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Motion Planning: Applications

Manufacturing:
— Design of part feeders

Design for manufacturing
and servicing

Design of pipe layouts and

cable harnesses

Autonomous mobile
robots planetary
exploration, surveillance,
military scouting

Graphic animation of
“digital actors” for video
games, movies, and
webpages

Virtual walkthru

Medical surgery planning

Generation of plausible
molecule motions, e.q.,
docking and folding
motions

Building code verification



Sample-based Planners

* Collision checking is one of the major bottlenecks

 (Can take more than 90% of total running time



L TsPrior work on collision checking

* Fast algorithms for convex polytopes

 Bounding volume hierarchies for general polygonal
models

 Deformable models
 Multiple systems

I-Collide, RAPID, PQP, DEEP, SWIFT, SWIFT++,
DeformCD, Self-CCD,.....



T Prior work on collision checking

* Fast algorithms for convex polytopes

 Bounding volume hierarchies for general polygonal
models

e Deformable models
 Multiple systems
I-Collide, RAPID, PQP, SWIFT, SWIFT++, DeformCD, Self-

But these systems assume exact model representation
using triangulated models



!%\Prior work on collision checking

Fast Collision Detection for
Deformable Models using
Representative-Triangles

Sean Curtis”
Rasmus Tamstorf

Dinesh Manocha”

* University of North Carolina - Chapel Hill + Walt Disney Animation Studios




otion Planning for Physical Robots

J

* Planning a complex 3D task requires complex 3D models
— Task level planning vs. motion planning

{ Sense Move ]

>

* Task execution needs real-time feedback to follow dynamic/
uncertainty environment

* How to transform arbitrary tasks to a sequence of motion
planning problems? Link with Perception?



LTMotion Planning for Physical Robots

The real world is not so nice The perceived world!
as virtual reality!

* Robots use sensors such as cameras, Lidar, tactile, which provide only partial
information about the physical world

e Sensor and actuator error; real-time data processing [Laumond 2010]
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fViotion Planning for Physical Robots

e Collision checking on noisy point cloud data
* Real-time high DOF planning using graphics hardware



did sk
n na
\“ .l./

\ﬂ‘u
A

otion Planning for Physical Robots

* Real-time high DOF planning using graphics hardware



Qam@ Robot Sensors: Data Collection

Cameras



%EN@ Robot Sensors: Data Collection
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Laser Scanners



£ Demonstration of Point Cloud Data

Integration with PR2 Sensors (Willow Garage)






http://graphics.stanford.edu/~mdfisher/Kinect.html



http://www.cs.washington.edu/ai/Mobile_Robotics/projects/rgbd-3d-mapping/

http://groups.csail.mit.edu/rrg/index.php?n=Main.VisualOdometryForGPS-DeniedFlight



!TyHandling Noisy Point Cloud Data

* Planning, navigation and grasping
* Scene reasoning

* Noisy data

* Real-time processing



Ny,

Errors in Point Clouds
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Position error



{a N@ Point Cloud Collision Detection
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Handling Point Cloud Collision:
Two Methods
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esh Reconstruction => Collision
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Reconstruction is more difficult then collision detection

Solve an easier problem by conquering a more
difficult one?



\,‘ Mesh Reconstruction => Collision

* Reconstruction process is not robust, and is
sensitive to noise and high order features

* Reconstruction process is slow (few seconds)

* Errorin reconstructed result can be amplified
by subsequent collision checking

* The final result is YES/NO answer, which is
sensitive to noise.



I, Our Solution
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Return to the basic definition of collision-free

— Two objects are collision-free if they are separable
by a continuous surface and is in-collision when
such surface does not exist.




@assiﬁcaﬁon-based Collision Detection

* Find a separating surface that separates two
points clouds as much as possible
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b2 Collision Detection based on Robust
\ Classification

 We find the optimal (i.e. minimize the
separating error) separating surface using a
SVM-like algorithm

e Use supervised machine learning methods for
geometric classification

* Different from standard SVM: each training
data point has noise — corresponds to robust
classification in machine learning



Robust Classification
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Standard SVM Robust Classification: aware of noise



w'w Per-point Collision Probability

* Collision probability: the probability that one
point is on the wrong side of separating
surface.

* Robust classification computes collision
probability for each single point sample



- Probabilistic Collision between Two
7 Objects

* For each object

— Cluster the points and only keep one point in each
cluster: compute collision probability for
independent points

— Filter out points whose collision probability is
small: compute points with reliable collision
probability (i.e. collision result will not change
much when noise level changes).

— Overall object collision probability
1= TLo 1 = P(x:)]



Deep collision

Collision probability
near 1

Easy

Collision probability
near 0.5

Difficult: small noise will
bring reverse of yes/no answer
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Results: Small Noise
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Results: Large Noise
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More configurations are in the difficult region!
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Benefit

* Speed is comparable to mesh collision
detection algorithm (50-100ms per query) ---
faster than mesh reconstruction, especially on
large point clouds

* |n-contact configurations corresponds to a set
with non-zero measure in C-space; however,
mesh-based collision checking on such objects
would result in a zero-measure set



Benefit

* Speed is comparable to mesh collision
detection algorithm (50-100ms per query) ---
faster than mesh reconstruction, especially on
large point clouds

* |n-contact configurations corresponds to a set
with non-zero measure in C-space; however,
mesh-based collision checking on such objects
would result in a zero-measure set



!Motion Planning for Physical Robots

e Collision checking on noisy point cloud data



bile Manipulators: Onboard Computation

2x Onboard Servers
Processors :: Two Quad-
Core i7 Xeon Processors (8
cores)

Memory :: 24 GB

Externally Removable Hard
Drive :: 1.5 TB

Internal Hard Drive :: 500
GB




PR2 Computing Hardware

©

2x Quad 24 GB DDR3 500 GB 1.5TB
Core Xeon 17 ECC Memory Internal HD Removable HD

The 1.3 kWh battery
system can run the servers
and robot at full tilt for 2
hours (i.e. power is 650W).




Real-time Motion Planning

(X

Z
* Complex task execution needs real-time
feedback

* Dynamic / uncertain / deformable
environments or apply uncertain control.




Commodity GPU

* Many-core programmable processors
— High number of independent cores (16 - 30)
— Wide vector units on each core (8 - 32)
— High bandwidth, high latency main memory
— Much higher performance/power ratio

* Synchronization between cores
— Only via main memory
— No memory consistency model!



Current GPU Architectures

Host Device Grid
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Each processor only execute one warp (32) of threads
on a block. The number of parallelizable blocks is

restricted by the shared memory used per block.




Why GPUs?

* GPUs can be faster/cheaper/smaller over CPU
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provide another 2-3 times speed-up *



GPGPU: GPUs for non-graphics
applications

 GPU has been an apparent candidate to speed-up
general purpose large-scale computations ...

— Numerical linear algebra

— Sorting [Owens et al. 2008]

— Fourier Transforms [Leischener et al. 2009]
— Acoustic Wave Equation [Mehra et al. 2010]

— Delayed Duplicate Detection for memory
management [Edelkamp et al. 2010]

— Search [Joseph Kider et al. 2010]

— Database query processing [Govindaraju et al. 2004;
He et al. 2009]

— Low degree-of-freedom motion planning [Hoff et al.
2000; Pisula et al. 2000]




\ /'\@hallenge for Real-time Planner on GPUs

* Algorithmic bottlenecks

— Algorithm complexity is high w.r.t. DOFs and
topology of configuration space

* Architecture restrictions

— GPU is not an ideal Parallel Random Access
Machine (PRAM) Processor

— Parallel planning algorithms designed for multi-
core or multiple CPUs do not map well to GPU
architectures



‘i . Probabilistic Roadmap Method

* Use GPUs for realtime motion planning (g-
Planner)

e g-Planner uses probabilistic roadmap method
(PRM) as the underlying motion planning
algorithm

— suitable to exploit the multiple cores and data
parallelism on GPUs

— Easier to extend for handling uncertainty



@Probabilisﬁc Roadmap Method

local path  free space

milestone




Our GPU-based Pipeline

PRM algorithm GPU algorithm

1 ssamples

[ Sample generation > Parallel sampling

l s samples

[ Milestone construction Parallel kNN query

1 m milestones (m<s)

robot L obstacle

[ Proximity computation

: : BVH construction
l m milestones, m-k neighbors

Roadmap construction

T milestones

R

Local planning 24

1 m milestones, e edges

[ Query connection ]W
lgraph

[ Graph search > Parallel graph search

Parallel BVH collision

_—

Query phase



Bottlenecks in Motion Planner

PRM algorithm GPU algorithm

1, ssamples

[ Sample generation Parallel sampling

l s samples

[ Milestone construction Parallel kNN query

1 m milestones (m<s)

robot \\/ obstacle

{ Proximity computation

/

: : BVH construction
l m milestones, m-k neighbors

Roadmap construction

T milestones

. .
Loca.ll planning %%e,-
m milestones, e edges ‘€5
Parallel BVH collision

/k’q/ue/rig’)

Query connection 2

l graph

[ Graph search > Parallel graph search

—

\

-
\

Query phase



Parallel Sampling

* Real parallel random generator based on
cryptographic hashing [Tzeng et al. 2007]:

— No internal state (i.e. value at i + 1 does not
depend on value at i)

* Properties of cryptographic hashing
— decorrelating — similar inputs, dissimilar outputs

— uniform probability — all outputs likely to occur

 CHash(thread id) — white noise generator



Thread ids Uniform random numbers

* Transformations can be performed
independently on uniform samples in each
thread



Bottlenecks

* High number of collision queries

— Compute milestones and local
planning

— Need more than 1,000,000 even for
simple roadmaps

* K-nearest neighbor query

— Difficult when number of samples is
large



T\ Hierarchy-based Collision Query

* Build or update hierarchies

* Traverse hierarchies recursively
— Start with root nodes
— Do nodes overlap?

* Yes: Inner nodes: recursive formulation

* Perform primitive overlap tests

Triangle-triangle
overlap test




BVH Construction

e Construct BVH on GPU

— Uses thread and data parallelism
— Fast linear BVH construction [Lauterbach et al. 2009]

* Basic idea: turn the BVH construction problem
into the sorting problem along a space-filling
curve (i.e. Morton Curve)

— Points close on curve are close in 3D space
— Radix-sort is fast on GPU

* Interactive construction on current GPUs (<30ms)



Parallel Collision Query

* |n motion planning, we can perform high
number of collision queries in parallel

* Naive parallelism is used in previous CPU-

based parallel planner [Akinc et al. 2005, Amato
et al. 1999]

— Per-thread per collision or per-thread per
continuous collision



‘i GPU based Parallel Algorithms

* Collision queries

— Use Bounding Volume Hierarchy (BVH) for
acceleration

— Handle multiple samples in parallel

— Lazy planning: delay collision queries in local planning
until necessary

e K-nearest neighbor search
— Locality-sensitive hashing based approach
— Turn global search into local search
— Linear complexity



Hierarchies




Wy, GPU Memory Model

 Shared memory is fast, BUT limited (16K-48K)
* The more shared memory used for one block,
the less parallelism

overall shared memory size
— Parallel block hum <

shared memory used per block

— Basic parallel BVH algorithm needs one stack (>32)
for each thread, so 32 * n for a n-thread block
(BAD!)




@ata-dependent Conditional Branch
e DOEO0O0ORE  eerwrmn

(clocks) ALU1T ALU2 ... ... ALUS8

<unconditional
shader code>

if (x > @) {

X = 0;

refl = Ka; '

<resume unconditional
shader code>

Happens frequently in BVH traverse (BAD!)



Our Solutions

 Parallel Collision-Packet Traversal
— 50%-100% speed up over basic GPU method

— Simple to implement and can be used with basic
parallel collision algorithms

e Parallel Collision Query with Workload
Balancing

— 5-10x speed up over basic GPU method
— More complicated to implement



)

TParallel Collision-Packet Traversal

* Cluster collision queries into several groups

— Queries in one group will have similar traverse
path

— Groups are further divided into small warps
* For queries in the same warp traverse the

BVTT in the same special order

— One stack per block

— Coalesced memory access and cacheable

— No branch divergence



Iy, Query Clustering

* Find K = [dumk — | clusters to minimize

N K
Y ) e llxi—el

(=1 k=1

where {Ck},\[,(:] are cluster centers and clusters
are of the size |Cy| = chunk-size,1 <k <K

e Constrained clustering, difficult to solve

* We only approximate it with k-means and
then divide into chunk-size clusters.



Packet’s Traverse Order

* We need an optimal traverse order for the
packet to avoid additional BV collisions.

* Notice that only the entire packet do not
overlap with one BV can the packet stop.

* Using greedy heuristics

— The probability for one traverse order P is

pp=I1(xy)ep Pxy
__ #overlap threads
where Pxy = packet-size

— Traverse the children node with largePx.y first




arallel Collision Query with Workload
Balancing

v

* Each thread executes more fine-grained tasks:
overlap test between two BVs or leaf triangles

 The tasks are stored in one large queue, and
keep a local task queue for each block.




Workload Balancing

* Different queries will stop after different
number of BV checks

* Different local queues will have different
number of tasks

* Queue is nearly full or empty—> processor idle
- balancing
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Performance Analysis

We can prove that our parallel algorithms on
GPU are work efficient, i.e. not slower than
the serial implementation.

serial > [ basic > Tpacket > Tworkload = Tserial/#prOcessor

“serial TS(”) =Y W(’) Z ZZ:] W*(l‘/))

=1

T . . noWl(i
basic ZZI:] W(l) Z TN(”) Z w
-packet TP(”) ~ Zi’:] W;‘ (kp), with W* é W*

- n

-workload TB(I’I) — %W(l) +B(I‘1)




YTy, K-nearest neighbor computation

 Many previous approaches are based on
spatial structures, e.g. Kd-tree, GNAT, BVH

— Worst space/time complexity is square

— Complexity grows exponentially according to the
dimensionality

e QOur solution

— Based on locality-sensitive hashing (LSH) and
cuckoo hashing

— Turn global KNN search into local search
— Linear complexity



Hashing-based KNN search

* Approximate method

— Approximated KNN is sufficient roadmap
construction

e Basicidea

— LSH: group samples potentially to be closed
— Cuckoo hashing: efficient storage and query

e At least 10x speed-up (better for large dataset
and high-dimensional data)



Graph Search

* Currently perform parallel BFS/DFS

 A* or more advanced method (ARA* etc) can

be used to improve the search [Kider et al.
2010]



Benchmarks







Timing Results: Collision Checking

 Compared with basic GPU method
[Lauterbach et al. 2010]

50000 collision Basic GPU Collision-packet Workload
queries Balancing
Traverse balance
224 130

Piano 68 3.7
Large-piano 710 529 155 15.1
Helicopter 272 226 56 2.3

Humanoid 2316 1823 337 126



Y Timing Results: Local Planning

 Compared with basic GPU method (per-thread
per query method) (ms)

Local Planning Basic GPU Collision-packet Workload
Computations Balancing
Traverse balance

Piano 2076 1344 1054 34
Large-piano 7587 6091 1139 66
Helicopter 7413 4645 913 41

Humanoid 8650 8837 6082 1964



Overall Performance

* Our parallel GPU-based algorithms can
perform about 500K collision queries per
second on $400 NVIDIA Fermi Card (100X

faster than prior methods)



e 100x acceleration can

ne observed

%\ PRM Motion Planning on GPUs

C-PRM | C-RRT | G-PRM | GL-PRM

piano 6.53s 19.44s 1.71s 111.23ms

helicopter 8.20s 20.94s 2.22s 129.33ms

maze3d]l 138s 21.18s 14.78s 71.24ms

maze3d2 69.76s 17.4s 14.47s 408.6ms

maze3d3 8.435s 4.3s 1.40s 96.37ms
alphal.5 65.73s 2.8s 12.86s 1.446s

OOPSMP on Intel 3.2GHz i7 (single core) CPU ($600)
gPlanner on NVIDIA GTX 285 GPU (5400)




Preliminary Results

-—GL-PRM

10 10* 10° 10
number of samples

e Scale well on multi-core GPUs (log-log plot)



=+ BVH piano
—8— BVH helicopter
—8-— | SH piano

—4=—|_SH helicopter

number of samples



QE]!J@ Applications to PR2 Model
* DOF 12

e Compared with CPU (ms)

Milestone Comp. 15,952 392
Local Planning 643,194 6,803
(include self-

collision)

* 500 samples

— Perform motion planning in simple scenarios in
~300ms






Results: PR2 Model




‘i; GPU-based Motion Planning

* Multi-core GPUs’ computational power make
real-time planning possible

e Suitable parallel algorithms need to design to
achieve peak performance on the specific
architecture of GPUs

* GPUs can be exploited for a variety of search
problems



Conclusions & Future Work

e Collision checking on noisy point cloud data
e Real-time planning using graphics hardware

* Integrate with Physical Robots (PR2)
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