
Decomposed Hierarchical
Planning

 Jason Wolfe Bhaskara Marthi Stuart Russell
UC Berkeley Willow Garage UC Berkeley

Real World Decision Making

• Video of PR2 cleaning room

Levels of Decision Making

• Which object to put away next?

•
How to arrange objects in cupboard?

•
Where to place base to pick up object?

•
Where to grasp object?

•
What type of grasp to use?

•
What is the full joint configuration at grasp?

•
What path in cspace to take to achieve grasp?

•
What joint efforts to apply to follow path?

These decisions are not independent!

Top-down Decision Making

• Make decisions in top-down order

• How to handle lower level planning failures?

• Can be unboundedly suboptimal

This work

• DASH-A* Planner

• Find hierarchically optimal plans

• For efficiency:
• Decompose across subproblems whenever possible

• State abstraction: reuse solutions across subproblems

• Angelic bounds on reachable sets and costs at all
levels -> pruning

Pick and Place Domain

• Video

Action Hierarchies

Hierarchical Uniform-Cost Search

• Nodes are (state, plan suffix) pairs

Grasp(●) GoPut(●,p)cost:
0 s

Act

ArmPose(g1) GoPut(●,p) ActGrip

...

ArmTraj(t1) GoPut(●,p) ActGrip

p

p

p

(a)

(b)

(c)

cost:
0 s

cost:
6 s

cost:
0 s

Actp

cost:
19 s

Init

Goal

Successors

Angelic Semantics

• What if we want a heuristic, for hierarchical-A*?

• Angelic semantics provides provably
correct abstract transition models
• optimistic descriptions:

 overestimate reachability,
 underestimate costs

Grasp(●) GoPut(●)
cost: 0 s

Act
Goal

cost: ≥ 60 scost: ≥ 5 s cost: ≥ 17 s

60Grasp(●) GoPut(●)cost:
0 s

Act

Going to undersell things a bit here… also pessimistic descriptions, of
potentially much greater interest, since they allow committing to
provably correct abstract plans. For today, going to focus on the A* /
optimistic-only story, may talk a bit about pessimistic at end.

Angelic Hierarchical Search Problems

For each action a, input set i:

Grasp(●)

Optimistic OutcomeOptimistic OutcomeOptimistic Outcome Children Context
Set Cost Status

description
 reachable

states
lower
bound

solved, refinable,
or blocked

action
pairs

state
frags.

5 s refinable
ArmPose(p1),
CloseGripper;
ArmPose(p2),
CloseGripper;

constraints
inclusion for subsets;
inclusion for children;

set ⊆ {sg} for Act

inclusion for subsets;
inclusion for children;

set ⊆ {sg} for Act

prim, |i|=1 ->
solved ->

outcome exact;
HLA, |i|=1 ->

refinable

must be
refinable;
excluded
-> empty

inclusion
for

subsets,
children

example:

GoGrasp(o2)

MB(x4,y4) Grasp(o2)

MB(x5,y5) Grasp(o2)

...

6
4

3

Precise definition of what goes into angelic search problem. Unifies
primitive, high-level semantics.
Still have designated initial state, top-level action Act.
In status, we see two ways to “refine” -- expand action, or narrow the
input set.
One way to think about this framework: action-generated state
abstractions.

Angelic Hierarchical A* (AHA*)

• Essentially just H-UCS with a heuristic

• Other difference: can refine any refinable action

Grasp(●) GoPut(●)
cost: 0 s

Act
Goal

cost: ≥ 60 scost: ≥ 5 s cost: ≥ 17 s

f = g + h
60 = 0 + 60

AHA* Drawback

• Number of potential plans grows exponentially
• # refs of action 1 * # refs of action 2 # refs of action 3

• Even when state space is small!

• Pruning doesn’t help enough

GoDrop(o1) GoGrasp(o2)

GoDropAt(o1,x1,y1)
GoDropAt(o1,x2,y2)
GoDropAt(o1,x3,y3)

MB(x4,y4) Grasp(o2)

MB(x5,y5) Grasp(o2)

... ...
S GoDropAt(o1,x1,y1)

GoDropAt(o1,x2,y2)

GoDropAt(o1,x3,y3)

MB(x4,y4)
MB(x5,y5)

...

...Grasp(o2)
Grasp(o2) ...

...
MB(x4,y4)
MB(x5,y5)

...Grasp(o2)
Grasp(o2) ...

“Singleton” DASH-A*

• First step towards full DASH-A* algorithm

• DASH-A* features
• Decomposed

• Angelic

• State-abstracted

• Hierarchical

Essentially same as “explicit DASH-A*” algorithm I talked about awhile
ago.

Decomposition

• Given fixed intermediate states, planning for a
sequence of HLAs decomposes into independent
subproblems

• Tree decomposition of hierarchical plan space

p2
p1

GoGet(●) GoPut(●,p1)
p1

GoGet(●)

+
GoPut(●,p1)

p1p1

... ...

min min

Concatenate two planning problems together.

State Abstraction

• Can use context (relevance) to further
increase sharing/compression of open list

p2
p1

GoGet(●) GoPut(●,p1)

GoGet(●)

+
GoPut(●,p1)

p1p1

p1

Abstract

GoGet(●)

...

Abstract

GoPut(●,p1)
p1

...

p1

... ...

GoGet(●)
p1

Search: min/sum graphs

min
s0 h1 h2sgs1

s0h1s1

s0Act sg

+
s0h3 h4sgs2

+
s1 h2sg s0 h3s2 s2 h4sg

min min
s0 h5 p1s1s3 s0h5 p2s2s3 s0 p2 h8s2s4

+ + +
s0h5s3 s3p1s1 s3p2s2 s0p2s4 s4h8s2

Search: summaries

min
s0 h1 p4sgs1

s0h1s1

s0Act sg

+
s0h3 h4sgs2

+
s1 p4sg s0 h3s2 s2 h4sg

min min
s0 h5 p1s1s3 s0h5 p2s2s3 s0 p2 h8s2s4

+ + +
s0h5s3 s3p1s1 s3p2s2 s0p2s4 s4h8s2
3, ref. 2, solved 3, solved ∞, solved 1, ref.

5, ref.3, solved

5, ref.
6, ref. ∞, ref.

5, ref.
6, ref.

8, ref. 11, ref.

8, ref.

Search: AO*

1. Expand a best leaf node
• Start at root

• Pick min-cost child at min

• Pick any unsolved child at +

• Expand reached leaf

2. Propagate labels upwards
• Rewards follow labels

• Break ties: solved < refinable

• Sum solved iff both children
solved

3. If root not solved, goto 1

Search: AO*

min
s0 h1 p4sgs1

s0h1s1

s0Act sg

+
s0h3 h4sgs2

+
s1 p4sg s0 h3s2 s2 h4sg

min min
s0 h5 p1s1s3 s0h5 p2s2s3 s0 p2 h8s2s4

+ + +
s0h5s3 s3p1s1 s3p2s2 s0p2s4 s4h8s2
3, ref. 2, solved 3, solved ∞, solved 1, ref.

5, ref.3, solved

5, ref.
6, ref. ∞, ref.

5, ref.
6, ref.

8, ref. 11, ref.

8, ref.

Search: AO*

min
s0 h1 p4sgs1

s0h1s1

s0Act sg

+
s0h3 h4sgs2

+
s1 p4sg s0 h3s2 s2 h4sg

min min
s0 h5 p1s1s3 s0h5 p2s2s3 s0 p2 h8s2s4

+ + +
s0h5s3 s3p1s1 s3p2s2 s0p2s4 s4h8s2
3, ref. 2, solved 3, solved ∞, solved 1, ref.

5, ref.3, solved

5, ref.
6, ref. ∞, ref.

5, ref.
6, ref.

8, ref. 11, ref.

8, ref.

Search: AO*

min
s0 h1 p4sgs1

s0h1s1

s0Act sg

+
s0h3 h4sgs2

+
s1 p4sg s0 h3s2 s2 h4sg

min min
s0 h5 p1s1s3 s0h5 p2s2s3 s0 p2 h8s2s4

+ + +
s0h5s3 s3p1s1 s3p2s2 s0p2s4 s4h8s2

2, solved 3, solved ∞, solved 1, ref.

5, ref.3, solved

5, ref.
6, ref. ∞, ref.

5, ref.
6, ref.

8, ref. 11, ref.

8, ref.

min
s0 p3 p4s3s7

+
s0p3s7 s7p4s3

2, solved 3, solved

Search: AO*

min
s0 h1 p4sgs1

s0h1s1

s0Act sg

+
s0h3 h4sgs2

+
s1 p4sg s0 h3s2 s2 h4sg

min min
s0 h5 p1s1s3 s0h5 p2s2s3 s0 p2 h8s2s4

+ + +
s0h5s3 s3p1s1 s3p2s2 s0p2s4 s4h8s2

2, solved 3, solved ∞, solved 1, ref.

5, ref.3, solved

5, ref.
6, ref. ∞, ref.

5, ref.
6, ref.

8, ref. 11, ref.

8, ref.

min
s0 p3 p4s3s7

+
s0p3s7 s7p4s3

2, solved 3, solved

5, solved

Search: AO*

min
s0 h1 p4sgs1

s0h1s1

s0Act sg

+
s0h3 h4sgs2

+
s1 p4sg s0 h3s2 s2 h4sg

min min
s0 h5 p1s1s3 s0h5 p2s2s3 s0 p2 h8s2s4

+ + +
s0h5s3 s3p1s1 s3p2s2 s0p2s4 s4h8s2

2, solved 3, solved ∞, solved 1, ref.

5, ref.3, solved

5, ref.
6, ref. ∞, ref.

5, ref.
6, ref.

8, ref. 11, ref.

8, ref.

min
s0 p3 p4s3s7

+
s0p3s7 s7p4s3

2, solved 3, solved

5, solved

5, solved

Search: AO*

min
s0 h1 p4sgs1

s0h1s1

s0Act sg

+
s0h3 h4sgs2

+
s1 p4sg s0 h3s2 s2 h4sg

min min
s0 h5 p1s1s3 s0h5 p2s2s3 s0 p2 h8s2s4

+ + +
s0h5s3 s3p1s1 s3p2s2 s0p2s4 s4h8s2

2, solved 3, solved ∞, solved 1, ref.

5, ref.3, solved
7, solved

8, solved ∞, ref.

5, ref.
6, ref.

8, ref. 11, ref.

8, ref.

min
s0 p3 p4s3s7

+
s0p3s7 s7p4s3

2, solved 3, solved

5, solved

5, solved

Search: AO*

min
s0 h1 p4sgs1

s0h1s1

s0Act sg

+
s0h3 h4sgs2

+
s1 p4sg s0 h3s2 s2 h4sg

min min
s0 h5 p1s1s3 s0h5 p2s2s3 s0 p2 h8s2s4

+ + +
s0h5s3 s3p1s1 s3p2s2 s0p2s4 s4h8s2

2, solved 3, solved ∞, solved 1, ref.

5, ref.3, solved
7, solved

8, solved ∞, ref.

8, ref. 11, ref.

8, ref.

min
s0 p3 p4s3s7

+
s0p3s7 s7p4s3

2, solved 3, solved

5, solved

5, solved

7, solved
8, solved

Search: AO*

min
s0 h1 p4sgs1

s0h1s1

s0Act sg

+
s0h3 h4sgs2

+
s1 p4sg s0 h3s2 s2 h4sg

min min
s0 h5 p1s1s3 s0h5 p2s2s3 s0 p2 h8s2s4

+ + +
s0h5s3 s3p1s1 s3p2s2 s0p2s4 s4h8s2

2, solved 3, solved ∞, solved 1, ref.

5, ref.3, solved
7, solved

8, solved ∞, ref.

13, ref.

8, ref.

min
s0 p3 p4s3s7

+
s0p3s7 s7p4s3

2, solved 3, solved

5, solved

5, solved

7, solved
8, solved

10, solved

Search: AO*

min
s0 h1 p4sgs1

s0h1s1

s0Act sg

+
s0h3 h4sgs2

+
s1 p4sg s0 h3s2 s2 h4sg

min min
s0 h5 p1s1s3 s0h5 p2s2s3 s0 p2 h8s2s4

+ + +
s0h5s3 s3p1s1 s3p2s2 s0p2s4 s4h8s2

2, solved 3, solved ∞, solved 1, ref.

5, ref.3, solved
7, solved

8, solved ∞, ref.

13, ref.

min
s0 p3 p4s3s7

+
s0p3s7 s7p4s3

2, solved 3, solved

5, solved

5, solved

7, solved
8, solved

10, solved

10, solved

Search: AO*

min
s0 h1 p4sgs1

s0h1s1

s0Act sg

+
s0h3 h4sgs2

+
s1 p4sg s0 h3s2 s2 h4sg

min min
s0 h5 p1s1s3 s0h5 p2s2s3 s0 p2 h8s2s4

+ + +
s0h5s3 s3p1s1 s3p2s2 s0p2s4 s4h8s2

2, solved 3, solved ∞, solved 1, ref.

5, ref.3, solved
7, solved

8, solved ∞, ref.

13, ref.

min
s0 p3 p4s3s7

+
s0p3s7 s7p4s3

2, solved 3, solved

5, solved

5, solved

7, solved
8, solved

10, solved

10, solved

Solution: p3 p4 p1 p4

Properties of “singleton” DASH-A*

• hierarchically optimal

• each subproblem solved at most once

• always works on subproblem that contributes to
global cost bound

• can be exponentially faster than AH-A*

Singleton DASH-A*

H H-UCS DH-UCS DSH-UCS
AHA*

DASHA*
DAHA*

D

A

A

D

S

S

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6

ru
nt

im
e(

s)
of objects

H-UCS
DH-UCS

DSH-UCS

AHA*
DAHA*

DASHA*

(on discrete version of mobile manipulation domain)

(General) DASH-A*

• What if angelic sets are not singletons?
• Implicit sets are much more compact

• Focusing on concrete states can break abstraction,
bringing unimportant low-level details to high-level

• Sometimes, explicit outcomes not known in advance

Implicit outcomes of GoPut Explicit outcomes of GoPut
cost: >17 s

...

cost: >21 s

cost: >23 s

cost: >19 s

cost: >17 s

cost: >18 s

cost: >∞ s

Planning with implicit sets

• Win: if we avoid refining a plan due to optimistic
bounds being suboptimal (enough), never need to
get to level of concrete states

MoveToGoal(●)
cost:0 s cost: >10 s

MoveToGoal(●)
cost: >20 s

MoveToGoal(●)
cost:0 s

MoveToGoal(●)
cost: > 28 scost: >19 s

DASH-A*: first attempt

min
s0 h1 h2sg

s0h1

s0Act sg

+
s0h3 h4sg

+
h2sg s0 sg

3, ref.5, ref. 6, ref.

8, ref. 7, ref.

7, ref.

1

1 1

2

h3 h42 2

1, ref.

DASH-A*: looking good!

min
s0 h1 h2sg

s0h1

s0Act sg

+
s0h3 h4sg

+
h2sg s0 sg

3, ref.5, ref. 6, ref.

8, ref. 20, ref.

8, ref.

1

1 1

2

h3 h42 2 14, ref.

min
h5 h6sg

+
h5 h6sg

10, ref. 4, ref

14, ref.2

2

3

3 3

DASH-A*: looking good!

min
s0 h1 h2sg

s0h1

s0Act sg

+
h2sg 3, ref.5, ref.

8, ref.

8, ref.

1

1 1

...20, ref.

DASH-A*: looking good!

min
s0 h1 h2sg

s0h1

s0Act sg

+
3, blocked5, ref.

8, ref.

8, ref.

1

1 h2sg1

...20, ref.

min
p1sg1 p2sg1

3, blocked 10, blocked

DASH-A*: what now?!

min
s0 h1 h2sg

s0h1

s0Act sg

+
3, blocked6, solved

9, blocked 1

1 h2sg1

...20, ref.

min
p1sg1 p2sg1

3, blocked 10, blocked

min

6, solved 8, solved
s0p3 s0p4s2 s3

9, blocked

DASH-A*: challenges

• Without concrete intermediate states, sequences
do not cleanly decompose

h1 h2

e..g,

Implicit DASH-A*: challenges

• Without concrete intermediate states, sequences
do not cleanly decompose

h1 h2

10
7

5

7
5

10

e..g,

Implicit DASH-A*: challenges

• Without concrete intermediate states, sequences
do not cleanly decompose
• must find multiple optimal solutions (to different states)

for each subproblem

• As search proceeds, we must split outcome sets
• structure of the graph changes as we go

• splitting must propagate through later actions

e..g,

DASH-A*: specialization

min

s0 h1 h2 sg

s0 h1

s0 Act sg

+

3, blocked6, solved

9, blocked
1

1 h2 sg1

...
20, ref.

min

p1 sg1 p2 sg1

3, blocked 10, blocked

min

6, solved 8, solved

s0 p3 s0 p4s2 s3

9, blocked

DASH-A*: specialization

min

s0 h1 h2 sg

s0 h1

s0 Act sg

+

3, blocked6, solved

9, blocked
1

1 h2 sg1

...
20, ref.

min

p1 sg1 p2 sg1

3, blocked 10, blocked

min

6, solved 8, solved

s0 p3 s0 p4s2 s3

9, blocked

DASH-A*: specialization

min

s0 h1 h2 sg

s0 h1

s0 Act sg

+

3, blocked8, solved

11, blocked
1

1 h2 sg1

...20, ref.

min

p1 sg1 p2 sg1

3, blocked 10, blocked

min

6, solved 8, solved

s0 p3 s0 p4s2 s3

10, ref.

s0 p3 h2 sg
+

10, ref.

h2 sg

s2

x
s2

4, ref.

DASH-A*: specialization

min

s0 h1 h2 sg

s0 h1

s0 Act sg

+

3, blocked8, solved

11, blocked
1

1 h2 sg1

...20, ref.

min

p1 sg1 p2 sg1

3, blocked 10, blocked

min

6, solved 8, solved

s0 p3 s0 p4s2 s3

10, solved

s0 p3 h2 sg
+

10, solved

h2 sg

s2

x
s2

4,solved

min

p1 sg p2 sg
4, solved 12, solved

Solution: p3 p1

Xs2 s2

DASH-A*: Analysis and Results

LAMA SAHTN AHA* DASH-A*
domain size optimal len seconds evals seconds evals seconds evals seconds evals

nav switch
20x20 40 1.46 194 0.11 1017 0.23 514

100x100 202 14.53 834 0.31 5439 0.82 1914
500x500 1003 71.04 4034 1.74 19606 2.09 5466

discrete
manipulation

1 object 38 1.8 3667 45.73 1420 3.45 3316 0.64 213
2 objects 53 28.52 51169 178.24 1728 8.01 5056 2.13 541
3 objects 72 382.02 629563 656.80 1953 51.04 40752 8.02 1505
4 objects 101 258.14 218025 21.83 3034

continuous
manipulation

1 object 18 3.82 53 2.71 168 3.69 136
2 objects 30 13.36 212 29.20 2473 15.17 519
3 objects 42 17.76 319 235.28 20145 28.73 1051

Table 1: Runtimes in seconds and number of optimistic + primitive model evaluations to optimally solve random instances of
three domains. Results are medians over 5 instances of each size, with a memory limit of 512 MB.

7 Results
This section compares the empirical performance of DASH-
A* with other (hierarchically) optimal planning algorithms,
on two discrete domains as well as a continuous manipula-
tion domain implemented on a physical robot (see Table 1).3

First, nav-switch (MRW ’08) is a grid-world navigation
domain in which horizontal and vertical steps have different
costs, which can be switched at a set of designated squares.
We compare DASH-A* with hierarchically optimal algo-
rithms AHA* and SAHTN. On this domain, SAHTN suffers
from a lack of heuristics. AHA* performs more evaluations
than DASH-A*, but is slightly faster due to lower overhead,
and the lack of combinatorial structure to be exploited by
decomposition and state abstraction.

Second, we consider the discrete manipulation domain,
with random objects and goal regions on a 20x20 grid with
four tables arranged in a square. On this domain, SAHTN
performs very poorly, due to a lack of heuristics, and a large
number of reachable states for each HLA. AHA* performs
much better, but still more than an order of magnitude slower
(and evaluates two orders of magnitude more optimistic de-
scriptions) than DASH-A*. On this domain, we also include
optimal planning results for the non-hierarchical LAMA
planner (Richter et al. 2010), using a STRIPS encoding
of the domain with constraints added, so that the reachable
state space is similar to that under our hierarchy. LAMA is
quickly overwhelmed by the large state space, and is several
orders of magnitude slower than DASH-A*.

Finally, we report preliminary results on a continuous
version of the discrete manipulation domain (Wolfe et al.
2010), where the state includes continuous object positions,
base positions, and joint angles for a 7-DOF robot arm,
and the hierarchy uses external solvers such as rapidly-
exploring random trees to generate refinements. Our cur-
rent optimistic bounds in this domain are weak, and AHA*
performs poorly; in contrast, SAHTN and DASH-A* ex-
hibit similar performance, with SAHTN slightly faster due
to lower overhead. In this domain, state abstraction is very

3Our DASH-A* implementation includes two further optimiza-
tions: subproblem outcomes are evaluated lazily; and a forward-
search mode is used for subproblems corresponding to right-
recursive primitive-generating HLAs such as NAV, which elimi-
nates the expense of propagating summaries through the very deep
and narrow graphs generated, at the cost of some caching.

powerful, sufficing to eliminate most of the evaluations that
could have been avoided by weak heuristic guidance.

8 Conclusion
We presented the DASH-A* hierarchical planning algo-
rithm, which combines the advantages of previous angelic
algorithms such as AHA*, and decomposed algorithms such
as SAHTN, using a novel hierarchical decomposition frame-
work. There is much room for further improvement; most
notably, bounded suboptimal variants of DASH-A* that in-
corporate pessimistic information (when available) should
find provably �−optimal solutions much faster than existing
flat or hierarchical algorithms.

References
Bulitko, V.; Sturtevant, N.; Lu, J.; and Yau, T. 2007. Graph Ab-
straction in Real-time Heuristic Search. JAIR 30:51–100.
Dietterich, T. G. 2000. Hierarchical reinforcement learning with
the MAXQ value function decomposition. JAIR 13:227–303.
Felzenszwalb, P. F., and McAllester, D. 2007. The Generalized A*
Architecture. J. Artif. Int. Res. 29(1):153–190.
Genesereth, M. R., and Nourbakhsh, I. R. 1993. Time-saving tips
for problem solving with incomplete information. In AAAI.
Gravot, F.; Cambon, S.; and Alami, R. 2003. aSyMov: A Planner
That Deals with Intricate Symbolic and Geometric Problems. In
ISRR, 100–110.
Helmert, M., and Röger, G. 2008. How Good is Almost Perfect?
In AAAI, 944–949.
Holte, R. C.; Grajkowski, J.; and Tanner, B. 2005. Hierarchical
Heuristic Search Revisited. In SARA, 121–133.
Lawler, E. L., and Wood, D. E. 1966. Branch and bound methods:
a survey. Operations Research 14(4).
Marthi, B.; Russell, S. J.; and Wolfe, J. 2008. Angelic Hierarchical
Planning: Optimal and Online Algorithms. In ICAPS.
Nau, D.; Au, T. C.; Ilghami, O.; Kuter, U.; Murdock, W. J.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning system. JAIR

20:379–404.
Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2009. Hybrid systems:
from verification to falsification by combining motion planning and
discrete search. Formal Methods in System Design 34(2):157–182.
Richter, S., and Westphal, M. 2010. The LAMA Planner: Guiding
Cost-Based Anytime Planning with Landmarks. JAIR 39:127–177.
Sacerdoti, E. D. 1973. Planning in a Hierarchy of Abstraction
Spaces. In IJCAI, 412–422.
Wolfe, J.; Marthi, B.; and Russell, S. J. 2010. Combined Task and
Motion Planning for Mobile Manipulation. In ICAPS.

• DASH-A* is systematic, hierarchically optimal

• Easy to construct examples where DASH-A* is
exponentially faster than previous algorithms

Conclusion and Future work

• DASH-A* algorithm
• Find hierarchically optimal plans

• Decompose across subproblems

• State abstraction to reuse solutions

• Angelic bounds to prune search space

• Future work
• Bounded-suboptimal DASH-A*

• Concurrency

• Partially observable/stochastic domains

