
Closest Point Query Among The Union Of
Convex Polytopes Using Rasterization

Hardware

Young J. Kim Kenneth Hoff Ming C. Lin and Dinesh Manocha
Department of Computer Science

University of North Carolina in Chapel Hill
{youngkim,hoff,lin,dm}@cs.unc.edu

Abstract: We present a novel approach using rasterization hardware to perform the
following query: Given a collection of convex polytopes in 3D, find the closest point
from some given point inside the polytopes to the surface of the union of the polytopes.
The algorithm takes advantage of multi-pass rendering, clipping and depth tests. We
also demonstrate its application to penetration depth computation.

1 Introduction

Interpolation-based polygon rasterization hardware has been increasingly used for geo-
metric applications. These include visibility and shadow computations, CSG rendering,
proximity queries, morphing, object reconstruction, etc. A recent survey on different
applications is given in [TPK01]. All these algorithms perform computations in a dis-
cretized space (i.e. the image-space) and their accuracy is governed by the underlying
pixel resolution.

We present a novel approach to perform theclosest point queryusing rasterization
hardware. The query can be stated as:

Given m convex polytopesMi in 3D, find the closest point from some
given pointO to the surface ofM , whereM =

⋃
i Mi andO is contained

inside ofM .

This query often arises in the classical motion planning problem, where a robot is rep-
resented as a point and obstacles are represented as the union of convex polytopes in
the configuration space [Lat91]. It also plays a crucial role in the penetration depth
(PD) problem [Cam97]. However, the union operation included in the query not only
requires very expensive computation [AST97], but its implementation is also quite te-
dious and difficult to make it robust [Hof89]. As a result, the aforementioned problems
either become intractable at interactive rates or need to be approached in a different
way.

Our algorithm performs the closest point query up to the image-space resolution
used in the computation. The main idea is to visualize the boundary ofM from O

1

without computing a surface representation ofM explicitly. Afterwards, we compute
the closest point, the distance and the direction by reading back the frame buffer. For a
typical query with 70 convex polytopes with 30 faces on average, the algorithm takes
0.07 seconds on the NVIDIA GeForce 3 card. As an application example of our clos-
est point query algorithm, we also demonstrate how to apply our closest point query
algorithm to the penetration depth (PD) problem in Section 3.

2 Closest Point Query

Let us assume that we are givenm convex polytopesMi’s in 3D space, and let us
denote the union ofMi’s as M . Our goal is, from some given pointO in 3D, to
compute the closest point on the boundary ofM , ∂M , along with its distance and
direction fromO. We use polygon rasterization hardware to perform this query up to
image-space resolution.

2.1 Visualizing the Boundary of the Union

In order to visualize∂M from a pointO that is outsideM , we simply display all the
Mi’s using the standard Z-buffer visibility algorithm. The nearest or minimum depth
objects at each pixel will correctly construct the∂M from the outside with only a single
pass over eachMi. The resulting algorithm computes the closest point on∂M from
O up to image-space resolution. However, the same approach does not work ifO is
insideM . We present a new, incremental algorithm that can requirem2 passes, where
m is the number of convex polytopes,Mi. The algorithm does not assume any kind of
spatial ordering amongMi’s.

Given the pointO insideM , the normal Z-buffer minimum or maximum depth test
may not suffice, since the visible internal boundaries may not even lie on∂M . The
algorithm has to remove the boundaries corresponding to the intersections between
Mi’s that do not belong to∂M . If all the Mi’s containO, then the Z-buffer maximum
depth test will construct∂M with a single pass over eachMi. However, we only know
that at least one of theMi’s containsO. So, we use an incremental algorithm that
constructs∂M out fromO.

Our algorithm for visualizing∂M from a point inside is essentially a ray-shooting
procedure fromO to ∂M , and incrementally expands the front of∂M . For example,
in Fig. 1, we expand the current∂M (thick line) by repeatedly renderingM0,M1,M2.
Each timeM0,M1,M2 are rendered, as shown in Fig. 1 (b)-(d), it opens up a new
window (shown as dotted line) of the update region (thick gray line) on the current
∂M .

The algorithm maintains the current boundary ofM , ∂Mk, wherek is the current
iteration, and incrementally expands it withMi that intersects∂Mk. We attempt to add
Mi by rendering the front faces ofMi. The front faces that “pierce” the current∂Mk

open up a window through whichO can see∂M . Afterwards, we render the backfaces
of Mi into the opened window using the maximum depth test.

In summary, the basic algorithm simply performs the following procedure:

2

M0

M1

M2
V

(a) (b) (c) (d)
Figure 1: Visualizing the Boundary of the Union From Inside.In (a), V is the current
view-frustum. In (b),M0 is rendered, and a new∂M is constructed (thick line). In (c), when
M1 is rendered, it opens up a new window (dotted line), and the update region (thick gray line)
on the current∂M is established. Thus a new∂M (thick line) is constructed. In (d), we perform
the same procedure forM2.

ALGORITHM 2.1 - find boundary ofM visible fromO

1. Initialize∂M0 to zero.

2. Repeat steps 3-5m times.

3. Repeat steps 4-5 for eachMi.

4. Render the front faces ofMi, and using stencil operations, open a window where
the depth value of the front faces is less than that of the current∂Mk (pierces
the current∂M).

5. Render the back faces ofMi inside the stenciled window where the depth value
of the back faces is greater than the current∂M . This updates the∂Mk in the
window.

The Algorithm 2.1 correctly finds the portion of∂M that is visible fromO in the
following sense. After thekth iteration in step 2 of Algorithm 2.1,∂Mk includes the
subset of∂M that the ray can reach with less than or equal tok − 1 hopsfrom O.
Here, thehopon some pointp on ∂M means the number ofMi’s the ray should pass
through to reachp. For example,∂M1 includes the possible contribution to the final
∂M of all Mi’s that containO and have zero hops. Therefore, by induction onk, we
correctly find the portion of∂M that is visible fromO aftermth iteration.

2.2 Computing the Closest Point

For a given view, we can compute the closest point on the boundary by simply finding
the pixel with the minimum distance value. The algorithm reads back the Z-buffer to
obtain the depth values for each pixel. However, these depth values have undergone the
perspective depth transformation and do not contain the non-linearity that is present in
the distance values. The depth transformation is applied only at the vertices and has the
following geometric properties: it preserves lines and planes between the transformed
vertices and preserves depth relationships with respect to an orthographic view. This
is not sufficient for finding the closest point. A pixel with the minimum depth value is
not necessarily the closest point in terms of distance fromO.

3

The algorithm transforms the pixel depth values into distance values based on their
(x, y) coordinate positions on the viewing plane. Each pixel depth value is divided by
cos θ, whereθ is the angle between the vector to the(x, y) position on the viewing
plane and the center of viewing direction. This depth transformation is performed in
software, and this operation typically takes a few milliseconds.

The minimum distance and direction to the closest point are derived from the pixel
position containing the minimum transformed depth value. In order to examine views
in all directions, we construct six views on the faces of a cube aroundO and repeat the
operation.

2.3 Implementation and Acceleration Techniques

We implement the closest point query operation using OpenGL graphics library. The
main code to draw∂M from the inside is as simple as Program 2.1.

Program 2.1OpenGL Code to Render∂M FromO.

void DrawUnionOfConvex(ConvexPolytope *M_i, int Num_Of_M_i)
{

glClearDepth(0);
glClearStencil(0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

glEnable(GL_DEPTH_TEST);
glEnable(GL_STENCIL_TEST);
for (int i=0; i<Num_Of_M_i; i++)

for (int j=0; j<Num_Of_M_i; j++)
{

glDepthMask(0);
glColorMask(0,0,0,0);
glDepthFunc(GL_LESS);
glStencilFunc(GL_ALWAYS,1,1);
glStencilOp(GL_KEEP,GL_REPLACE,GL_KEEP);
M_i[j].DrawFrontFaces();

glDepthMask(1);
glColorMask(1,1,1,1);
glDepthFunc(GL_GREATER);
glStencilFunc(GL_EQUAL,0,1);
glStencilOp(GL_ZERO,GL_KEEP,GL_KEEP);
M_i[j].DrawBackFaces();

}
}

This basic implementation can be improved by using two techniques. First of all,
if we can compute a subset of the pairs,Mi’s, that containO (i.e. zero hops), we
need to render them only once in the step 2 of algorithm 2.1. Once we have identified
these l Mi’s that containO, we first render them using the maximum depth test and
then the remaining(m− l) Mi’s, (m− l) times using the incremental algorithm.

Secondly, for each view, when we render theMi’s, we perform view-frustum
culling by checking whether the axis aligned bounding box of eachMi lies in the
current view. This object-space view frustum culling significantly reduces the number
of primitives rendered during each iteration of the algorithm.

The performance of the algorithm depends on both the number of convex polytopes
and the complexity (i.e. number of faces) of each polytope. When the above accelera-

4

tion techniques are employed, the performance can also vary depending on the relative
configuration among the polytopes. For a typical query with 45 convex polytopes with
40 faces each, the computation takes about 0.1 seconds. In another example with 70
convex polytopes with 30 faces each, the query takes about 0.07 seconds. The perfor-
mance was measured on a 1.6 GHz PC with an NVIDIA GeForce 3 graphics card.

2.4 Accuracy of Closest Point Query

Our algorithm always computes an upper estimate to the closest point on the boundary
of M . In other words, the algorithm may be conservative and the value of the com-
puted answer may be larger than the value of the global minimum. The rasterization
errors and precision of image-space computations governs the tightness of the resulting
answer. The main sources of these errors are:

1. The discretization of ray directions to lie on a pixel grid for each view.

2. The fixed precision of the Z-buffer.

Increasing the resolution of the grid decreases the worst-case angular error that is
proportional to the distance between adjacent pixels. Moreover, constructing tighter
bounds on the minimum and maximum distances in each view (near and far plane dis-
tances), logarithmically decreases the Z-buffer precision error [Shr99]. WhenMi is
represented explicitly (e.g. B-rep), we can find the tight bounds on the near and far
plane distances by explicitly computing minimum and maximum distances fromO to
eachMi, and taking the minimum and maximum of them. More information about the
worst case bound of the closest point query can be found in [KLM02].

3 Application to Penetration Depth Computation

In this section, we demonstrate the application of hardware accelerated closest point
query on a class of proximity query problems, namely penetration depth computation.
Penetration depth (PD) is an important measure to quantify the amount of penetra-
tion between two intersected objects, and can be defined by their Minkowski sums.
However, due to the fact that a Minkowski sum can have high combinatorial and com-
putational complexities especially for non-convex polyhedra and it also requires robust
union implementation, there has been no practical algorithm for the PD problem.

3.1 Penetration Depth and Minkowski Sums

Let P andQ be two intersecting polyhedra. The PD ofP andQ, PD(P,Q), is the
minimum translational distance that one of the polyhedra must undergo to render them
disjoint. A general framework to compute the PD is based on Minkowski sums. The
Minkowski sum,P ⊕Q, is defined as a set of pairwise sums of vectors fromP andQ.
In other words,P ⊕Q = {p + q| p ∈ P, q ∈ Q}. Furthermore,P ⊕−Q is defined by
negatingQ; i.e. P ⊕−Q = {p− q| p ∈ P, q ∈ Q}.

It is well known that one can reduce the problem of computing the PD betweenP
andQ to a minimum distance query on the surface of their Minkowski sum ,P ⊕−Q

5

[Cam97]. More specifically, if two polyhedraP andQ intersect, then the difference
vector,OQ−OP , between the origins ofP andQ is insideP ⊕−Q. ThePD(P,Q) is
defined as a minimum distance fromOQ−P to the surface ofP⊕−Q, see Fig. 2. How-
ever, the worst case complexity of computing Minkowski sums for non-convex objects
can be as high asO(n6), wheren is the number of features in each object [AGHP+00].
As a result, no practical algorithms are yet known for accurately computing the PD
between non-convex objects.

oP Q

(a) P and Q (b) P + -Q
Figure 2: PD Computation Using Minkowski Sum.(a) shows the situation where two
polygonsP and Q in 2D are intersected. (b) shows the Minkowski sumP ⊕ −Q of the two
polygons in (a) (note thatQ = −Q in this example). The minimum distance from the origin to
the surface of the Minkowski sum corresponds to the PD.

3.2 Our Approach

Our approach for computing PD is also based on Minkowski sums between two over-
lapping polyhedra. However, we do not explicitly compute Minkowski sums due to
its combinatorial and computational complexity. Instead, we perform the closest point
query that computes the closet point from the origin to the implicit boundary of the
Minkowski sums.

Minkowski sums has the followingdecompositionproperty. IfP = P1 ∪ P2, then
P ⊕Q = (P1⊕Q) ∪ (P2⊕Q). Taking advantage of this fact, our basic PD algorithm
computes PD as follows.

ALGORITHM 3.1 - PD computation using the closest point query

1. Compute a convex decomposition for each polyhedron

2. Compute the pairwise convex Minkowski sums between all possible pairs of
convex pieces in each polyhedron

3. Perform the closest point query (Algorithm 2.1) from the origin to the boundary
of the pairwise Minkowski sums.

4. The resulting minimum depth fragment computes an approximation to the PD,
up to the image-space resolution used for this computation.

We can use bounding volume hierarchies, model simplification, and culling algorithms
to further accelerate the above PD computation pipeline and refine the PD in a hierar-
chical manner.

In Fig. 3, we illustrate some Benchmark models for PD computation. The whole
PD computation takes 0.2 seconds for the touching tori (2000 faces, 67 convex pieces),

6

and 2 seconds for the CAD model (1692 faces, 425 convex pieces). During the PD
computation, the closest point query spends 0.04 seconds for the tori, and 0.6 seconds
for the CAD model. For more information about the PD algorithm and its performance,
we refer the readers to [KLM02].

Figure 3: PD Benchmark Models.Left: touching tori, Right: CAD Model

4 Acknowledgments

This research was supported in part by ARO Contract DAAG55-98-1-0322, DOE ASCII
Grant, NSF NSG-9876914, NSF DMI-9900157, NSF IIS-982167, NSF ACR-0118743,
ONR Contracts N00014-01-1-0067 and N00014-01-1-0496, Intel. We thank Miguel A.
Otaduy for his help in application to a complex CAD environment.

References

[AGHP+00] P. Agarwal, L. J. Guibas, S. Har-Peled, A. Rabinovitch, and M. Sharir.
Penetration depth of two convex polytopes in 3d.Nordic J. Computing,
7:227–240, 2000.

[AST97] Boris Aronov, Micha Sharir, and Boaz Tagansky. The union of convex
polyhedra in three dimensions.SIAM J. Comput., 26:1670–1688, 1997.

[Cam97] S. Cameron. Enhancing GJK: Computing minimum and penetration dis-
tance between convex polyhedra.Proceedings of International Confer-
ence on Robotics and Automation, pages 3112–3117, 1997.

[Hof89] C. Hoffmann. Geometric and Solid Modeling. Morgan-Kaufmann, San
Mateo, CA, 1989.

[KLM02] Young J. Kim, Ming C. Lin, and Dinesh Manocha. Fast penetration depth
estimation using rasterization hardware anbd hierarchical refinement. In
Fifth International Workshop on Algorithmic Foundations of Robotics,
Dec. 2002.

7

[Lat91] J.-C. Latombe.Robot Motion Planning. Kluwer Academic Publishers,
1991.

[Shr99] Dave Shreiner, editor.OpenGL Reference Manual, pages 238–239.
Addison-Wesley, Third edition, 1999.

[TPK01] T. Theoharis, G. Papaiannou, and E. Karabassi. The magic of the z-
buffer: A survey. Proc. of 9th International Conference on Computer
Graphics, Visualization and Computer Vision, WSCG, 2001.

8

