Decomposed Hierarchical
Planning

Jason Wolfe Bhaskara Marthi Stuart Russell
UC Berkeley Willow Garage UC Berkeley

Real World Decision Making

* Video of PR2 cleaning room

Levels of Decision Making

* Which object to put away next?
e How to arrange objects in cupboard?

¢ Where to place base to pick up object?

¢ Where to grasp object?

¢ \What type of grasp to use?

e What is the full joint configuration at grasp?

¢ \What path in cspace to take to achieve grasp?

¢ What joint efforts to apply to follow path?
These decisions are not independent!

Top-down Decision Making

* Make decisions in top-down order
* How to handle lower level planning failures?

e Can be unboundedly suboptimal

e DASH-A* Planner

This work

* Find hierarchically optimal plans

* For efficiency:

* Decompose across subproblems whenever possible

e State abstraction:

reuse solutions across subproblems

* Angelic bounds on reachable sets and costs at all

levels -> pruning

* \Video

Pick and Place Domain

Action Hierarchies

HLA | Refinements |
Act [MoveToGoal(o), Act] | onot at goal
(1 | all objects at goals
MoveToGoal(o) | [GoPick(o), GoPlace(o,p)]
| p in goal region of o
GoPick(o) [Pick(o)] o in range
[ArmTuck,BaseRgn(r),Pick(o)]
| r is candidate base region
Pick(o) [ArmGraspAction(poes(o),0),

CloseGripperAction(o),
TorsoAction(up)] |0 € [—1,1] rad

GoPlace(o,p)

[Place(o,p)] | p in range
[ArmTuck,BaseRgn(r),Place(o,p)]
| r is candidate base region

Place(o,p)

[ArmJointAction(6:),
TorsoAction{down),
OpenGripperAction,
ArmJointAction(62)]

0 are candidate joint configs

ArmTuck

ArmJointAction(tucked)]

BaseRgn(r)

BasehAction(p,0)] pUer

Hierarchical Uniform-Cost Search

* Nodes are (state, plan suffix) pairs

Init

Gsl: Grasp(e) GoPut(e,p) Actj
Os o :VZVZV
SUCCeSSOrS cost: (> Afnléése(g:) 7(7}1‘117)7 GoPut(e,p) Act
Os '. = » — » ——p
ArmTraj(t,)’ A GoPut(e,p) Act
)

cost: ® ¢
Goal 7 o)

Angelic Semantics

* What if we want a heuristic, for hierarchical-A*?

cost: E Grasp(e) GoPut(e) Act 60
G ° . . 1 > 1 > 1 pj

"ﬁ Grasp(e) GoPut(e) Act
’ > : > : »
&=

* Angelic semantics provides provably
correct abstract transition models

* optimistic descriptions:
overestimate reachability,
underestimate costs

Going to undersell things a bit here... also pessimistic descriptions, of
potentially much greater interest, since they allow committing to
provably correct abstract plans. For today, going to focus on the A* /
optimistic-only story, may talk a bit about pessimistic at end.

Angelic Hierarchical Search Problems

For each action a, input set /:

Optimistic Outcome Children | Context
Set Cost Status
. reachable lower |solved, refinable,| action state
description blocked .
states bound or blocke pairs frags.
example: o | ArmPose(py), |__
Pe® : : CloseGripper; [[1*
@es)= | (e, 5s | refinable |Geecrbeer [Te
b CloseGiripper;

Precise definition of what goes into angelic search problem. Unifies

primitive, high-level semantics.
Still have designated initial state, top-level action Act.
In status, we see two ways to “refine” -- expand action, or narrow the

Input set.
One way to think about this framework: action-generated state

abstractions.

Angelic Hierarchical A* (AHA™)

 Essentially just H-UCS with a heuristic

60 =0 + 60
 Other difference: can refine any refinable action

AHA* Drawback

* Number of potential plans grows exponentially

» # refs of action 1 * # refs of action 2 # refs of action 3
* Even when state space is small!

* Pruning doesn’t help enough

MB(x,, Grasp(o,
GoDropAt(o, X,.y,) (X, Ya) P(0;)

MB(Xg,Ys) Grasp(0,) &
S GoDropAt(0,,%,,Y,) O
MB(x,,y,) Grasp(0,)
GoDropAt(0,,X,.Y,) =2 e S adl
X,

MBlx,¥g) S Crasplo) 5y |

GoDropAt
GoDropAt

01:X1.Yy)
01:%.,)

“Singleton” DASH-A*

* First step towards full DASH-A* algorithm
* DASH-A* features

* Decomposed

* Angelic

e State-abstracted

e Hierarchical

Essentially same as “explicit DASH-A*" algorithm | talked about awhile
ago.

Decomposition

* Given fixed intermediate states, planning for a
sequence of HLAs decomposes into independent
subproblems

* Tree decomposition of hierarchical plan space

[GoGet(e) 13 GoPut(e,p,) Z@j
—) —— 1y
@ ® P i
\ / + \ /
GoGet(e) NN o © e - _
[@ lI| oGet(9) ﬁ|m t|| GoPui(e.p)) mj
mim mim

Concatenate two planning problems together.

State Abstraction

e Can use context (relevance) to further
increase sharing/compression of open list

O = A

\
Q@@W ») @i y
[@D““l-] [“’ “”B@]

Search: min/sum graphs

min
(Soh1S1haSg) (SohsS2h4Sg)
+ +
(SoniS1) (S1hsSg) (SohsS2) (S2h4Sg)
min min
S0 hsS3D181 (Soh5S3p282) (S0 p=S4hsS2)
+ +

(Soh583) (S3p181) (S3p=S2) (Sop=S4) (S4hsS2)

Search: summaries

8, ref.(So Act Sg
min

8, ref (S0 h1S1paSg) (SohsS2haSg) 11, ref.

+ 6, ref. +
5. ref.(Soh1S1) (S1paSg) (SohsS2) (S2heSg)
min 3 Solved min o, ref.

5, ref. (S0 5831 S1 (SonsS3p282) (S0 p=S41:S2)

n B, ref. /ﬁ?\ oo, ref.
(Soh583) (S3p1S1) (S3p=2S2) (Sop=S4) (S4hsS2)
3, ref. 2, solved 3, solved o0, SOlved 1, ref.

Search:

1. Expand a best leaf node
e Start at root
® Pick min-cost child at min
® Pick any unsolved child at +
® Expand reached leaf

2. Propagate labels upwards
o Rewards follow labels
® Break ties: solved < refinable

e Sum solved iff both children
solved

3. If root not solved, goto 1

AO*

Search: AO*

8, ref.(So Act Sg
min

8, ref. (S0 11S1p28g) (S0hsS2haSg) 11, ref.

+ 6, ref. +
5, ref (Soh1S1) (S1p2Sg) (S0h=S2) (S2h4Sg)
min 3, solved min 5, ref.

5, ref. (S0 hsS3 1 S1 (S0n5S3p2S2) (S0 p2S4hsS2)

1 6. ref. /ﬁ?\ o, ref.
(SohsS3) (S3p:S1) (S3p2S2) (Sop=S4) (S4hsS2)
3, ref. 2, solved 3, solved oo, SOlved 1, ref.

Search: AO*

8, ref.(So Act Sg
min

8, ref. (S0 11S1p2Sg) (S0hsS2haSg) 11, ref.

+ 6, ref. +
5, ref (Soh1S1) (S1p2Sg) (S0h=S2) (S2h4Sg)
min 3, solved min 5, ref.

5, ref.(S0 hsS3p1 81 (S0h583p=282) (S0 p=S4hsS2)

] 6, ref. /ﬁ\ o, réf.
(SohsS3) (S3piS1) (S3p=S2) (Sop=S4) (S4hsS2)
3, ref. 2, solved 3, solved oo, SOlved 1, ref.

Search: AO*

8, ref.(So Act Sg
min

8, ref. (S0 11S1p2Sg) (S0hsS2haSg) 11, ref.

+ 6, ref. +
5, ref (Soh1S1) (S1p2Sg) (S0h=S2) (S2h4Sg)
min 3, solved min 5, ref.

5, ref.(S0 hsS3p1 81 (S0h583p=282) (S0 p=S4hsS2)

] 6, ref. /ﬁ\ o, réf.
(SohsS3) (S3p:S1) (S3p2S2) (Sop=S4) (S4hsS2)
Imin 2, solved 3,s0lved o, solved 1, ref.

SO0 p3S7p4S3
!80p587l (S7paS3)
. solve 3. solve

Search: AO*

8, ref.(So Act Sg
min

8, ref. (S0 11S1p2Sg) (S0hsS2haSg) 11, ref.

+ 6, ref. +
5, ref (Soh1S1) (S1p2Sg) (S0h=S2) (S2h4Sg)
min 3, solved min 5, ref.

5, ref.(S0 hsS3p1 81 (SohsS3p=282) (S0 p=S4hsS2)

] 6, ref. /ﬁ\ o, réf.
(SohsS3) (S3p:S1) (S3p2S2) (Sop=S4) (S4hsS2)
Imin 2, solved 3,s0lved o, solved 1, ref.

SO0 p3S7p4S3

5, solved

!SOD537I (S7paS3)
. solve 3. solve

Search: AO*

8, ref.(So Act Sg
min

8, ref. (S0 11S1p2Sg) (S0hsS2haSg) 11, ref.

+ 6, ref. +
5, ref (Soh1S1) (S1p2Sg) (S0h=S2) (S2h4Sg)
min 3, solved min 5, ref.

5, ref.(S0 hsS3p1 81 (SohsS3p=282) (S0 p=S4hsS2)

o, ref.

5, solved + , ref. /ﬁ\ -
(SohsS3) (S3p:S1) (S3p2S2) (Sop=S4) (S4hsS2)
Imin 2, solved 3,s0lved o, solved 1, ref.

SO0 p3S7p4S3

5, solved

!Sop587l (S7paS3)
. solve 3. solve

Search: AO*

8, ref.(So Act Sg
min

8, ref. (S0 11S1p2Sg) (S0hsS2haSg) 11, ref.

+ 6, ref. +
5, ref (Soh1S1) (S1p2Sg) (S0h=S2) (S2h4Sg)

7. solved / min 3 solved in 5, ref.
S0 h5S3p1 81 (SohsS3p=282) (So p284h882)

ref.
5, solved + | & solved /ﬁ\

(SohsS3) (S3p:S1) (S3p2S2) (Sop=S4) (S4hsS2)
Imin 2, solved 3,s0lved o, solved 1, ref.

SO0 p3S7p4S3

5, solved

!Sop387l (S7paS3)
. solve 3. solve

Search: AO*

8, ref. (S0 Act Sg
min

8, ref. (S0 11S1p2Sg) (S0hsS2haSg) 11, ref.

+ 8, solved.~ +
7, solved(S0h181) (S1psSg) (S0hsS2) (S2haSg)

7, solved / min S Solved min 5, ref.
S00s83D:81) (S0N:83p282) (S0peS4nsS2)

oo, ref.
5, solved +| 8 solved /ﬁ\

(SohsS3) (S3p:S1) (S3p2S2) (Sop=S4) (S4hsS2)
Imin 2, solved 3,s0lved o, solved 1, ref.

S0 P3S7D4S3

5, solved

!SODSS7I (S7paS3)
. solve 3. solve

Search: AO*

8, ref. (S0 Act Sg
min

10, solved(S0h1S1p2Sg) (S015S214Sg)13, ref.

+ 8, solved.” +
7, solved (S0h1S1) (S1psSg) (S0 hsS2) (S2h4Sg)

7, solved / min S Solved min 5, ref.
S00s83D:81) (S0N:83p282) (S0peS4nsS2)

oo, ref.
5, solved +| 8 solved /ﬁ\

(SohsS3) (S3p:S1) (S3p2S2) (Sop=S4) (S4hsS2)
Imin 2, solved 3,s0lved o, solved 1, ref.

S0 p3S7P4S3

5, solved

!SOpzs7l (S7paS3)
. solve 3. solve

Search: AO*

10, solved(S0 Act Sg
min

10, solved(S0h1S1p2Sg) (S015S214Sg)13, ref.

+ 8, solved.” +
7, solved (S0h1S1) (S1psSg) (S0 hsS2) (S2h4Sg)

7, solved / min S Solved min 5, ref.
S00s83D:81) (S0N:83p282) (S0peS4nsS2)

oo, ref.
5, solved +| 8 solved /ﬁ\

(SohsS3) (S3p:S1) (S3p2S2) (Sop=S4) (S4hsS2)
Imin 2, solved 3,s0lved o, solved 1, ref.

S0 p3S7P4S3

5, solved

!SOpssﬂ (S7paS3)
. solve 3. solve

Search: AO*

10, solved(S0 Act Sg
min

10, solved(S0 h181p4sg) (SohzS2h28g)13, ref.

8, solved.~ +
7, solved (S01. S1) (s (028g) (SohsS2) (S2heSg)
7. solved / min 3 solved i 5, ref.
S0 h5S3p1 81 (SonsS3p=282) (S0 p2S4hs Sz) .
rer.
5, solved + | solved /ﬁ\
(SohsS3) (S3pis1) (S3p2S2) (Sop=S4) (S4hsS2)

ynin 2, solved 3, solved oo, Solved 1, ref.

SO0 p3S7p4S3

5, solved

STp4S Solution:
D D5 D4 D1 Ds

Properties of “singleton” DASH-A*

* hierarchically optimal
* each subproblem solved at most once

e always works on subproblem that contributes to
global cost bound

* can be exponentially faster than AH-A*

Singleton DASH-A*

S A
H _ D . DH-UCS——»DSH-UCS
—H-UCS P DASHA*
A SAHA'—G—»DAHA g
60 : : ‘ £
H-UCS --G-- AHA* — % —
50 |- DH-UCS DAHA* - -% - S
— 40 | DSH-UCS @+ DASHA* —— " |
@ a
> fo)
£ 30 ’ . *
5 2 ’ =
- ’ -
A - X &
0.~ . -_gl' / _ - . I
0 * SRS A
1 2 3 4 5 6
of objects

(on discrete version of mobile manipulation domain)

(General) DASH-A*

* What if angelic sets are not singletons?
* Implicit sets are much more compact

* Focusing on concrete states can break abstraction,
bringing unimportant low-level details to high-level

* Sometimes, explicit outcomes not known in advance

Implicit outcomes of GoPut Explicit outcomes of GoPut

cost >17 s st: >21's st: >19 s cost: >18' s
I I R I o
() .
cost: >23 s cost: >17 s cost: >0 s
g g [

2ok

I

Planning with implicit sets

* Win: if we avoid refining a plan due to optimistic
bounds being suboptimal (enough), never need to
get to level of concrete states

cost:0 s cost: >10's cost: >20 s

ﬁ °® MoveToGoal(e) ' ::?E Move’l‘oGoal() % '
e o/ — >l 88—
s
cost:0 s cost: >19 s cost: >28s
ﬁ P MoveToGoal(e) ? MoveToGoal(e) % '
Ul o ———> —p

DASH-A*; first attempt

7, ref. (S0 Act Sg
min

8, ref. (S0 hi(MhaSg) (Sohs@haSg) 7, ref.

= =

(Son: @) (DheSg) (Sohs@) (2hsSg)
5, ref. 3, ref. 0, ref. 1, ref.

DASH-A*: looking good!

8, ref.(So Act Sg
min

8, ref. (S0 huMhaSg) (Sohs@haSg)20, ref.

= =

(Soh:@) (@DhaSg) (Sohz@) (2 haSg)i4, ref.
o, ref. 3, ref. o, ref.

min

@hs@heSg 14, ref.
; ¥ ;

(215 3) (8)hsSg)
10, ref. 4, ref

DASH-A*: looking good!

8, ref. (S0 Act Sg
, 20, ref.
min
8, ref.{S0 h1®h2,8g
¥

5, ref. 8, ref.

DASH-A*: looking good!

8, ref. (S0 Act Sg
, 20, ref.
min
8, ref.(So 1 haSg
+

5 ref (Sohi (1) (DhaSg) 3, blocked
min

(DpiSg) (D p=Sg)
3, blocked 10, blocked

DASH-A*: what now?!

9, blocked (S0 Act Sg
: 20, ref.
min
9, blocked(S0 hi haSg
+
6, solved (Soh1 3, blocked
min min

(Sops 32) (SOD4 33) (@Plsg) (@ pzsg)
6, solved 8, solved 3, blocked 10, blocked

e..d,

DASH-A*: challenges

» Without concrete intermediate states, sequences
do not cleanly decompose

@
@

e..d,

Implicit DASH-A*: challenges

» Without concrete intermediate states, sequences
do not cleanly decompose

e..d,

Implicit DASH-A*: challenges

» Without concrete intermediate states, sequences
do not cleanly decompose

» must find multiple optimal solutions (to different states)
for each subproblem

* As search proceeds, we must split outcome sets
* structure of the graph changes as we go

* splitting must propagate through later actions

DASH-A*; specialization

9, blocked (S0 Act Sg

- 20, ref.
min
S0 hi {1} hz Sg
9, blocke
+
S0 1 (1) (1) h Sg
6, solved 3, blocked

(50 02 52) (80 02 83) (0 1 8¢) (L0 02 8¢

6, solved 8, solved 3, blocked 10, blocked

DASH-A*; specialization

9, blocked (S0 Act Sg

- 20, ref.
min
S0 hi {1} hz Sg
9, blocke
+
S0 1 (1) (0 1o sg)
6, solved 3, blocked
min min

(50 02 $2J(80 02 83) (0 1 8¢) (L0 02 8¢

6, solved 8, solved 3, blocked 10, blocked

DASH-A*; specialization

10, ref. (SO Act Sg
min
S0 hi {1} hz Sg
11, blocke
+
S0 hi (1) (1) ha Sg)«
3, blocked
min

8, solved =
(80 0= 52) (80 0+ 83) (@0 01 8¢) ({0 p2 8¢

Xmin
6, solved 8, solved 3, blocked 10, blocked

20, ref.

Sops S2 he Sg 10, ref.

4, ref.

DASH-A*; specialization

10, solved | SO Act Sg

min
S0 h. {1} he Sg
11, blocke
+

20, ref.

S0 ps S2 hz Sg)10, solved

4 solved

8, solved”~
X'min min
(50 o= 82) (S0 pa 83) () b1 Sg) (1) pe Sg $2 p1 Sg) (82 W/Se
6, solved 8, solved 3, blocked 10, blocked 4, solved 1240\/ed

Solution: ps p1

DASH-A*: Analysis and Results

* DASH-A* is systematic, hierarchically optimal

* Easy to construct examples where DASH-A* is
exponentially faster than previous algorithms

LAMA SAHTN AHA* DASH-A*
flomain size optimal len seconds evals seconds evals seconds evals seconds evals
20x20 40 1.46 194 0.11 1017 0.23 514
itch 100x100 202 14.53 834 0.31 5439 0.82 1914
500x500 1003 71.04 4034 1.74 19606 2.09 5466
1 object 38 1.8 3667 45.73 1420 3.45 3316 0.64 213
te 2 objects 53 28.52 51169 178.24 1728 8.01 5056 2.13 541
ulation 3 objects 72 382.02 629563 656.80 1953 51.04 40752 8.02 1505
4 objects 101 258.14 218025 21.83 3034
. 1 object 18 3.82 53 2.71 168 3.69 136
”ﬁ:?on 2 objects 30 13.36 212 29.20 2473 15.17 519
uatl 3 objects 42 17.76 319 235.28 20145 28.73 1051

: Runtimes in seconds and number of optimistic + primitive model evaluations to optimally solve random instances of
lomains. Results are medians over 5 instances of each size, with a memory limit of 512 MB.

Conclusion and Future work

* DASH-A* algorithm

* Find hierarchically optimal plans

* Decompose across subproblems

 State abstraction to reuse solutions

* Angelic bounds to prune search space
* Future work

* Bounded-suboptimal DASH-A*

* Concurrency

* Partially observable/stochastic domains

