic Collision Detection for High-DOF Robots

In this section, we first introduce the notation and terminology used in the pa-
per; then we present our probabilistic collision detection algorithm for detecting
collisions between a high-DOF robot and the dynamic environment.

3.1 Notation and Assumptions

Our goal is to compute the collision probability between a high-DOF robot con-
figuration and a given obstacle representation of dynamic environments, where
the obstacle representation is a probability distribution that accounts for uncer-
tainties in the obstacle motion.

For an articulated robot with D one-dimensional joints, we represent a single
robot configuration as q, which is a vector composed of the joint values. The D-
dimensional vector space of q is the configuration space C of the robot. We denote
the collision-free subset of C as Cfree, and the other configurations corresponding
to collisions as Cobs.

We assume that the robot consists of J links R1, ..., RJ , where J ≤ D.
Furthermore, for each robot link Rj , we use a sequence of bounding volumes
Bj1, ..., BjK to tightly enclose Rj(q), which corresponds to a robot configura-
tion q, i.e.,

∀j : Rj(q) ⊂
K⋃
k=1

Bjk(q) for (1 ≤ j ≤ J). (1)

We denote obstacles in the environment as Ol (1 ≤ l ≤ L). The configuration
of these obstacles is specified based on their poses. As is the case for the robot,
we use the bounding volumes Sl1, ..., SlM to enclose each obstacle Ol in the
environment:

∀l : Ol ⊂
M⋃
m=1

Slm for (1 ≤ l ≤ L). (2)

For dynamic obstacles, we assume the predicted pose of a bounding volume Slm
at time t is estimated as a Gaussian distribution N (plm,Σlm).

3.2 Fast and Bounded Collision Probability Approximation

The collision probability between a robot configuration qi with the environment
at time ti, P (qi ∈ Cobs(ti)) can be evaluated by checking their bounding volumes
for possible overlaps, which can be formulated as

P (qi ∈ Cobs(ti)) = P

⋃
j

⋃
k

Bjk(qi)

⋂(⋃
l

⋃
m

Slm(ti)

)
6= ∅

 . (3)

We assume the robot links Rj and obstacles Ol are independent of each other,
as their poses depend on corresponding joint values or obstacle states. Then (3)
can be computed as

P (qi ∈ Cobs(ti)) = 1−
∏
j

∏
l

Pcol(i, j, l), (4)

where Pcol(i, j, l) is the collision probability between Rj(qi) and Ol(ti). Because
poses of bounding volumes Bjk and Slm are determined by joint values or obsta-
cle states of the corresponding robot link or obstacle, bounding volumes for the
same object are dependent on each other, and Pcol(i, j, l) can be approximated
as

Pcol(i, j, l) ≈ max
k,m

Pcol(i, j, k, l,m) (5)

Pcol(i, j, k, l,m) = P (Bjk(qi) ∩ Slm(ti) 6= ∅), (6)

where Pcol(i, j, k, l,m) denotes the collision probability between Bjk(qi) and
Slm(ti).

Fig. 1 illustrates how Pcol(i, j, k, l,m) can be computed for Slm(ti) ∼ N (plm,Σlm).
We assume that the robot’s bounding volume Bjk(qi) is a sphere centered at
ojk(ti), similar to the environment bounding volume Slm, and denote the radii of
Bjk and Slm as r1 and r2, respectively. We assume radii r1 and r2 are constants.
Then the exact probability of collision between them is given as:

Pcol(i, j, k, l,m) =

∫
x

I(x,ojk(ti))p(x,plm,Σlm)dx, (7)

where the indicator function I(x,o) and the obstacle function p(x,p,Σ) are
defined as,

I(x,o) =

{
1 if ‖x− o‖ ≤ (r1 + r2)
0 otherwise

and (8)

p(x,p,Σ) =
e−0.5(x−p)T Σ−1(x−p)√

(2π)3‖Σ‖
, (9)

respectively. It is known that there is no closed form solution for the integral
given in (7).

r1 + r2ojk(ti)

(plm,Σlm)
xmaxV

Fig. 1: Approximation of probabilistic collision detection between a sphere obsta-
cle of radius r2 with a probability distribution N (plm,Σlm) and a rigid sphere
robot bounding volume Bjk(qi) centered at ojk(ti) with radius r1 for a robot
configuration qi. The collision probability is approximated as V ·xmax, where V
is the volume of the sphere with the radius computed as the sum of two radii,
V = 4π

3 (r1 + r2)3, and xmax is the position which has the maximum probability
of N (plm,Σlm).

Du Toit and Burdick approximate (7) as V · p(ojk(ti),plm,Σlm), where V is
the volume of the sphere, i.e., V = 4π

3 (r1 + r2)3 [6]. However, this approximated
probability can be either smaller or larger than the exact probability. If the
covariance Σlm is small, the approximated probability can be much smaller than
the exact probability. Planners using this approximation may underestimate the
collision probability and may compute unsafe robot motion.

In order to avoid this problem, we compute xmax, the position that has the
maximum probability of N (plm,Σlm) in Bjk(qi), and compute the upper bound
of Pcol(i, j, k, l,m) as

Papprox(i, j, k, l,m) = V · p(xmax,plm,Σlm). (10)

Although xmax has no closed-form solution, it can be computed efficiently using
numerical techniques.

Lemma 1. xmax, the position has the maximum probability of N (plm,Σlm) in
Bjk(qi), is formulated as a one-dimensional search of a parameter λ,

xmax = {x|‖x− ojk(ti)‖ = (r1 + r2) andx ∈ x(λ)} ,where (11)

x(λ) = (Σ−1
lm + λI)−1(Σ−1

lmplm + λojk(ti)). (12)

Proof. The problem of finding the position with the maximum probability in a
convex region can be formulated as an optimization problem with a Lagrange
multiplier λ [8],

xmax = arg min
x

{
(x− plm)TΣ−1

lm(x− plm) + λ(x− ojk)2
}
. (13)

The solution of (13) satisfies

O
{

(x− plm)TΣ−1
lm(x− plm) + λ(x− ojk)2

}
= 0, (14)

and can be computed as

2Σ−1
lm(x− plm) + 2λ(x− ojk) = 0 (15)

x = (Σ−1
lm + λI)−1)(Σ−1

lmplm + λojk). (16)

The approximated probability (10) is guaranteed as an upper bound of the
exact collision probability (7).

Theorem 1. The approximated probability Papprox(i, j, k, l,m) (10) is always
greater than or equal to the exact collision probability Pcol(i, j, k, l,m) (7).

Proof. p(xmax,plm,Σlm) ≥ p(x,plm,Σlm) for {x|‖x − ojk(ti)‖ ≤ (r1 + r2)}
from Lemma 1. Therefore,

Papprox(i, j, k, l,m) = V · p(xmax,plm,Σlm) (17)

=

∫
x

I(x,ojk(ti))dx · p(xmax,plm,Σlm) (18)

=

∫
x

I(x,ojk(ti)) · p(xmax,plm,Σlm)dx (19)

≥
∫

x

I(x,ojk(ti)) · p(x,plm,Σlm)dx (20)

= Pcol(i, j, k, l,m). (21)

3.3 Comparisons with Other Algorithms

In Fig. 2, we illustrate two cases of the collision probability computation between
a circle B (in gray), and a point (in black) with uncertainties, x ∼ (p,Σ), in
2D. We evaluate the exact collision probabilities using the numerical integration
of the PDF. The collision probability of Case I is 0.09%, which is feasible with
δCL = 0.99, while the probability of Case II is 1.72%, which is infeasible. The
contours in Fig. 2 represent the bounds for different confidence levels. Approaches
that use the exact collision checking with enlarged bounding volumes [3, 19] for
a given confidence level (e.g., the blue ellipse for δCL = 0.99) determine both
Case I and Case II have collisions and infeasible, i.e., the collision probability is
100%, while the collision probability for Case I is only 0.09%.

Du Toit and Burdick [6] use the probability of the center point (shown in
green in Fig. 2) to approximate the collision probability, as described in Sec-
tion 3.2. However, their approach cannot guarantee upper bounds, and the ap-
proximated probability can be significantly smaller than the exact probability if
the covariance value is small. Case II in Fig. 2 shows that the approximated prob-
ability of their approach is 0.89%, and that satisfies the safety with δCL = 0.99
and determines Case II as a feasible configuration, which is not true for the exact
probability 1.72%.

(a) Case I (b) Case II

Algorithms
Collision probability

(O : feasible, X : infeasble)
Case I Case II

Exact probability 0.09%(O) 1.72%(X)

Enlarged bounding volumes [3, 19] 100.00%(X) 100.00%(X)

Approximation using the center point PDF [6] 0.02%(O) 0.89%(O)

Our approach 0.80%(O) 8.47%(X)

Fig. 2: Comparison of approximated collision probabilities for feasible
(P (x) ≤ 1 − δCL) and infeasible (P (x) > 1 − δCL) scenarios for δCL =
0.99: We compare the exact collision probability (computed using numerical
integration) with approximated probabilities of 1) enlarged bounding volumes
(blue contour) [3, 19], 2) approximation using object center point (in green) [6],
and 3) our approach that uses the maximum probability point (in red). Our
approach guarantees that we do not underestimate the probability, while our
approximated probability is close to the exact probability.

Unlike [6], we approximate the probability of the entire volume using the
maximum probability value of a single point (shown in red in Fig. 2), as described
in Section 3.2. Our approach guarantees computation of the upper bound of
collision probability, while the approximated probability is closer to the exact
probability than of the enlarged bounding volume approaches.

4 Trajectory Optimization using Probabilistic Collision
Detection

In this section, we present our trajectory optimization approach which uses the
probabilistic collision detection to avoid collision in the dynamic environment.

We define the time-space domain X , which adds a time dimension to the
configuration space, i.e., X = C × T . The robot’s trajectory, q(t), is represented
as a function of time from the start configuration qs to the goal configuration

Model Belief State

Update /

Construction

Environment Robot

Robot Motion Planner

Trajectory Optimization Environment Belief State Estimation

Shape Model Database

Belief State

Estimation

State History

Probabilistic

Collision

Detection

Planning

Request
Space-Time Optimizer

Cost

Evaluation

Depth / Point Cloud Sensor Sensor Controller

Fig. 3: Trajectory Planning: We highlight various components of our algo-
rithm. These include belief space estimation of environment (described in [20]),
probabilistic collision checking (described in Section 3), and trajectory optimiza-
tion.

qg. It is represented using the matrix Q,

Q =

[
qs q1 ... qn−1 qg
t0 t1 ... tn−1 tn

]
, (22)

which corresponds to n + 1 configurations at discretized keyframes, ti = i∆T ,

which have a fixed interval ∆T . We denote the i-th column of Q as xi =
[
qTi ti

]T
.

Fig. 3 highlights various components of our planning algorithm. The pseudo-
code description is given in Algorithm 1 for a single planning step. Our overall
trajectory planning algorithm consists of two main components: environment
belief state estimation and trajectory optimization.

We update the belief state of the environment b = (p, Σ) using means and
covariances plm and Σlm of the poses of the existing bounding volumes Slm.

That is, p =
[
pT11 ... p

T
LM

]T
and Σ = diag(Σ11, ..., ΣLM), where Σ is a block

diagonal matrix of the covariances. Moreover, we use a Bayesian estimator to
predict the future belief state of the environment, which is used for probabilistic
collision detection.

We use incremental trajectory optimization, which repeatedly refines a mo-
tion trajectory using an optimization formulation [19]. The planner initializes
the robot trajectory Q as a smooth trajectory of predefined length T between
qs and qg, and refines it in every planning step ∆T .

We define the collision avoidance constraint based on the following probabil-
ity computation formulation:

∀xi : P (qi ∈ Cobs(ti)) < 1− δCL. (23)

Algorithm 1 Q∗ =PlanWithEnvUncertainty(Q, {dk}, ti)
: Compute the optimal robot trajectory Q∗ during the planning step ∆T for the
environment point clouds {d} at time ti

Input: initial trajectory Q, environment point clouds {d}, time ti
Output: Optimal robot trajectory Q∗ for time step ∆T
1: pi = EnvironmentStateComputation({d}) // compute the environment state
2: for k ∈ {i, ..., i+∆T} do
3: Bk = BeliefStateEstimation(B0, ...,Bk−1, pi) //estimate the current and future

belief states
4: end for
5: while elapsed time < ∆T do
6: P=ProbCollisionChecking(Q, {Bi, ...,Bi+∆T }) // perform probabilistic collision

detection
7: Q∗=Optimize(Q, P) // compute the optimal trajectory for high-DOF robot
8: end while

We can compute P (qi ∈ Cobs(ti)) using (4) in Section 3. The computed tra-
jectories that satisfy (23) guarantee that the probability of collision with the
obstacles is bounded by the confidence level δCL, i.e. the probability that a
computed trajectory has no collision is higher than δCL. Use of a higher con-
fidence level computes safer, but more conservative trajectories. The use of a
lower confidence level increases the success rate of planning, but also increases
the probability of collision.

The objective function for trajectory optimization at time tk can be ex-
pressed as the sum of trajectory smoothness cost, and collision constraint costs
for dynamic uncertain obstacles and static known obstacles,

f(Q) = min
Q

n∑
i=k+m

(
‖qi−1 − 2qi + qi+1‖2 + Cstatic(Qi)

)
+

k+2m∑
i=k+m

max(P (qi ∈ Cobs(xi))− (1− δCL), 0),

(24)

where m is the number of time steps in a planning time step ∆T .

Unlike the previous optimization-based planning approaches [19, 25] which
maintain and cannot change the predefined trajectory duration for the com-
puted trajectory, we adjust the duration of trajectory T to avoid collisions with
the dynamic obstacles. When the trajectory planning starts from ti (ti can be
different from ts due to replanning) and if the computed trajectory Q violates
the collision probability constraint (23) at time tj , i.e., P (qj ∈ Cobs(tj)) ≥ δCL,
we repeatedly add a new time step xnew before xj and rescale the trajectory
from [ti, ..., tj−1] to [ti, ..., tj−1, tnew], until xnew is collision-free. Then, the next
planning step starts from xnew. It allows the planner to slow the robot down
when it cannot find a safe trajectory for the previous trajectory duration due to
the dynamic obstacles. If the optimization algorithm converges, our algorithm

computes the optimal trajectory,

Q∗ = arg min
Q

f(Q), (25)

which provides a collision-free guarantee for the given confidence level δCL in
dynamic environments. Further details of the integration of probabilistic collision
detection with trajectory optimization can be found in [20].

5 Results

In this section, we describe our implementation and highlight the performance of
our probabilistic collision checking and trajectory planning algorithm on different
benchmark scenarios. We measure the performance of our planning algorithm
in simulated environments with difference benchmark scenarios and robot arm
models, and validate our algorithm using experiments with a real 7-DOF Fetch
robot arm. In our experiments, bounding spheres are automatically generated
along the medial axis of each robot link. The environments have some complex
static obstacles such as tools or furnitures in a room. The dynamic obstacle is a
human, and we assume that the robot operates in close proximity to the human;
however, the human does not intend to interact with the robot. We use a Kinect
device as the depth sensor, which can represent a human as 30-35k point clouds.
We compute the state of human obstacle model which has 60 DOFs. Details of
the belief state estimation of dynamic obstacles is given in [20].

5.1 Experimental Results

Robot Robot BV Human BV Prob. Col BV Pairs Prob. Col Computation Time (ms)

IIWA 40 336 13440 (40x336) 0.147

UR5 56 336 18816 (56x336) 0.282

Fetch 76 336 25536 (76x336) 0.526

Table 1: Performance of our probabilistic collision detection: We measure
the computation time of the probabilistic collision detection per single robot
configuration.

Table 1 shows the computation time of the probabilistic collision detection
per single robot configuration. We evaluate (10) in Section 3 for each bounding
volume pair correspond to a robot and a human obstacle, and the computation
time is linear to the number of pairs.

Table 2 describes the benchmark scenarios and the performance of the plan-
ning results for simulated environments. We set δCL = 0.95, except the second
benchmark scenarios where the confidence levels vary.

Benchmarks

Scenarios

Planning Results

Name Robot
Minimum

Distance (m)
Trajectory

Duration (sec)
Trajectory
Length (m)

Bookshelf
UR5

(6 DOFs)
Stationary obstacle 0.29 3.7 1.29

Moving obstacle 0.35 5.4 2.14

Tool
IIWA

(7 DOFs)

δCL = 0.95, vt = 0 0.06 6.0 1.60
δCL = 0.95, vt = 0.005I3×3 0.30 6.9 1.92
δCL = 0.95, vt = 0.05I3×3 0.32 7.1 2.01
δCL = 0.99, vt = 0.05I3×3 0.38 8.3 2.43

Comparisons
using

Different
Prob. Collision
Computations

IIWA
(7 DOFs)

Our Approach 0.32 7.1 2.01
Enlarged bounding

volumes [3, 19]
0.40 8.8 2.32

Approximation using
the center point PDF [6]

-0.05 3.4 1.38

Table 2: Planning results in our benchmarks: We measure the planning re-
sults of the computed trajectories: the minimum distance to the human obstacle,
trajectory duration, and trajectory length, for different benchmark scenarios.

In our first benchmark, the planner computes a motion for 6-DOF UR5 robot
to move an object on the table to a point on the bookshelf. When a human is
dashing toward the robot at a fast speed, the robot is aware of the potential
collision with the predicted future human position and changes its trajectory
(Fig. 4(a)). However, if a standing human only stretches out an arm toward the
robot, even if the velocity of the arm is fast, the model-based prediction prevents
unnecessary reactive motions, which is different from the prediction models with
constant velocity or acceleration extrapolations (Fig. 4(b)).

The second benchmark shows the difference in planning results due to the dif-
ferent confidence and noise levels, for the same recorded human motion. Fig. 4(c)-
(e) shows a robot trajectory with different confidence levels and sensor noises. If
the obstacle states are assumed as exact and have no noise, the robot can follow
the shortest and smoothest trajectory that is close to the obstacle (Fig. 4(c)).
However, as the noise of the environment state or expected confidence level be-
comes higher, the computed robot trajectories become longer and less smooth
to avoid potential collision with the obstacles (Fig. 4(d)-(e)).

Fig. 5 shows a 7-DOF Fetch robot arm motion which is computed using our
algorithm to avoid collisions with human motion captured in run-time.

5.2 Probabilistic Collision Checking and Trajectory Planning

In the next benchmark, we plan trajectories using the different probabilistic col-
lision detection algorithms which discussed in Section 3.3. We measure the min-
imum distance between the robot and the human obstacle along the computed
trajectory as a safety metric, and the duration and length of the end-effector
trajectory as efficiency metrics. The results for the planners with three different
probabilistic collision detection algorithms are shown in Table 2. The enlarged
bounding volumes have the largest safety margins, but the durations and lengths

(a) (b)

(c) (d) (e)

Fig. 4: Robot Trajectory with Dynamic Human Obstacles: Static ob-
stacles are shown in green, the estimated current and future human bounding
volumes are shown in blue and red, respectively. Our planner uses the proba-
bilistic collision detection to compute the collision probability between the robot
and the uncertain future human motion. (a) When a human is approaching the
robot, our planner changes its trajectory to avoid potential future collisions. (b)
When a standing human only stretches out an arm, our model-based prediction
prevents unnecessary reactive motions, which results in a better robot trajectory
than the prediction using simple extrapolations. (c)-(e) Robot trajectory with
different confidence and noise levels: (c) A trajectory for zero-noise obstacles.
(d) δCL = 0.95 and vt = 0.005I3×3. (e) δCL = 0.99 and vt = 0.05I3×3.

of the computed trajectories are longer than other approaches, since the over-
estimated collision probability makes the planner compute trajectories that are
unnecessarily far from the obstacles. On the other hand, the approximating ap-
proach that uses the probability of the object center point underestimates the
collision probability and causes several collisions in the planned trajectories, i.e.,
the minimum distance between the robot and human obstacle become negative.
Our approach shows a similar level of safety with the approach using enlarged
bounding volumes, while it also computes efficient trajectories that have shorter
trajectory durations and lengths. These benchmarks demonstrate the benefits of
our probabilistic collision checking on trajectory planning.

Fig. 5: Real Robot Experiment: We evaluate our planning algorithm on 7-
DOF Fetch robot arm to compute collision-free robot motion. Our bounded
probabilistic collision checking is used for computing safe trajectories.

6 Conclusions, Limitations and Future Work

We present a novel algorithm for collision probability approximation for high-
DOF robots in dynamic, uncertain environments. Our approach is fast, and
works well in our simulated and real robot results where it can compute efficient
collision-free paths with a high confidence level. Our probabilistic collision de-
tection computes tighter upper bounds of the collision probability as compared
to prior approaches, and can be used with different planning algorithms. We
highlight the performance of our planner on different benchmarks with human
obstacles.

Our approach has some limitations. Some of the assumptions used in belief
space estimation in terms of Gaussian distribution and Kalman filter may not
hold. Moreover, our approach needs pre-defined shape representations of the
obstacles. The trajectory optimization may get stuck at a local minima and may
not converge to a global optimal solution. Furthermore, our approach assumes
that the obstacles in the scene undergo rigid motion. There are many avenues
for future work. Our approach only takes into account the imperfect information
about the moving obstacles. Uncertainties from control errors or sensor errors,
which are rather common with the controllers and sensors, need to be integrated
in our approach. Finally, we would to integrate our approach with other robots
and evaluate the performance in different scenarios.

Recently, we have extended our approach to general convex polytopes and
proposed specialized algorithms for bounding shapes such as AABB, OBB and k-

DOPs [21]. Furthermore, we show that by using bounding volume hierarchies, we
can improve the speed and the accuracy of the collision probability computation
for non-convex cases.

7 Acknowledgments

This research is supported in part by ARO Contract W911NF-14-1-0437 and
NSF award 1305286.

References

1. Bae, K.H., Belton, D., Lichti, D.D.: A closed-form expression of the positional
uncertainty for 3d point clouds. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 31(4), 577–590 (2009)

2. Bai, H., Cai, S., Ye, N., Hsu, D., Lee, W.S.: Intention-aware online pomdp planning
for autonomous driving in a crowd. In: Robotics and Automation (ICRA), 2015
IEEE International Conference on. pp. 454–460. IEEE (2015)

3. Van den Berg, J., Wilkie, D., Guy, S.J., Niethammer, M., Manocha, D.: LQG-
Obstacles: Feedback control with collision avoidance for mobile robots with mo-
tion and sensing uncertainty. In: Robotics and Automation (ICRA), 2012 IEEE
International Conference on. pp. 346–353. IEEE (2012)

4. Blackmore, L.: A probabilistic particle control approach to optimal, robust pre-
dictive control. In: Proceedings of the AIAA Guidance, Navigation and Control
Conference. No. 10 (2006)

5. Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning un-
der uncertainty. In: Robotics and Automation (ICRA), 2011 IEEE International
Conference on. pp. 723–730. IEEE (2011)

6. Du Toit, N.E., Burdick, J.W.: Probabilistic collision checking with chance con-
straints. Robotics, IEEE Transactions on 27(4), 809–815 (2011)

7. Du Toit, N.E., Burdick, J.W.: Robot motion planning in dynamic, uncertain envi-
ronments. Robotics, IEEE Transactions on 28(1), 101–115 (2012)

8. Groetsch, C.W.: The theory of Tikhonov regularization for Fredholm equations of
the first kind, vol. 105. Pitman Advanced Publishing Program (1984)

9. Guibas, L.J., Hsu, D., Kurniawati, H., Rehman, E.: Bounded uncertainty roadmaps
for path planning. In: Algorithmic Foundation of Robotics VIII, pp. 199–215.
Springer (2010)

10. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial intelligence 101(1), 99–134 (1998)

11. Kroger, T., Wahl, F.M.: Online trajectory generation: Basic concepts for instan-
taneous reactions to unforeseen events. Robotics, IEEE Transactions on 26(1),
94–111 (2010)

12. Lambert, A., Gruyer, D., Pierre, G.S.: A fast monte carlo algorithm for colli-
sion probability estimation. In: Control, Automation, Robotics and Vision, 2008.
ICARCV 2008. 10th International Conference on. pp. 406–411. IEEE (2008)

13. Lee, A., Duan, Y., Patil, S., Schulman, J., McCarthy, Z., van den Berg, J., Gold-
berg, K., Abbeel, P.: Sigma hulls for gaussian belief space planning for imprecise
articulated robots amid obstacles. In: Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on. pp. 5660–5667. IEEE (2013)

14. Leung, C., Huang, S., Kwok, N., Dissanayake, G.: Planning under uncertainty us-
ing model predictive control for information gathering. Robotics and Autonomous
Systems 54(11), 898–910 (2006)

15. Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime dynamic
A*: An anytime, replanning algorithm. In: Proceedings of the International Con-
ference on Automated Planning and Scheduling (2005)

16. Pan, J., Chitta, S., Manocha, D.: Probabilistic collision detection between noisy
point clouds using robust classification. In: International Symposium on Robotics
Research (ISRR) (2011)

17. Pan, J., Şucan, I.A., Chitta, S., Manocha, D.: Real-time collision detection and
distance computation on point cloud sensor data. In: Robotics and Automation
(ICRA), 2013 IEEE International Conference on. pp. 3593–3599. IEEE (2013)

18. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of markov decision processes.
Mathematics of operations research 12(3), 441–450 (1987)

19. Park, C., Pan, J., Manocha, D.: ITOMP: Incremental trajectory optimization for
real-time replanning in dynamic environments. In: Proceedings of International
Conference on Automated Planning and Scheduling (2012)

20. Park, C., Park, J.S., Manocha, D.: Fast and bounded probabilistic collision
detection in dynamic environments for high-dof trajectory planning. CoRR
abs/1607.04788 (2016), http://arxiv.org/abs/1607.04788

21. Park, J.S., Park, C., Manocha, D.: Efficient probabilistic collision detection for non-
convex shapes. CoRR abs/1610.03651 (2016), http://arxiv.org/abs/1610.03651

22. Petti, S., Fraichard, T.: Safe motion planning in dynamic environments. In: Pro-
ceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.
pp. 2210–2215 (2005)

23. Platt Jr, R., Tedrake, R., Kaelbling, L., Lozano-Perez, T.: Belief space planning
assuming maximum likelihood observations. In: Proceedings of Robotics: Science
and Systems (2010)

24. Sun, W., van den Berg, J., Alterovitz, R.: Stochastic extended lqr: Optimization-
based motion planning under uncertainty. In: Algorithmic Foundations of Robotics
XI, pp. 609–626. Springer (2015)

25. Zucker, M., Ratliff, N., Dragan, A.D., Pivtoraiko, M., Klingensmith, M., Dellin,
C.M., Bagnell, J.A., Srinivasa, S.S.: CHOMP: Covariant hamiltonian optimization
for motion planning. International Journal of Robotics Research (2012)

