

Real World Decision Making

Video of PR2 cleaning room

Levels of Decision Making

- Which object to put away next?
- How to arrange objects in cupboard?
- Where to place base to pick up object?
- Where to grasp object?
- What type of grasp to use?
- What is the full joint configuration at grasp?
- What path in cspace to take to achieve grasp?
- What joint efforts to apply to follow path?

These decisions are not independent!

Top-down Decision Making

- Make decisions in top-down order
- How to handle lower level planning failures?
- Can be unboundedly suboptimal

This work

- DASH-A* Planner
- Find hierarchically optimal plans
- For efficiency:
 - Decompose across subproblems whenever possible
 - State abstraction: reuse solutions across subproblems
 - Angelic bounds on reachable sets and costs at all levels -> pruning

Action Hierarchies

HLA	Refinements					
Act	[MoveToGoal(0), Act] o not at goal					
	 all objects at goals 					
MoveToGoal(<i>o</i>)	[GoPick(o),GoPlace(o,p)]					
	Refinements[MoveToGoal(o), Act] o not at goal[] all objects at goals[GoPick(o), GoPlace(o, p)] p in goal region of o[Pick(o)] o in range[ArmTuck,BaseRgn(r),Pick(o)] r is candidate base region[ArmGraspAction(pos(o), 0),CloseGripperAction(o),TorsoAction(up)] $\theta \in [-1, 1]$ rad[Place(o, p)] p in range[ArmTuck,BaseRgn(r),Place(o, p)] r is candidate base region[ArmJointAction(θ_1),TorsoAction(down),OpenGripperAction,ArmJointAction(θ_2)] θ are candidate joint configs[ArmJointAction($tucked$)][BaseAction(p, θ)] $p, \theta \in r$					
GoPick(0)	[Pick(o)] o in range					
	[ArmTuck,BaseRgn(r),Pick(o)]					
	r is candidate base region					
Pick(0)	$[ArmGraspAction(pos(o), \theta),$					
	CloseGripperAction(0),					
	TorsoAction (up)] $ \theta \in [-1, 1]$ rad					
GoPlace(o, p)	$[Place(o, p)] \qquad p \text{ in range}$					
	Remember[MoveToGoal(o), Act] o not at goal[] all objects at goals[GoPick(o), GoPlace(o, p)] p in goal region of o[Pick(o)] o in range[ArmTuck, BaseRgn(r), Pick(o)] r is candidate base region[ArmGraspAction(pos(o), θ),CloseGripperAction(o),TorsoAction(up)] $\theta \in [-1, 1]$ rad[Place(o, p)] p in range[ArmTuck, BaseRgn(r), Place(o, p)] r is candidate base region[ArmJointAction(θ_1),TorsoAction(down),OpenGripperAction,ArmJointAction(θ_2)] θ are candidate joint configs[ArmJointAction(p, θ][BaseAction(p, θ] $p, \theta \in r$					
	r is candidate base region					
Place(o, p)	$[ArmJointAction(\theta_1),$					
	TorsoAction(down),					
	OpenGripperAction,					
	ArmJointAction(θ_2)]					
	o are candidate joint configs					
ArmTuck	[ArmJointAction(tucked)]					
BaseRgn(r)	[BaseAction (p, θ)] $p, \theta \in r$					

Going to undersell things a bit here... also pessimistic descriptions, of potentially much greater interest, since they allow committing to provably correct abstract plans. For today, going to focus on the A* / optimistic-only story, may talk a bit about pessimistic at end.

Precise definition of what goes into angelic search problem. Unifies primitive, high-level semantics.

Still have designated initial state, top-level action Act.

In status, we see two ways to "refine" -- expand action, or narrow the input set.

One way to think about this framework: action-generated state abstractions.

AHA* Drawback

- Number of potential plans grows exponentially
 - # refs of action 1 * # refs of action 2 # refs of action 3
 - Even when state space is small!
 - Pruning doesn't help enough

"Singleton" DASH-A*

- First step towards full DASH-A* algorithm
- DASH-A* features
 - Decomposed
 - Angelic
 - State-abstracted
 - Hierarchical

Essentially same as "explicit DASH-A*" algorithm I talked about awhile ago.

Concatenate two planning problems together.

Search: AO*

- 1. Expand a best leaf node
 - Start at root
 - Pick min-cost child at min
 - Pick any unsolved child at +
 - Expand reached leaf
- 2. Propagate labels upwards
 - Rewards follow labels
 - Break ties: solved < refinable
 - Sum solved iff both children solved
- 3. If root not solved, goto 1

Properties of "singleton" DASH-A*

- hierarchically optimal
- each subproblem solved at most once
- always works on subproblem that contributes to global cost bound
- can be exponentially faster than AH-A*

(General) DASH-A*

- What if angelic sets are not singletons?
 - Implicit sets are much more compact
 - Focusing on concrete states can break abstraction, bringing unimportant low-level details to high-level
 - Sometimes, explicit outcomes not known in advance

e..g,

Implicit DASH-A*: challenges

• Without concrete intermediate states, sequences do not cleanly decompose

e..g,

Implicit DASH-A*: challenges

- Without concrete intermediate states, sequences do not cleanly decompose
 - must find multiple optimal solutions (to different states) for each subproblem
- As search proceeds, we must split outcome sets
 - structure of the graph changes as we go
 - splitting must propagate through later actions

DASH-A*: Analysis and Results

- DASH-A* is systematic, hierarchically optimal
- Easy to construct examples where DASH-A* is exponentially faster than previous algorithms

			LAMA		SAHTN		AHA*		DASH-A*	
domain	size	optimal len	seconds	evals	seconds	evals	seconds	evals	seconds	evals
witch	20x20	40			1.46	194	0.11	1017	0.23	514
	100x100	202			14.53	834	0.31	5439	0.82	1914
	500x500	1003			71.04	4034	1.74	19606	2.09	5466
	1 object	38	1.8	3667	45.73	1420	3.45	3316	0.64	213
te	2 objects	53	28.52	51169	178.24	1728	8.01	5056	2.13	541
pulation	3 objects	72	382.02	629563	656.80	1953	51.04	40752	8.02	1505
	4 objects	101					258.14	218025	21.83	3034
uous pulation	1 object	18			3.82	53	2.71	168	3.69	136
	2 objects	30			13.36	212	29.20	2473	15.17	519
	3 objects	42			17.76	319	235.28	20145	28.73	1051

: Runtimes in seconds and number of optimistic + primitive model evaluations to optimally solve random instances of omains. Results are medians over 5 instances of each size, with a memory limit of 512 MB.

Conclusion and Future work

- DASH-A* algorithm
 - Find hierarchically optimal plans
 - Decompose across subproblems
 - State abstraction to reuse solutions
 - Angelic bounds to prune search space
- Future work
 - Bounded-suboptimal DASH-A*
 - Concurrency
 - Partially observable/stochastic domains