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Abstract

The problem of distance computation arises in many applications
including motion planning, CAD/CAM, dynamic simulation and
virtual environments. Most prior work in this area has been re-
stricted to separation or penetration distance computation between
two objects. In this paper, we address the problem of computing a
measure of distance between two configurations of a rigid or articu-
lated model. The underlying distance metric is defined as the length
of the longest displacement vector over the corresponding vertices
of the model between two configurations. Our algorithm is based
on Chasles theorem in Screw theory, and we show that the maxi-
mum distance can be realized only by a vertex of the convex hull
of a rigid object. We use this formulation to compute the distance,
and present two acceleration techniques to speed up the computa-
tion: incremental walking on the dual space of the convex hull and
culling vertices on the convex hull using a bounding volume hier-
archy (BVH). Our algorithm can be easily extended to articulated
models by maximizing the distance over its each link and we also
present culling techniques to accelerate the computation. We high-
light the performance of our algorithm on many complex models
and describe its application to proximity queries and motion plan-
ning.
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1 Introduction

The configuration space for a rigid or articulated model is defined
as the space of all possible placements of the given model. The
dimension of the configuration space corresponds to the number of
degrees of freedom of the model. For example, the placement of a
rigid model is determined by its orientation and position. Given a
planar rigid model, its configuration space is R

2 × S
1 and home-

omorphic to the special Euclidean group of SE(2); for a spatial
model, its configuration space corresponds to R

3 × RP
3 and is

homeomorphic to SE(3), where RP
n denotes n-dimensional real

projective space. In case of an articulated model with n free-floating
bodies in R

2 or R
3, its configuration space C is a Cartesian product

of the configuration space Ci of each body in the articulated model;
i.e., C = C1 ×C2 ×·· ·×Cn. If the bodies in an articulated model
form a kinematic chain or a tree, or have kinematic constraints, C

can be formulated accordingly [LaValle 2006].

The notion of configuration space is used in many applications
including motion planning [Choset et al. 2005; Latombe 1991;
LaValle 2006], CAD/CAM, dynamic simulation and virtual envi-

Figure 1: C-DIST Computation for a Dragon model: This rigid
model has 871,414 triangles. Our C-DIST algorithm can perform
the DISP distance query, which is defined as the maximum length
of the displacement vector over every point on the model at two
different configurations (shown with the line). Our algorithm takes
about 15.2µs, on average, to perform this query.

ronments [Mirtich 2000]. A fundamental problem in these applica-
tions is computation of a measure of distance between two different
configurations of the model. In these applications, the measure of
distance under an appropriate distance metric is used to quantify
how far a model is displaced from one configuration to another.

A key issue is the choice of the metric or the distance mea-
sure, which affects the performance of the overall algorithm. In
sampling-based motion planning algorithms, a graph or roadmap
is constructed by sampling the configuration space and connect-
ing the nearby pairs of samples [Kavraki et al. 1996; Kuffner and
LaValle 2000; LaValle 2006]. A distance metric is used to check
which nearby sample pairs need to be connected. Eventually, these
algorithms check for a collision-free path between the nearby sam-
ple pairs and build a global roadmap. The choice of distance met-
ric affects the connectivity of the roadmap and the performance of
the overall planning algorithm [Amato et al. 2000; Kuffner 2004;
LaValle 2006; Plaku and Kavraki 2006]. The distance metric in
configuration space is also used to evaluate the sample generation
technique used in the planning algorithm. For example, the sta-
tistical notion of dispersion, which can be used to evaluate the uni-
formness of samples, relies on a distance metric [Choset et al. 2005;
LaValle 2006].

A key computation in dynamic simulation and haptic rendering
is a measure to quantify the extent of interpenetration between
two overlapping models [Dobkin et al. 1993; Ong 1993; Zhang
et al. 2006a]. One way to characterize the extent of interpenetra-
tion between two intersecting models A and B is to search over all
collision-free or contact configurations of A, and identify the clos-
est one to the original configuration of A according to the distance
metric.

Defining and calculating the distance for a model undergoing trans-
lational motion is relatively easy, because the well-defined Eu-



clidean distance metric can be employed in this case. However,
it is harder to even define a distance metric for a model undergoing
both translational and rotational motion. The main challenge is to
naturally combine the translational and rotational components and
formulate a metric that is bi-invariant with the choice of the inertial
and body-fixed reference frames for the model, and that is indepen-
dent of the representation of the configuration space. For the spatial
rigid body motion group SE(3), it has been shown that one cannot
define a bi-invariant distance metric when the shape of the body is
not considered [Loncaric 1987; Park 1995].

Different distance metrics have been proposed for rigid and artic-
ulated models, in particular in the area of robotics and kinematics
[Latombe 1991; Lin and Burdick 2000; Park 1995]. In general,
there are two different classes of distance metrics in configuration
space: model-independent and model-dependent metrics according
to whether the shape of the model is considered or not. Model-
independent distance metrics, such as Lp norms, can be easily com-
puted, but they are not bi-invariant. Some of these metrics are left-
invariant, since it is invariant with the choice of the inertial frame
[Park 1995; Tchon and Duleba 1994]. However, in these cases,
users have to choose a weighting factor between the rotational and
translational components. In contrast, model-dependent metrics are
usually invariant with the choice of both reference frames, and have
appealing mathematical properties as well. However, for most of
these metrics, no efficient algorithms are known for distance com-
putation.

In this paper, we investigate a model-dependent distance metric,
DISP, of a model when it is placed at two different configurations.
DISP is defined as the longest length of the displacement vector for
each point on the model A at two configurations q0 and q1 [Latombe
1991; LaValle 2006] (Fig. 2):

DISPA(q0,q1) = max
p∈A

||p(q1)−p(q0)||2. (1)

This distance metric can naturally combine translational and rota-
tional motions without relying on any weighting factor. Addition-
ally, it is invariant with the choices of reference frames, and is inde-
pendent of the representation of the underlying configuration space.
However, to the best of our knowledge, no efficient algorithms are
known to compute DISP for complex models.

1.1 Main Results

We present an efficient algorithm (C-DIST) to compute the DISP
distance between two configurations of a rigid or articulated model.
Our novel results include:

• We use Chasles theorem from Screw theory to show that the
distance is realized by one of the vertices lying on the convex
hull of the rigid model, and the maximum length of displace-
ment vectors of such vertices is DISP. Based on this result,
our distance computation algorithm reduces to comparing the
length of the displacement vector of each vertex on the convex
hull along the two configurations.

• We present two acceleration techniques to speed up our dis-
tance computation algorithm: incremental walking on the
dual space of the convex hull and culling vertices on the con-
vex hull using a bounding volume hierarchy (BVH).

• We extend our distance computation to articulated models by
maximizing the DISP distance over its each link. We also
present an efficient technique to accelerate the computation
by using bounding boxes.

• We highlight its application to proximity computation and
motion planning. These include continuous collision detec-
tion and penetration depth computation.

We have implemented our algorithm. We highlight its performance
for many complex rigid models with up to 871K triangles, and ar-
ticulated models. In practice, distance computation takes tens of
micro-seconds on complex models on a high-end PC.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we
briefly survey related work on distance metric in configuration
space. We introduce the DISP distance metric in Section 3 and
highlight its properties. In Section 4, we present our distance com-
putation algorithm for rigid models and extend the algorithm to ar-
ticulated models in Section 5. We discuss some applications of
DISP distance metric in Section 6 and describe its implementation
in Section 7.

2 Previous Work

In this section, we briefly survey previous work on distance metrics
for rigid and articulated models in configuration space. We differ-
entiate a class of model-independent distance metrics from model-
dependent ones based on whether or not the shape of a model is
considered in defining the metrics. Both classes have their own ap-
plications. For example, in mechanical design, since manipulated
models are not known a priori, model-independent metrics are used
[Park 1995]. In motion planning and dynamics simulation, how-
ever, models under consideration are usually known in advance.
Therefore, the shape of a model can be utilized in defining distance
metrics to provide useful mathematical and geometric properties.

2.1 Distance Metric on SE(3)

The spatial rigid body displacement forms a group of rigid body
motion SE(3). Throughout the rest of the paper, we will refer to
a model-independent distance metric on SE(3) as a distance metric
on SE(3).

There has been considerable work on distance metrics on SE(3).
In theory, there is no natural choice of distance metric on SE(3).
[Loncaric 1985; Loncaric 1987] show that there is no bi-invariant
Riemannian metric on SE(3). [Park and Brockett 1994] prove that
there is no differentiable bi-invariant distance metric on SE(3). In-
spired by these results, [Park 1995; Tchon and Duleba 1994] pro-
pose a commonly used distance metric which is left-invariant with
the choice of the inertial frame, although in this case, users need to
choose a weighting factor between translational and rotational com-
ponents. Besides Riemannian metrics, pseudo-Riemannian metrics,
such as the Klein form [Karger and Novk 1985] are also used to
define distance metrics on SE(3). Since there are no bi-invariant
distance metrics on SE(3), some researchers have proposed approx-
imated, bi-invariant metrics [Larochelle and McCarthy 1995; Etzel
and McCarthy 1996].

2.2 Distance Metrics in Configuration Space

In order to define a model-dependent distance metric, one can use
the notion of a displacement vector for each point on a model
when the model is placed at two arbitrary configurations. The
DISP distance metric is defined as the maximum length over all
the displacement vectors [Latombe 1991; LaValle 2006; Lin and
Burdick 2000]. A more general metric than DISP can be defined



as the Hausdorff distance of a model at two different configura-
tions [Latombe 1991]. The object norm, proposed by [Kazerounian
and Rastegar 1992], is defined as an average squared length of all
displacement vectors. [Hofer and Pottmann 2004] use a similar
metric by only considering the displacement vectors for the fea-
ture points of a model. Instead of the displacement vector, the
trajectory traveled by any point on a moving model was used to
define model-dependent distance metrics [Hsu et al. 1999; Zhang
et al. 2006a], e.g., a generalized distance metric Dg in [Zhang et al.
2006a]. [Choset et al. 2005; Xavier 1997] suggest using the exact
or approximated volume swept by a model as a distance measure.
With the exception of object norms, whose closed form is known,
these distance metrics are computationally expensive. In theory,
all of these model-dependent distance metrics are general for both
rigid and articulated models.

2.3 Screw Theory and Path Interpolation

Screw motion theory has been widely used in mechanics, kinemat-
ics, and dynamics simulation [Ball 1876; Murray et al. 1994; Kim
and Rossignac 2003; Buss 2005]. One of the major results in Screw
theory is the Chasles theorem that states: any rigid transformation
can be realized by rotation around an axis with some angle com-
bined with translation parallel to that axis.

An interpolation between two input configurations, i.e., a
minimum-length curve connecting them, is usually implied by the
distance metric with which the configuration space is associated.
Such a curve is known as geodesic, and for some distance metrics,
it corresponds to the screw motion [Spivak 1999; Park 1995; Zefran
et al. 1996]. On the other hand, the problem of motion interpolation
[Shoemake 1985; Hofer and Pottmann 2004; Zefran and Kumar
1998] between a set of configurations is more general since we also
need to take into account smoothness of the overall interpolating
curve.

2.4 Proximity Computations

There is considerable literature on proximity computations between
two or more objects in computer graphics, robotics and computa-
tional geometry [Gilbert et al. 1988; Lin and Canny 1991; Larsen
et al. 1999; Larsen et al. 2000; Lin and Manocha 2003; Johnson
and Cohen 2004]. The set of proximity problems include distance
computation between separating objects and penetration depth be-
tween intersecting objects. These computations often require an un-
derlying distance metric to define a proximity measure. However,
most work in this area is based on the Euclidean distance metric, al-
though a few algorithms take into account the rotation motion along
with the translation motion [Zhang et al. 2006a].

3 Distance Metric in Configuration Space

In this paper, we use the distance metric, DISP [Latombe 1991;
LaValle 2006]. To the best of our knowledge, no efficient algo-
rithms are known to compute DISP distance for general rigid and
articulated models. In this section, we introduce our notation and
highlight many useful properties of this metric.

3.1 Notation

We use C to denote the configuration space of a rigid or articu-
lated model. We use bold face letters, such as a configuration q0,
to distinguish a vector quantity from a scalar quantity. We use an
upper case letter such as A to denote a rigid or articulated model.
We use a lower case, bold face letter, e.g. p, for a point or a vertex.
Throughout the paper, we distinguish a vertex which is a corner on
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Figure 2: The DISP distance at a model A between two configu-
rations q0 and q1 in configuration space is defined as the longest
displacement vector between p(q0) and p(q1), where p is any point
on A.

a polyhedral model from a point which can be designated anywhere
on the model. A(q) represents the placement of a model A at a con-
figuration q, and p(q) denotes the position of a point p on A at the
configuration q.

3.2 Definitions

Given a model A, the distance metric DISPA(q0,q1) is defined by
Eq. (1), and can be used to quantify the distance between these
two arbitrary configurations q0 and q1 in the configuration C (see
Fig. 2). When the underlying model A is known in the context, we
simplify the notation DISPA(q0,q1) into DISP(q0,q1).

The DISP distance metric is applicable to both rigid and articulated
models. Moreover, it is not required that the underlying model A
be closed or watertight. Therefore, this metric can also be directly
applied to objects that are represented even as a collection of trian-
gles with no connectivity information (i.e., triangle soup models),
or as a point set surface. Finally, for two models A and B with
the same initial and final configurations q0,q1, DISPA(q0,q1) ≥
DISPB(q0,q1), if the model B is a subset of the model A, i.e., B⊂A.

3.3 Properties of Metric Space

The configuration space C associated with DISP is a metric space,
since it satisfies the following properties:

• Non-negativity: DISP(q0,q1) ≥ 0,

• Reflexivity: DISP(q0,q1) = 0 ⇐⇒ q0 = q1,

• Symmetry: DISP(q0,q1) = DISP(q1,q0),

• Triangle inequality: DISP(q0,q1) + DISP(q1,q2) ≥
DISP(q0.q2).

The properties of non-negativity, reflexivity and symmetry follow
from the definition of DISP. Next, we prove the triangle inequality
property for this metric.

Proof Suppose the point p on A has the maximum displace-
ment given as DISP(q0,q2). In other words, ||p(q0)− p(q2)|| =
DISP(q0,q2). In the Euclidean space, every point on A sat-
isfies the triangle inequality, so does the point p. Therefore,
||p(q0) − p(q1)|| + ||p(q1) − p(q2)|| ≥ DISP(q0,q2). Since
DISP(q0,q1) ≥ ||p(q0)− p(q1)|| and DISP(q1,q2) ≥ ||p(q1)−
p(q2)||, DISP(q0,q1)+DISP(q1,q2) ≥ DISP(q0.q2). �

As a result, the configuration space C associated with DISP is a
metric space, and algorithms that are based on properties of a met-
ric space are also applicable to C . For example, one can use near-
est neighbor search algorithms, which are based on the triangle in-
equality [Brin 1995; Clarkson 1999].



3.4 Invariance of DISP

We highlight a few invariance properties of the metric:

• Invariance of reference frames: DISP is independent of the
choice of inertial reference frame and body-fixed reference
frame [Lin and Burdick 2000]. Regardless of the choice of
the frames, the distance defined by DISP for a model between
two configurations or placements does not change.

• Independence of configuration space representation:
DISP is independent of the representation of the configura-
tion space. In case of a rigid model, there are many choices
to represent the rotational degrees of freedom such as Euler
angles, quaternions, or transformation matrices. The distance
computed using DISP is independent of these representations.

These invariance properties hold, since in the Euclidean space as
the length of the displacement vector of any point on A is invariant
with the choice of reference frames and independent of the configu-
ration space representation. In practice, these invariance properties
are useful since one can choose arbitrary reference frames and rep-
resentation of the configuration space to compute DISP.

4 C-DIST Computation for Rigid Models

The DISP distance metric described in Section 3 has many elegant
and useful mathematical properties. Given that no practical algo-
rithms are known for computing DISP efficiently, its applications
have been limited. In this section, we present a novel formulation
of this metric and an efficient algorithm, C-DIST, to compute the
distance for rigid models. We first show that the DISP distance of
a rigid polyhedral model is equal to the maximum length of the
displacement vectors over the vertices on its convex hull (CH). Fol-
lowing this formulation, a straightforward algorithm is to maximize
the displacement vectors over all the vertices on the CH, which has
a linear complexity in the size of the CH. Finally, we present two
different techniques to accelerate the distance computation: incre-
mental walking on the dual space of the CH, and culling vertices
on the CH using a bounding volume hierarchy (BVH) structure. In
practice, the culling technique can improve the performance by an
order of magnitude.

4.1 Convexity in DISP Computation

We first present a convex realization theorem for the DISP distance
for a rigid model:

Theorem 1 (Convex Realization) Given a rigid polyhedral model
A, the DISP distance of A at two arbitrary configurations is equal
to the maximum length of the displacement vectors over all the ver-
tices on the convex hull of A.

Proof The Chasles theorem in Screw theory [Ball 1876; Murray
et al. 1994] states that a rigid body transformation from a configu-
ration q0 to a configuration q1 can be realized by rotation about an
axis followed by translation parallel to that axis. Such axis is called
a screw axis. As Fig. 3 shows, when a model first rotates around
the screw axis ω by θ , and translates along ω by d, any point p on
the model will be displaced to p1, then to p′.

We compute the length of the displacement vector
−→
pp′. Let us rep-

resent the distance from the point p to the axis ω as r. Given that
the vector −−→pp1 is orthogonal to

−−→
p1p′, the squared length of the dis-

placement vector
−→
pp′ is given as:

p

1p

p

r d

Figure 3: Screw motion. For any point p on a model, its screw
motion can be decomposed into rotation about a screw axis ω (from
p to p1), followed by translation along ω (from p1 to p′).

||
−→
pp′||2 = ||−−→pp1||

2 + ||
−−→
p1p′||2

= 4r2sin2(θ/2)+d2

= 2(1− cosθ)r2 +d2.

(2)

In Eq. (2), θ and d are independent of the model A and are governed
by the input rigid transformation between q0 and q1. The distance
r from every point on A to the screw axis ω is different. Since
(1 − cos(θ)) ≥ 0 for any θ , a larger value of r implies a larger
value of the length of the displacement vector. If we denote the
maximum distance from every point on A to the screw axis ω as
η(A,ω), DISP can be written as:

DISPA(q0,q1) =
√

2(1− cosθ)η2(A,ω)+d2. (3)

According to Eq. (3), proving Thm. 1 is equivalent to proving the
following lemma:

Lemma 1 The maximum distance from points on a polyhedral
model A to a line ω is equal to the maximum distance from the
vertices on the convex hull of A to ω .

p
m

pS

A

CH( )A

p

'pS

Figure 4: η(A,ω), the maximum distance from points on a polyhe-
dral model A to a line ω is equal to the maximum distance from the
vertices on its convex hull to ω .

We prove Lem.1 by using a contradiction argument. Throughout
the rest of the proof, we distinguish a vertex which comprises a cor-
ner of the polyhedral model from a point which can be designated
anywhere on the model.

It can be easily shown that Lem.1 holds when A is convex. If A is
non-convex, we first find a vertex p, which is on the convex hull
of A or CH(A), and is farthest to the line ω . We construct a plane
Sp which passes through p and is orthogonal to −→pm. Since p is the



farthest point on CH(A) to ω and A ⊆ CH(A), A and ω must be
located on the same half-space of Sp (see Fig. 4)

Assume that Lem.1 does not hold for non-convex A. This
means that η(A,ω) 6= η(CH(A),ω). Since A ⊆ CH(A), we have
η(A,ω) < η(CH(A),ω). As a result, A does not intersect with Sp
(Fig. 4). Next, we translate the plane Sp along the direction of −→pm
until it hits a point p′ on A. Denote S′p as the resulting plane which
is passing through p′ and parallel to Sp. Because A lies entirely on
one side of the S′p, we get a different convex hull for A. This contra-
dicts the fact that the convex hull of an object is unique. As a result,
Lem. 1 holds. �

Similarly to the proof for Thm. 1, we can also prove the following
proposition for general smooth models under rigid transformation.

Proposition 1 DISPA(q0,q1) distance of a rigid smooth model A
at two configurations q0 and q1 is equal to the maximum length of
the displacement vectors over all the boundary points of CH(A);
DISPA(q0,q1) can be calculated using Eq. (3), where r is the max-
imum distance from the boundary points on CH(A) to the screw
axis.

4.2 C-DIST Computation Algorithm

Two simple algorithms to compute DISPA(q0,q1) for a polyhedral
model A follow directly from Thm. 1 and Eq. (3).

Maximization of Displacement Vectors. According to Thm.
1, one can compute the convex hull CH(A) of A and find the maxi-
mum length of displacement vectors for all the vertices on CH(A).
In many applications, we can compute the convex hull of a rigid
model as a preprocessing step. At runtime, DISP can be efficiently
computed by only considering the vertices on the convex hull. If
the size of the convex hull is small, it is plausible to consider all the
vertices on the convex hull, compare the length of all displacement
vectors and compute their maximum.

Maximization of Distance to Screw Axis. One can also use
Eq. (3) to compute the DISP. In this equation, θ and d are de-
termined by the underlying screw motion from q0 to q1. η(A,ω),
which depends on the underlying model A and screw axis, can be
computed by visiting all the vertices of CH(A) and computing the
maximum distance to the screw axis ω .

Each of the two methods described above has a linear complexity
in the size of the convex hull, and is efficient for moderately com-
plex models. Furthermore, these two methods are robust and simple
to implement, since they rely on only inner and cross products on
vectors. Finally, these methods do not impose any topological re-
quirements on the model. Even for a model represented as a triangle
soup, i.e., with no connectivity information or as point cloud, DISP
can be computed easily.

In practice, however, the number of vertices on the convex hull can
be excessive. Therefore, we present techniques to accelerate our
algorithm by reducing the number of accesses to the vertices on the
convex hull. In the following sub-sections 4.3 and 4.4, we present
two acceleration techniques: incremental walking on the dual space
of CH, and culling vertices on CH by using a bounding volume
hierarchy (BVH) structure.

1
2

1v2v

1P2P

1R
2R

E

Figure 5: Walking Algorithm. Given a screw axis ω , η(A,ω) can
be computed by visiting all the vertices on the convex hull whose
support plane can have a normal ω⊥ orthogonal to ω . (Left) an
initial vertex vk = v1 for the walking algorithm is located since v1
can have a supporting plane P1 whose normal is ω⊥

1 orthogonal to
ω . The next search vertex vk+1 := v2 is found since v2 is adjacent
to v1 and has a supporting plane P2 whose normal is ω⊥

2 orthogo-
nal to ω . This search process is iterated until vk+1 becomes equal
to v1 again. (Right) The same process can be explained based on
the Gauss map of the given convex hull. Enumerating all the ver-
tices whose supporting plane can have a normal orthogonal to ω
is equivalent to finding all the regions (including R1,R2 that are
mapped from v1,v2, respectively) on the Gauss map that intersect
with the equator E when ω is mapped to the pole of the Gauss map.

4.3 Accelerating C-DIST Computation by Incremen-
tal Walking

In order to reduce the number of accesses to the vertices on the
convex hull, we present an optimization-based algorithm that per-
forms feature walking on the dual space of the convex hull. We use
the properties of Gauss map to find the extremal vertices of convex
hull, which are orthogonal to the screw axis.

Given Eq. (3), it follows that DISP is realized by one of the vertices
on the convex hull CH(A), which has the largest value, η(A,ω),
with respect to the screw axis ω . We use this property to compute
DISP in two steps:

1. Enumerate all the vertices vi on CH(A) supported by a plane
whose normal is orthogonal to ω .

2. Find a vertex in vi that corresponds to η(A,ω).

The main computational task in the above algorithm lies in the first
step. A relatively straightforward way to implement this step is
(Fig. 5):

1. Choose any direction ω⊥ orthogonal to ω . Find a vertex v1
whose supporting plane has a normal parallel to ω⊥ and set v1
as the current search vertex vk := v1. Computing v1 is known
as support mapping of ω⊥ or extremal vertex query along ω⊥,
and it can be computed in logarithmic time in the number of
vertices of the convex hull [de Berg et al. 1997]. In practice,
the support mapping can be efficiently implemented using a
lookup table.

2. Walk to the neighboring vertices vk+1 of vk, if vk+1 has a sup-
porting plane with a normal orthogonal to ω .

3. Repeat the above two steps, until vk+1 becomes equal to v1.

Alternatively, we can compute all vi’s based on the Gauss map of
CH(A). The mapping is defined from the feature space of an object
to the surface of a unit sphere S

2 as: a vertex is mapped to a re-
gion, a face to a point and an edge to a great arc [Spivak 1999]. The



task of enumerating all vi’s boils down to finding the intersecting
regions on the Gauss map with its equator when the north or south
pole of the Gauss map corresponds to the direction of ω . The com-
putational complexity of this algorithm is governed by two factors:
finding an initial vertex v1 and the walking step itself. Finding v1
can have a logarithmic complexity in terms of the number of ver-
tices of the convex hull and the walking step has a linear complexity
in the number of vertices that are traversed during the walking and
their incident faces.

In practice, computing the intersections between Gauss map regions
and the equator can be performed by centrally projecting both the
equator and the Gauss map to a plane and finding the intersections
of convex polygons (projected Gauss regions) and a line (projected
equator).

4.4 Accelerating C-DIST Computation using a
Bounding Volume Hierarchy (BVH)

In practice, the vertices of the convex hull of the models are not
distributed uniformly in 3D space. As a result, the walking scheme
highlighted above can result in robustness problems, especially
when accessing those vertices that are very close with each other on
the convex hull. In this section, we present a different acceleration
technique for C-DIST computation. Our method uses a bounding
volume hierarchy (BVH) tree structure to cluster the vertices on a
convex hull. The BVH enables us to efficiently compute the dis-
tance η(A,ω) from a model A to an axis ω , because a node in the
BVH as well as its descendant nodes can be culled if the distance η
from this node to the axis is less than the global maximum distance.

In practice, we use the BVH of swept sphere volumes (SSV)
[Larsen et al. 1999]. SSV includes three different types of bound-
ing volumes (BVs): point swept sphere (PSS), line swept sphere
(LSS), and rectangle swept sphere (RSS). PSS, LSS, and RSS are
created by sweeping a sphere along a point, a line and a rectangle
in three-dimensional space, respectively.

SSV-Tree Construction for a Point Set. Let us denote S as
a set of vertices on the convex hull of the given model A. As a
preprocessing step, our algorithm recursively builds a SSV-tree for
the point set S from top to bottom. We first compute its swept
sphere volume, SSV (S), as the root node of the SSV-Tree. To de-
cide whether to further subdivide a node N into two children nodes,
we measure the density ρ of N, which is defined as the number of
vertices inside a node over its volume. If ρ is larger than some
given threshold, we terminate the subdivision. Otherwise, we parti-
tion the point set Q inside N into two subsets Q1 and Q2 in a way to
maximize the sum of densities for SSV (Q1) and SSV (Q2). For the
purpose of maximization, we sweep a partitioning plane along the
longest dimension of the node N and evaluate ρ(Q1) + ρ(Q2) of
two resulting point subsets, Q1,Q2. We choose a partitioning plane
that maximizes this sum.

SSV-Tree Traversal and SSV-Axis Distance Query. We use
the SSV-Tree structure to efficiently query the maximum distance
from a point set S to the axis ω . By initializing the global maximum
distance as −∞ and starting from the root node, our algorithm tra-
verses its associated SSV-Tree in the depth-first order. During the
traversal, we compute the maximum distance from the visited SSV
node to the axis ω . Depending on the type of the underlying SSV ,
we need to compute the maximum distance between 1,2 or 4 corner
spheres of the SSV and the axis. If this distance is not greater than
the global maximum distance, we need not check the node as well
as its descendant nodes any more, and can cull them. Otherwise, the
depth-first order traversal continues recursively. During the traver-

sal, if a leaf SSV node is reached, we check whether the distance
from any point contained in the SSV node to the axis is larger than
the global maximum distance; if yes, we update the global maxi-
mum distance.

5 C-DIST Computation for Articulated
Models

The C-DIST computation algorithm for rigid models can be ex-
tended to articulated models, whose links can be represented as
serial or parallel chains, tree structure, or closed loops. In order
to compute the DISP distance for an articulated model at two arbi-
trary configurations, we consider each of its links as a separate rigid
body; the maximum DISP distance over all articulated links is the
DISP distance for this articulated model.

This algorithm can be improved by conservatively estimating the
DISP distance for each link and comparing it with the DISP for
other links that have been already calculated. Specifically, for a
link L in an articulated model A, we precompute its bounding box
(e.g., an oriented bounding box of link L, OBB(L)). If DISP for all
the links that have been already computed is greater than DISP for
OBB(L), we need not compute the exact DISP for link L and can
cull it away.

In case of an articulated robot forming a serial chain a link farther
from the base of the robot typically undergoes a larger displace-
ment as compared to the ones that are nearer to the base. Therefore,
a simple heuristic to accelerate DISP computation for such an artic-
ulated robot is to first compute DISP for links that are farther from
the base.

6 Applications

In this section, we describe a few applications of C-DIST algorithm.
These include sampling-based motion planning, continuous colli-
sion detection and generalized penetration depth computation.

6.1 Sampling-Based Motion Planning

C-DIST can be used to improve the performance of sampling-based
motion planning algorithms [Choset et al. 2005; LaValle 2006]. In
these algorithms, a roadmap is constructed by sampling the config-
uration space and connecting nearby pairs of samples. The C-DIST
algorithm is used to compute the K nearest neighbors for each sam-
ple.

Most prior algorithms compute the nearby samples in configura-
tion space by using Lp, weighted Lp or other scale-dependent met-
rics [LaValle 2006]. As compared to these distance metrics, the
DISP distance metric computed by C-DIST algorithm offers sev-
eral benefits. First, the users need not choose any weighting factor
between translational and rotational components. Second, when
the robot moves in the Euclidean space, the points with the largest
displacement are more likely to result in collisions with the obsta-
cles. C-DIST algorithm computes the maximum displacement over
all points on the robot transformed from one configuration to an-
other configuration. Therefore, choosing K nearest neighbors ac-
cording to DISP metric results in neighboring samples that have
higher probabilities in terms of finding a collision-free path as com-
pared to pairs selected by other metrics. As a result, one can con-
struct a roadmap that can better capture the connectivity of the free
space. Finally, using our C-DIST computation algorithm, we can
efficiently and robustly compute DISP for complex models within
a few micro-seconds. This is important as sampling-based plan-
ners typically generate a high number of samples and spend a high



Figure 6: C-DIST Computation for Bunny model. This model has 69,451 triangles. (a) shows a scenario of the DISP distance query for the
model at two different configurations. Our C-DIST algorithm can perform the query within 8.0µs on average. (b) shows the convex hull of
this model. (c) shows the vertices on this convex hull, which are not uniformly distributed in 3D space.

fraction of the running time in distance computation.

6.2 Continuous Collision Detection

In applications such as dynamics simulation and motion planning,
one often needs to check whether or not a model A collides with the
environment B when A continuously moves along a given motion
path c(t), t ∈ [0,1]. This problem is referred to as a continuous
collision detection (CCD) problem and many approaches have been
proposed to solve it efficiently [Redon et al. 2002; Schwarzer et al.
2005; Zhang et al. 2006b]. A class of CCD solutions is based on the
following conservative test: if A(c(0)) does not collide with B and
the separation distance between them is greater than the maximum
distance that any point on A(c(t)) can travel during t ∈ [0,1], it is
safe to assume that no collision occurs during t ∈ [0,1]. In order
to compute the traveled distance, one may integrate the trajectory
traced by any point of A(c(t)) from t = 0 to t = 1. Due to the
high cost of computing the maximum exact trajectory length, most
algorithms typically compute an upper bound, which is referred to
as motion bound and use it for performing a conservative CCD test.

Based on the DISP displacement metric, we present a tighter CCD
test condition by using the notion of maximum length of displace-
ment instead of maximum trajectory length used in prior CCD meth-
ods [Schwarzer et al. 2005]. The maximum length of displacement
corresponds to the longest length of displacement vectors of a mov-
ing object A, and can be formally defined as:

λ (c) = max{DISP(c(0),c(t))|t ∈ [0,1]}. (4)

Since λ characterizes the maximum distance that any point on A
can be displaced, it is valid to replace maximum trajectory length
by λ in prior CCD methods.

Our new CCD test condition is less conservative due to the fact
that the length of the displacement vector for any point on A is
never longer than the length of its trajectory. As Fig. 7 illustrates,
especially when the model A involves a large amount of rotational
motion, the difference between these two bounds can be large.

Displacement bound for screw motion. According to Eq.
(3), one can compute an exact maximum displacement when the
screw angle θ is within [0,π], and compute a relatively tighter up-
per bound (π,∞) by the following equation:

{
λ 2 = 2(1− cosθ)r2 +d2 0 ≤ θ ≤ π,

λ 2 ≤ 4r2 +d2 π < θ < ∞,
(5)
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Figure 7: λ ≤ µ . When the point p is rotated around o by θ to p′,
the maximum length of its displacement vector λ , which is ||pp′′||,
is less than its maximum trajectory length µ , which is ||p̂p′|| for
both cases. The larger the rotation angle θ , the bigger the differ-
ence between the two quantities.

where d, θ ≥ 0 are the same as Eq. (3), and r = η(A,ω) is the
maximum distance between any point on A to the screw axis and
can be computed as a preprocessing step.

The displacement bound λ for screw motion is never larger than
the motion bound. Moreover, according to Eq. (5), for the case
that the rotational angle θ is larger than π , the displacement bound
is much less than the motion bound. Therefore, for a CCD test
with the same amount of separation distance, using a displacement
bound can yield a tighter CCD test condition and make the overall
algorithm less conservative. Considering that λ can be efficiently
evaluated by Eq. (5), the new condition can be used to improve
CCD algorithm for screw motion.

6.3 Generalized Penetration Depth Computation

In dynamics simulation, haptic rendering and virtual environment,
it is often necessary to quantify the amount of interpenetration be-
tween two intersecting models. One of such measures is penetra-
tion depth. [Ong 1993; Zhang et al. 2006a] have proposed a for-
mulation for generalized penetration depth PDg, which takes into
account both translational and rotational motions to separate two
interpenetrating models. The definition of PDg includes two steps:
defining a distance metric for a model in configuration space, which
takes into account both translational and rotational motions, and
minimizing this distance metric under non-penetration constraints.
The Dg metric is used in [Zhang et al. 2006a]. However, that dis-
tance metric is difficult to compute, and one can only compute its
upper and lower bounds. Since the DISP distance metric can be ef-
ficiently computed, it is more suitable to define a generalized pene-



tration depth PDg
DISP for two models A and B, i.e.:

PDg
DISP(A,B) = min({DISPA(q0,q)| interior(A(q))∩B = /0}), (6)

where q0 is the initial configuration of A, and q is any configuration.

Similarly to PDg, one can show that for two convex models A and
B, PDg

DISP(A,B) is equal to PDt(A,B). Therefore, we can com-
pute a lower bound on PDg

DISP(A,B) by decomposing A and B into
convex pieces and taking the maximum PDt over each pair of con-
vex pieces from each model. Furthermore, the efficient algorithm
on DISP metric computation allows one to efficiently compute an
upper bound for PDg

DISP [Zhang et al. 2007].

6.4 Comparison

Compared with other distance metrics used for configuration space
distance computation, such as Lp, weighted Lp or other scale-
dependent metrics, DISP metric has many elegant mathematical
properties. Since it can naturally combine translational and rota-
tional components, the users need not choose any weighting factor
between these two components. Using our efficient C-DIST com-
putation algorithm, this metric would be more suitable than Lp and
other weighted metrics for many applications, such as motion plan-
ning and proximity queries.

DISP metric shares many properties with a model-dependent met-
ric - object norm, which is easier to compute than DISP metric.
However, both metrics are suitable for different applications. Since
object norm is defined as an average squared length of all displace-
ment vectors of a model, it could characterize the variation of en-
ergy when a model is displaced from one configuration to another
configuration. In contrast, the geometric property of DISP metric
implied by the maximum operation in its definition makes DISP
more useful for proximity queries and path planning, where the
main goal is to avoid the obstacles.

7 Implementation and Performance

We have implemented our C-DIST computation algorithm and ap-
plied it to various rigid and articulated models. In this section, we
highlight its performance on these complex benchmarks. All the
timings reported in this section were taken on a 2.8GHz Pentium
IV PC with 2 GB of memory.

7.1 C-DIST Implementation for Rigid Models

In our implementation, we precompute the convex hull for an in-
put rigid model using QHull 1. We further build a BVH structure
- swept sphere volumes (SSV) tree for the vertices on the convex
hull. For BVH-based DISP computation, we use the SSV-Tree to
compute the maximum distance from the model to the screw axis.

We have tested our C-DIST implementation on a set of rigid poly-
hedral models, including triangular meshes models, such as the Cup
model, and triangle soup models, such as Alpha Puzzle, Bunny,
Hand and Dragon. The performance of our C-DIST algorithm is
summarized in Table 1.

Fig. 8 shows the Alpha Puzzle model as well as its convex hull. In
this figure, we place this model at two different configurations and
use our C-DIST algorithm to find the vertex with the largest dis-
placement. We highlight the line segment that connects this vertex
at the two configurations. For this model, the brute force method of
visiting all the vertices on the model takes 184.8µs on average, for

1http://www.qhull.org/

Figure 8: C-DIST computation. The leftmost and middle figures
show the alpha puzzle model with 1,008 triangles and its convex
hull with 311 vertices. The rightmost figure shows a scenario when
the model is placed at two different configurations. The vertex on
this model, which has the maximum length of displacement vector is
found by our C-DIST algorithm and highlighted. The line segment
connecting this vertex at the two configurations is also highlighted.
Using SSV-Tree, our C-DIST algorithm can perform distance query
for this model within 5.6µs.

each DISP query. Our C-DIST algorithm compares all the vertices
on the convex hull can perform the query in 19.1µs. Using SSV-
Tree, our C-DIST computation can perform the query in 5.6µs.

Figs. 1 and 6 highlight the application of C-DIST algorithm to
complex models consisting of tens of thousands of triangles. Ac-
cording to Table 1, our C-DIST computation based on SSV-Tree
can perform each distance query within 20µs for these models. We
achieve up to 10 times speedup over an algorithm that computes the
displacement for each vertex of the convex hull.

7.2 C-DIST Implementation for Articulated Models

Our C-DIST implementation for articulated models is built on top
of C-DIST computation for rigid models. We construct an OBB for
each link of the model, and use them for culling.

Fig. 10 highlights an articulated model - Puma manipulator with
6 joints as well as 3 degree of freedoms of its base. Our C-DIST
algorithm can perform the distance query in 27.91µs on average.
Fig. 11 shows a complex articulated model with 6 joints - IRB2400
with an arcgun. Our algorithm can perform DISP distance query in
21.90µs. Tab. 2 summarizes the performance of C-DIST for these
two articulated models.

8 Conclusions and Future Work

We present a novel and efficient algorithm (C-DIST) to compute the
DISP distance of a rigid or articulated model at two arbitrary config-
urations. We show that for a rigid model, the distance computation
reduces to computing the length of the longest displacement vector
over the vertices on the convex hull of the model. Our formula-
tion is equivalent to computing the maximum distance between the
model and the screw axis that is implied by the rigid transforma-
tion between the two given configuration. Furthermore, we present
two techniques to accelerate the distance computation: incremental
walking on the dual space of the convex hull and culling the ver-
tices on the convex hull using the BVH of SSVs. Our algorithm can
be easily extended to articulated models. The experimental results
show that our C-DIST computation can compute the DISP distance
for complex rigid and articulated models in tens of micro-seconds
on average. Finally, we highlight applications of our C-DIST algo-
rithm to proximity computations and motion planning.



Alpha Puzzle Cup Bunny Hand Dragon
#Tri 1,008 4,226 69,451 86,361 871,414
#V 3,024 3,000 208,353 259,803 2,614,242

#V of CH 311 1,019 1,504 1,836 2,448
tpre (s) 0.016 0.002 0.584 0.661 9.517

tpre qhull (s) 0.016 0.000 0.581 0.651 9.508
tpre ssv(s) 0.000 0.002 0.003 0.010 0.009
tb f (µs) 184.8 231.1 13,633 16,730 169,062
tch (µs) 19.1 64.1 85.3 105.0 153.0

top ssv (µs) 5.6 10.2 8.0 18.2 15.2
Speedup(tch/top ssv) 3.4 6.3 10.7 5.76 10.1

Table 1: Performance of C-DIST for rigid models. #V , #V o f CH denote the number of the vertices on each input model and the number
of vertices on its convex hull, respectively. tpre is the time for the preprocessing step, including the computation of convex hull and building
the BVH structure. tb f , tch, tb f are the average DISP query time, based on three different methods. tb f is the running time of the brute-force
method that checks all the vertices of the input model. tch is the running time of our C-DIST method, which checks all the vertices on the
convex hull. top is the running time of our optimized C-DIST method that uses a SSV-Tree.

#DOF #Tri #CH(V) tch (µs) tobb (µs) Speedup
Puma 9 868 296 42.30 27.91 1.5

IRB-2400 6 3,791 531 73.89 21.90 3.4

Table 2: Performance of C-DIST for articulated models. Using OBB culling, our C-DIST can perform the DISP query for these two examples
within 30µs.

Limitations and Future Work Our approach has a few limi-
tations. The C-DIST optimization algorithm based on incremental
walking is susceptible to degenerate configurations and needs spe-
cial handling. Furthermore, our algorithm only computes the dis-
tance between the two configurations and not the actual path that
realizes the DISP distance. This results in the following open prob-
lem:

Problem 1 (Geodesic computation for DISP distance metric)
Given two configurations q0 and q1, find an interpolating curve
c(t), t ∈ [0,1], such that c(t) = q0 and c(t) = q1 and minimizes
γ(q0,q1), where:

γ(q0,q1) = lim
n−>∞

i=n−1

∑
i=0

DISP(c(i/n),c((i+1)/n)). (7)

One can find a counter example to show that the path realized by
the screw motion between q0 and q1 is not the geodesic induced by
the DISP distance metric.

There are many other avenues for future work. We are interest-
ing in qualitatively evaluating the improvement when applying our
C-DIST algorithm to sampling-based motion planning and CCD
computation. We are also interested in investigating other mathe-
matical properties of DISP metric, such as the Riemannian metric
induced by the DISP distance metric. Finally, we would like to
formulate and compute other useful metrics in configuration space,
such as area and volume.
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Figure 9: C-DIST Computation. Our algorithm can handle any polyhedral model represented as a triangular mesh, a triangle soup, or a
point-set model. The Cup model on the left is represented as a triangular mesh, while the Hand model on the right is a scanned model and
represented as a triangle soup with 86,361 triangles. Our algorithm can perform the distance query for these models within 10.2µs and
18.2.µs, respectively.

Figure 10: C-DIST computation for an articulated model: Puma. Left: the Puma model with 9 DOF include 6 articulated joints and 3 DOF
of its base. Middle: the result of the distance query by our C-DIST algorithm is highlighted. Right: the OBB associated with each link. For
this model, our algorithm can perform the query within 27.91µs, on average.

Figure 11: C-DIST computation for an articulated model: IRB2400 with an arcgun. This model has 6 joints and 3,791 triangles. Our
algorithm can perform the query within 27.91µs on average. In the middle, we highlight the OBB associated with each link which can be
used for efficient culling.


