
Poisson-RRT

Chonhyon Park and Jia Pan and Dinesh Manocha
http://gamma.cs.unc.edu/PoissonRRT/

Abstract— We present an RRT-based motion planning algo-
rithm that uses the maximal Poisson-disk sampling scheme.
Our approach exploits the free-disk property of the maximal
Poisson-disk samples to generate nodes and perform tree
expansion. Furthermore, we use an adaptive scheme to generate
more samples in challenging regions of the configuration space.
Our approach can be easily parallelized on multi-core CPUs
and many-core GPUs. We highlight the performance of our
algorithm on different benchmarks.

I. INTRODUCTION

Sampling-based approaches are widely used to compute
collision-free paths for motion planning. The most influential
sampling-based motion planning schemes include probabilis-
tic roadmaps (PRM) [1] and rapidly-exploring random trees
(RRT) [2]. The key idea in these planners is to generate
samples in the free configuration space of the robot and
connect them with collision-free edges to construct a graph.
PRM planners are mostly used for multiple-query planners
and involve considerable preprocessing in terms of roadmap
computation. On the other hand, most motion planning ap-
plications do not perform multiple queries. These situations
arise when the robot does not know the entire environment a
priori, or when it moves to a new environment. In such cases,
incremental sampling-based algorithms, such as RRT, are
widely used. The RRT algorithm has been extended in sev-
eral aspects for use in systems with differential constraints,
nonlinear dynamics, and hybrid systems. Moreover, it has
also been integrated with physical robot platforms.

The simplest RRT algorithms are based on generating
uniform random samples and connecting the nearby samples
until a collision-free path from the initial configuration to
the goal configuration has been computed. In this paper,
we present a novel approach that uses Poisson-disk samples
for RRT planners and constructs the trees using serial and
parallel algorithms.

Poisson-disk sampling is a well-known scheme that can
be used in high dimensions to generate a random set of
points with two properties: the points are tightly packed
together, yet remain separated from each other by a specified
minimum distance [6], [7], [8]. Poisson-disk distributions are
known to have good blue-noise characteristics and are widely
used in statistics, computer graphics, mesh algorithms, AI,
image processing, and random object placement. Poisson-
disk sampling is a sequential random process for selecting

*This research is supported in part by ARO Contracts W911NF-10-1-
0506 and NSF awards 1000579, 1117127, 1305286.

Chonhyon Park and Jia Pan and Dinesh Manocha are with the Department
of Computer Science, University of North Carolina at Chapel Hill. E-mail:
{chpark, panj, dm}@cs.unc.edu.

points in a region. The sampling process is maximal if no
more points can be added, which implies that the entire
region is completely covered by the disks of radius r centered
at each sample.

In this paper, we present a Poisson-RRT algorithm that
uses Poisson-disk samples to generate an RRT tree. We
use maximal Poisson-disk samples to compute the RRT tree
in arbitrary dimensions. The nodes are computed based on
these samples, and we use the free-disk property of Poisson-
disk samples for tree expansion. Furthermore, we present an
adaptive sampling scheme that increases the sampling rate
in the challenging regions of the configuration space (e.g.
narrow passages). We also use the Poisson-disk samples to
parallelize the RRT algorithm. As compared to prior parallel-
RRT algorithms, we show that Poisson-disk samples result
in fewer redundant nodes in the configuration space and are
more amenable to parallelization on commodity multi-core
CPUs and many-core GPUs.

The rest of the paper is organized as follows. In Sec-
tion II, we survey prior work on RRT-based motion planning
and highlight properties of Poisson-disk sampling. We give
an overview of our Poisson-RRT planning algorithm in
Section III. We present the serial and parallel algorithms
in Section IV. We highlight the performance on different
benchmarks in Section V.

II. RELATED WORK AND BACKGROUND

In this section, we give a brief overview of prior work
on RRT-based motion planning, Poisson-disk sampling, and
Lattice-Based Sampling.

A. RRT-based Motion Planning

There is extensive work on RRT-based motion planning
due to its efficiency. The original RRT algorithm [9] grows
the RRT tree based on the Voronoi property, biasing the
search towards unexplored regions of free configuration
space. Many variants to improve this original RRT have been
proposed. Dynamic-domain RRT [10] adaptively controls
the Voronoi bias of the nodes, which results in a better
exploration. Diankov et al. [11] use workspace information to
guide the growth of the RRT tree. RESAMPL [12] adaptively
chooses different sampling strategies for RRT according
to the local properties of different regions. Shkolnik and
Tedrake’s Ball Tree algorithm [13] adaptively approximates
the free configuration space using hyperspheres with varying
radii. RRT has also been extended for optimal motion
planning [14].

Parallel RRT Algorithms: Many parallel techniques have
been proposed to improve the performance of RRT algo-
rithms on multiple cores. At a broad level, these can be clas-
sified into AND parallelization and OR parallelization [15],
[16], [17]. Many recent techniques exploit multiple CPU and
GPU cores to parallelize collision checking or subdividing
the configuration space [18], [3].

B. Maximal Poisson-Disk Sampling

Poisson-disk sampling [6], [7], [8] ensures that each
sample is at least a minimum distance, r, from the other
samples. Each sample has an associated disk, which is a
hypersphere of radius r, and no additional samples can be
placed in the disk. The area of a disk (or the volume of the
hypersphere) is called the coverage volume of the associated
sample. Maximal Poisson-disk sampling requires that there
is no room or space to place a new Poisson-disk sample in
the domain, i.e., the entire domain is covered by the disks
of samples. Fig. 1(a) shows a set of maximal Poisson-disk
samples for the same domain. Overall, maximal Poisson-disk
sampling satisfies following properties in any dimensions:

free-disk : ∀xi,xj ∈ X,xi 6= xj : ‖xi − xj‖ ≥ r
maximal : ∀x ∈ Ω,∃xi ∈ X : ‖x− xi‖ < r, (1)

where X = {xi} is the set of samples in domain Ω. Given
a non-maximal sampling, a new Poisson-disk sample can
be generated in a bias-free manner, i.e., the probability
of selecting a sample from any uncovered subregion is
proportional to the subregion’s volume:

∀A ∈ S(X) : P(x ∈ A) =
|A|
|S(X)| , (2)

where S(X) = {x ∈ Ω : ‖x − xi‖ ≥ r, ∀xi ∈ X} is
the region uncovered by existing disks. For one Poisson-
disk sample x, another Poisson-disk sample y is its neighbor
if the disks corresponding to the two samples overlap, i.e.,
‖x− y‖ < 2r, as shown in Fig. 1(a).

These properties are useful when maximal Poisson-disk
samples are used for the RRT algorithm. The free-disk
property ensures that the new sample is not too close to
an existing node in the RRT tree, which thereby ensures
good coverage of the free space. For a fixed number of
samples, the maximal property generates the best distribution
of samples in the configuration space. Furthermore, we use
an adaptive scheme based on Poisson-disk samples that
makes it possible to find paths in challenging areas or in
narrow passages of the configuration space, as described
in Section IV-D. The bias-free property of the Poisson-disk
samples (which functions similarly to the Voronoi diagram
bias used in the original RRT algorithm [9]).

Recently, many algorithms have been suggested for fast
computation of Poisson-disk sampling, such as [19], in order
to generate samples with linear time complexity. Parallel
Poisson-disk sampling algorithms have also been designed
for higher-dimensional spaces [20]. We can use any of these
algorithms to compute maximal Poisson-disk samples in any
dimension.

C. Lattice-based Sampling

Although random sampling is widely used in motion
planning, many other sampling techniques have been pro-
posed [21]. Grid-based sampling is used in many applications
due to its low dispersion, which implies that the samples
are generated in such a manner that the largest uncovered
area in the configuration space is as small as possible, and
that the size of the uncovered space is governed by the
grid resolution. However, grid-based approaches generate
samples that are aligned with the coordinate axis; these
aligned samples are undesirable, as they increase the variance
in the planning algorithm’s running time [22]. Lattices are
a generalization of grids that allow non-orthogonal axes
or other spatial decompositions; common lattices include
the Sukharev grid and the nongrid lattice, both of which
give samples with low dispersion, low discrepancy, and
low environmental sensitivity. Discrepancy is a criterion that
measures the largest axis-aligned rectangular area which is
not covered by samples. Multi-resolution approaches [23],
[24] are used to increase the number of samples in lattice-
based planning algorithms, and have been combined with
replanning [25]. Like these lattice-based techniques, maximal
Poisson-disk samples have low dispersion and low discrep-
ancy, and in addition, the resulting samples are not aligned
with any axes.

III. OVERVIEW

Our goal is to use Poisson-disk sampling as the underlying
sample generation process for RRT-based planning. The
nodes of the RRT tree correspond to Poisson-disk samples,
and the tree expansion step can be performed in parallel using
multiple threads. In this section we give an overview of the
proposed algorithm.

A. Assumptions and Notations

The configuration x of a robot is a point in a configuration
space C, which consists of collision-free region Cfree and
C-obstacle region Cobs; our goal is to find a continuous,
collision-free path from an initial configuration, xinit, to a
goal configuration, xgoal.

The RRT tree T is initialized with the root node of
xinit, and the algorithm expands the tree incrementally. Each
iteration of RRT planning executes two main procedures:

1) Sampling: The sample procedure generates a new
random configuration x, which determines the direc-
tion of the tree expansion.

2) Expansion: The expansion procedure includes two
steps, 1) nearest node search and 2) local planning.
Given a configuration x, nearest node search finds
a node v in T: the closest node to x according to
the given metric of the configuration space, ρ (e.g.,
the weighted Euclidean metric). For high-dimensional
space, approximate algorithms [26] with computational
complexity O(d log n) are used, where d is the dimen-
sion of the configuration space.
The local planning step checks whether the shortest
path between v and x lies in Cfree (i.e., that the

x
y1

y2 y3

y4

y5y6

(a) Maximal Poisson-disk samples

xinit

xgoal

(b) Motion planning using Poisson-disk sampling

v

xinit

x1
x2

x3

x4

y1 y2

y3

e1
e2

e3

(c) Parallel Poisson-RRT tree expansion

Fig. 1: (a) Maximal Poisson-disk sampling. Each black point is a Poisson-disk sample and the red circle is the corresponding Poisson disk. yi are the
neighbors of x. (b) Poisson-disk sampling is used to generate the RRT tree and compute a collision-free path from xinit to xgoal. (c) Parallel Poisson-RRT
tree expansion using 4 threads. The i-th thread expands the tree toward sample xi, i = 1, 2, 3, 4. The red vectors ei show the new RRT edges added.
Since x2 and x4 correspond to the identical Poisson-disk sample (y2), both of them result in adding the edge e2 to the tree. There is no redundant node
added to the tree.

configuration of the path does not collide with the
obstacles). If the path is collision-free, x is added to T
as a new node connected to the node v. If the path has
a collision, the collision-free configuration xnew on the
path that is farthest from v is added to T instead of
x.

B. RRT Planning using Maximal Poisson-disk Sampling

The RRT algorithm is efficient for single-query problems,
since the algorithm incrementally expands the RRT tree to
the unexplored regions and terminates when the solution is
found. However, this incremental expansion of the tree means
that it is difficult to make an efficient parallel algorithm for
planning. The AND parallelization can expand the tree faster
than the original RRT. However, as the number of threads
increases, the algorithm results in more redundant nodes
in the RRT tree, degenerating the performance of overall
planning.

Algorithm 1 RRT Planning using Poisson-disk Sampling

Require: start configuration xinit, goal configuration xgoal,
precomputed Poisson-disk (radius r) sample set X

Ensure: RRT Tree T
1: T.add(xinit)
2: X.add(xinit)
3: /* Can handle multiple threads easily */
4: for i = 1 to m do in parallel /* For serial version, m=1

*/
5: while xgoal /∈ T do
6: /* Pick a random point within a random

selected Poisson-disk */
7: x← sample()
8: T← extend(T,x,X)

9: end for

The overall Poisson-RRT algorithm is shown in Algo-
rithm 1. In order to lessen the overhead caused by the
redundant nodes, our algorithm uses precomputed Poisson-
disk samples in the tree expansion. The precomputed samples

satisfy the free-disk property in (2), where X is set of sam-
ples and r is a predefined minimum distance between any of
two samples. Unlike the standard RRT, which performs local
planning between the nearest node v and the configuration
x, our algorithm chooses a Poisson-disk sample xnbr that is
closest to x among v’s neighboring Poisson-disk samples.
The free-disk property ensures that the chosen sample is
at least a minimum distance, denoted here by r, from v.
If the local planning finds a collision-free path between
xnbr and v, xnbr is added to the RRT tree as a new node.
The tree expansion is repeated until the goal configuration
xgoal is added to the tree. Our approach eliminates the
problem of multiple threads of the algorithm choosing the
same direction, which generates redundant nodes that are
too close to each other in the standard RRT tree expansion.
In our algorithm, the threads that choose the same direction
do not generate redundant nodes; instead, they choose the
same Poisson-disk sample and stop the redundancy problem
from developing. We add the sample only once to the tree.
An example of tree construction in our algorithm is shown
in Fig. 1(c).

Fig. 2 shows the RRT trees generated by an original RRT,
an AND parallelization RRT, and our algorithm. The tree
generated by AND parallelization has many redundant nodes
that are close to other tree nodes, while the tree generated
using Poisson-disk sampling has efficiently spaced nodes.

IV. POISSON-RRT ALGORITHM
In this section, we present the details of our serial and

parallel planning algorithms, including precomputation of
maximal Poisson-disk samples, tree expansion, and adaptive
sampling. The analysis of the algorithm can be found in [27].

A. Precomputation of Maximal Poisson-disk Samples

As a precomputation step, Poisson-disk samples are gener-
ated in the d-dimensional configuration space. These samples
are independent of obstacles, so we can use a precomputed
sample set computed offline for multiple planning queries.

Our Poisson-disk sample generation is based on the fast
algorithm proposed by Ebeida et al. [28]. For a given disk

(a) RRT (b) Parallel RRT (c) Parallel Poisson-RRT

Fig. 2: Comparison of RRT trees generated using different planning ap-
proaches. (a) The tree corresponding to the original RRT algorithm is
generated according to the Voronoi bias of the sequential algorithm. (b) The
parallel RRT tree generated by AND parallelism has many redundant nodes
that are close to other nodes in the tree (e.g., the new nodes y2, y3, and
y4 are close to y). (c) The tree generated with Poisson-disk sampling has
fewer redundant nodes due to the free-disk property of samples, although
it is generated using the parallel sampling.

radius r, Ebeida et al.’s algorithm generates uniform base
grids that cover the entire configuration space C. Each grid
cell is a square with the side length r/

√
d, and each cell can

contain at most one sample.

B. Tree Expansion

Given a new random sample x, our algorithm extends
the planning tree T using the extend procedure, which
is summarized in Algorithm 2.

For a sample point x, the algorithm finds the nearest node
v in T. From a node v, The Poisson-RRT algorithm chooses
a sample xnbr, which is a point closest to x among v’s
neighboring Poisson-disk samples. These steps utilize the
nearest neighbor search. There has been extensive work done
on the nearest neighbor search using GPUs [29], [30], [5].
We use the algorithm proposed by Pan et al. [30], which
uses Locality-Sensitive Hashing (LSH) for clustering nearby
points in high-dimensional spaces. The algorithm generates
the same hash value for points near one another; points with
the same hash value are stored in the same bucket of the hash
table. Using this data structure, the nearest neighbor search
for a point can be computed in nearly constant time since it
requires only looking up one bucket in the hash table.

It is possible that a Poisson-disk sample can be chosen
by more than one thread in the nearest neighbor search (line
1-2). However, when the algorithm adds samples (line 6),
it prevents adding a sample in X to T more than once.
This approach helps the algorithm to avoid adding redundant
nodes while using the parallel tree extension.

C. Collision Checking

In order to accelerate collision checking, we compute
bounding volume hierarchies (BVH) for the robot and the
obstacles in the environment. We construct the oriented
bounding box (OBB) trees [31] for the triangle model
representations of the robot and obstacles using a GPU-
based construction algorithm [32]. The OBB trees improve

Algorithm 2 RRT tree extend() procedure using maximal
Poisson-disk sampling.

Require: RRT Tree T, a new random sample x, Poisson-
disk sample set X

Ensure: RRT Tree T
1: v← nearestNode(T,x)
2: xnbr ← argminy∈v’s neighbor ρ(y,x)
3: (success,xfree)← collisionCheck(v,xnbr)
4: if success then
5: /* no collision along that edge */

6: T.add(xnbr)
7: X.remove(xnbr)
8: else
9: /* if there is collision, perform

adaptive sampling */

10: if ρ(xfree,v) < v.r then
11: /* If the collision occurs in the disk

of v, reduce the coverage of v

12: v.r ← v.r/2

13: /* If the collision occurs in the disk

of xnbr, reduce the coverage of xnbr */

14: if ρ(xfree,xnbr) < xnbr.r then
15: xnbr.r ← xnbr.r/2

16: X.add(adaptiveSampling(v,xnbr,xfree))

the performance of collision checking because of their high
culling efficiency.

When the tree node and the nearest Poisson-disk sample
are computed, the algorithm performs local planning to check
for a feasible path between the two configurations. We use
discrete collision detection (DCD), which discretizes the path
between two configurations into multiple steps, between the
robot and obstacles; we then check collisions for each step.
The collision checking performed during local planning is
regarded as the most time-consuming part of the overall
algorithm.

D. Adaptive Sampling

The precomputed Poisson-disk samples may not have a
large-enough number of samples to find a collision-free
solution. As a result, the algorithm performs adaptive Poisson
subsampling at runtime to generate more samples with re-
duced distance between them. We perform adaptive sampling
in the regions where the local planning routine finds a
collision between an edge of the tree and an obstacle; in that
sub-region of the configuration space, we generate samples
with reduced disk radii.

In the precomputation step, we compute a template from
the Poisson-disk sample set, which we use for adaptive
sampling.. There is a sample with radius r/2 placed at the
origin, and the algorithm randomly generates more samples
to ensure that the new samples satisfy the maximal property
in the disk of radius r.

The collisionCheck procedure, used for local plan-
ning, checks for collisions along the edge that joins v

v

xinit

xnbr
x

Cobs
(a)

v

xinit

xnbr

Cobs

xfree

(b)

xinit

Cobs

vv

(c)

xinit

Cobs

vv

xnew

(d)

Fig. 3: Tree extension and adaptive sampling. (a) The sample xnbr is the
point closest to x among the neighboring Poisson-disk samples of v. (b)
If vxnbr intersects Cobs, collisionCheck procedure returns the last
collision-free point xfree. If the collision occurs within the disk associated
with v, the radius of this disk is reduced by half. (c) A precomputed template
of Poisson-disk samples is applied to v to find a point which is close to
xfree and satisfies the maximal property in the disk of v. (d) A new sample
xnew is added to X; it can be connected to T if there is no collision on
the local path joining v and xnew .

to xnbr. If there is no collision, xnbr is added to the
tree and removed from X. If a collision is detected, the
procedure computes xfree as the last collision-free point on
the direction from v to xnbr (Fig. 3(b)). If a collision occurs
in the disk associated with v or xnbr, the adaptive sampling
algorithm reduces the radius of the disk by half. After this
reduction, some regions that were covered in the original disk
may now be uncovered, so we use the precomputed template
to generate new samples in the region (Fig. 3(c)). Using the
positions of v and xfree, we compute which sample in the
template is closest to xfree when the template is applied
to v. The new sample is connected to T and added to X
for future expansion (Fig. 3(d)). The template is scaled to
generate samples with different Poisson-disk radii during this
adaptive sampling step.

This adaptive sampling approach allows the algorithm to
handle any width of narrow passages, since it adaptively
generates more samples in the difficult regions of the con-
figuration space.

V. RESULTS

In this section, we present our experimental results and
highlight the performance of our serial and parallel algo-
rithms on different benchmarks. We implemented the algo-
rithm using OMPL [33] and NVIDIA CUDA libraries. All
the timings described in this section were generated on a

(a) Easy (b) Cubicle

(c) Alpha Puzzle (d) Apartment

Fig. 4: The planning problems used as the benchmarks of various planners.
Easy moves a robot from the left room to the right room by passing a
window; Cubicles moves the robot in an office environment; Alpha puzzle
contains a narrow passage; Apartment moves the piano to the hallway near
the door entrance.

commodity PC with an Intel i7-2600 8-core CPU and a
NVIDIA GTX 680 GPUs. The details of parallel version
of our algorithm and its implementation on multi-core CPUs
and many-core GPUs are given in [27].

For the first experiment, we used four well-known bench-
mark scenarios from OMPL, shown in Fig. 4. These planning
problems vary; some have narrow passages and are more
challenging than others.

For each benchmark, we evaluate the performance of
our different GPU-based planner implementations, the GPU-
based AND parallel RRT and the parallel Poisson-RRT with
the adaptive sampling. We compare the GPU-based planners
with the following existing CPU-based RRT variant algo-
rithms available in OMPL and the details of the comparison
are given in [27]:
• Standard RRT (RRT-Extend) [2] : Sequential RRT that

uses random uniform sampling.
• RRT-Connect [9] : Bidirectional algorithm that expands

trees from both the initial and the goal configurations.
• Lazy-RRT [34] : Algorithm that defers collision checks

until it finds a solution.
• pRRT [17] : AND parallel RRT algorithm.
The performance of RRT-based planning algorithms is

governed by the maximum extension distance ε. A smaller
ε needs to generate more nodes to find the solution, while a
larger ε causes more failures in the local planning. Similarly,
the performance of the Poisson-RRT algorithm is affected by
the radius of the precomputed Poisson-disk samples r. We
set the ε for different benchmarks using the default OMPL
computation, which is proportional to the workspace size of
the benchmark. We set r = 2

3ε for Poisson-RRT algorithms.
The mean and standard deviation of the total time taken

by the planner are shown in Table I. The means and standard
deviations are computed from 100 trials for each benchmark.
Fig. 5 shows the parallel algorithm’s planning-time speedup

CPU-based GPU-based (32 threads)
of threads single-threaded 8 threads 32 threads
Algorithm RRT RRT-Connect LazyRRT Poisson-RRT pRRT pRRT Poisson-RRT
Benchmark Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.

Easy 0.34 (0.33) 0.12 (0.14) 0.12 (0.09) 0.37 (0.48) 0.18 (0.15) 0.04 (0.04) 0.03 (0.03)
Cubicle 2.31 (0.84) 0.53 (0.09) 81.54 (43.07) 4.03 (1.49) 0.59 (0.31) 0.63 (0.35) 0.31 (0.36)

AlphaPuzzle 32.76 (13.54) 19.92 (14.73) 72.72 (71.74) 27.23 (27.83) 6.69 (5.28) 1.93 (1.22)) 1.31 (1.28)
Apartment 191.79* (89.42) 20.15 (20.74) 11.55 (12.18) 72.54 (62.01) 126.68 (69.94) 19.97 (7.33) 11.88 (7.95)

TABLE I: Performance of RRT-based planning algorithms on different benchmarks. We report planning time for each case. The mean and standard deviation
are computed from 100 trials on each benchmark. CPU-based pRRT utilizes 8 threads to fully exploit the 8-core CPU. GPU-based algorithms use 32
threads for the computation. *RRT algorithm cannot find solution in some instances and those are taken in account in computing the average.

0

5

10

15

20

25

Easy Cubicle AlphaPuzzle Apartment

Sp
e

e
d

 u
p

RRT (Single CPU core)

pRRT (CPU AND Parallel RRT)

GPU AND Parallel RRT

GPU Poisson-RRT

4.9x

12.1x

6.4x

24.9x

16.1x

8.1x

3.6x

16.9x

9.6x

1.9x
3.9x

1.5x

Fig. 5: Speedup of GPU-based algorithms from the original RRT algorithm,
which uses a single CPU core. GPU-based Poisson-RRT improves the
performance of CPU-based algorithm up to 24 times.

Precomputed
Sample Radius

Precomputed
Samples

Precomputation
Time (s)

Run-time
Samples

Planning
Time (s)

Adaptive
Sampling

256 7.821 0.003 48.201 0.079
128 40.780 0.008 17.636 0.029
64 264.016 0.091 60.371 0.150
32 2383.558 1.280 407.659 0.430
16 16534.969 17.818 393.186 0.546

Uniform
Sampling

128 40.780 0.008 0 22.284
64 264.016 0.091 0 1.724
32 2383.558 1.280 0 0.436
16 16534.969 17.818 0 1.340

TABLE II: Performance of Poisson-RRT algorithm with different sample
radii for ‘Easy’ benchmark (Fig. 4(a)). We compare the planning time of
our adaptive sampling approach with a planner that only uses precomputed
samples. We observe improved performance with our adaptive sampling
approach.

on the OPML benchmarks as compared to the original
CPU-based RRT algorithm, which uses a single core. In
general, our GPU-based Poisson-RRT is faster than CPU-
based algorithms, providing up to 25X speedup over the
original RRT algorithm [27].

In the next experiment, we compared the planning perfor-
mance of precomputed Poisson-disk samples using different
radii. We also compare our adaptive-sampling planners’
planning time to that of the samplers using only the precom-
puted Poisson-disk samples. The result for benchmark ‘Easy’
(Fig. 4(a)) is shown in Table II. The uniform sampling plan-
ner has the best performance when the sample radius is 32,
but the adaptive sampling planner shows better performance
with bigger radii; this indicates that our adaptive-sampling
approach improves the performance by generating fewer
samples. The result also shows that a too-small sample radius

decreases the planning performance due to the exponential
increase in the number of samples.

VI. LIMITATIONS, CONCLUSIONS, AND FUTURE WORK

In this paper, we have presented a new RRT-based motion
planning algorithm based on Poisson-disk sampling. It uses
an adaptive maximal Poisson-disk sampling approach to
reduce the number of nodes in the resulting tree and explore
the free space. Our algorithm is based on the RRT motion-
planning algorithm and exploits the multiple cores on GPUs.

Our algorithm has some limitations. The maximal Poisson-
disk sampling algorithm that we used may require a large
amount of memory to execute its precomputation step in
high-dimensional spaces, especially when r is small. Our
current formulation takes into account only collision-free
constraints, not non-holonomic or dynamic constraints. We
only observe good speedups in challenging scenarios and in
the parallel version of the algorithm.

There are many avenues for future work. The performance
of our planning algorithm can be considerably improved by
various optimizations, including bidirectional search similar
to that used by RRT-Connect. We would like to investi-
gate techniques for automatically computing the optimal r
for Poisson-disk sampling, especially for higher-dimensional
problems. It would be useful to take into account non-
holonomic constraints.

REFERENCES

[1] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580,
1996.

[2] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[3] S. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. Amato,
“A scalable method for parallelizing sampling-based motion planning
algorithms,” in International Conference on Robotics and Automation,
2012, pp. 2529–2536.

[4] E. Plaku and L. Kavraki, “Distributed sampling-based roadmap of
trees for large-scale motion planning,” in International Conference on
Robotics and Automation, 2005, pp. 3868–3873.

[5] J. Pan, C. Lauterbach, and D. Manocha, “g-planner: Real-time motion
planning and global navigation using gpus,” in AAAI Conference on
Artificial Intelligence, 2010.

[6] R. L. Cook, “Stochastic sampling and distributed ray tracing,” in An
introduction to ray tracing. Academic Press Ltd., 1989, pp. 161–199.

[7] A. Glassner, An introduction to ray tracing. Morgan Kaufmann, 1989.
[8] A. Lagae and P. Dutré, “A comparison of methods for generating

poisson disk distributions,” in Computer Graphics Forum, vol. 27,
no. 1. Wiley Online Library, 2008, pp. 114–129.

[9] J. Kuffner Jr and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in International Conference on Robotics
and Automation, vol. 2, 2000, pp. 995–1001.

[10] A. Yershova, L. Jaillet, T. Simon, and S. M. LaValle, “Dynamic-
domain RRTs: Efficient exploration by controlling the sampling do-
main,” in International Conference on Robotics and Automation, 2005,
pp. 3867–3872.

[11] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. Kuffner,
“Bispace planning: Concurrent multi-space exploration,” in Robotics:
Science and Systems, 2008.

[12] S. Rodriguez, S. Thomas, R. Pearce, and N. Amato, “Resampl: A
region-sensitive adaptive motion planner,” in Algorithmic Foundation
of Robotics VII, S. Akella, N. Amato, W. Huang, and B. Mishra, Eds.,
2008, pp. 285–300.

[13] A. Shkolnik and R. Tedrake, “Sample-based planning with volumes
in configuration space,” 2011, coRR, vol. abs/1109.3145.

[14] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[15] S. Carpin and E. Pagello, “On parallel rrts for multi-robot systems,”
in Italian Association for Artificial Intelligence, 2002, pp. 834–841.

[16] I. Aguinaga, D. Borro, and L. Matey, “Parallel rrt-based path planning
for selective disassembly planning,” International Journal of Advanced
Manufacturing Technology, vol. 36, no. 11, pp. 1221–1233, 2008.

[17] D. Devaurs, T. Siméon, and J. Cortés, “Parallelizing rrt on distributed-
memory architectures,” in International Conference on Robotics and
automation, 2011, pp. 2261–2266.

[18] J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing
the rrt and the rrt,” in International Conference on Intelligent Robots
and Systems, 2011, pp. 3513–3518.

[19] A. Lagae and P. Dutré, “A procedural object distribution function,”
Transactions on Graphics, vol. 24, no. 4, pp. 1442–1461, 2005.

[20] M. Ebeida, A. Davidson, A. Patney, P. Knupp, S. Mitchell, and
J. Owens, “Efficient maximal poisson-disk sampling,” Transactions
on Graphics, vol. 30, no. 4, p. 49, 2011.

[21] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[22] H. Niederreiter, Quasi-Monte Carlo Methods. Wiley Online Library,
1992.

[23] R. Bohlin, “Path planning in practice; lazy evaluation on a multi-
resolution grid,” in Intelligent Robots and Systems, 2001. Proceedings.
2001 IEEE/RSJ International Conference on, vol. 1. IEEE, 2001, pp.
49–54.

[24] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.

[25] M. Pivtoraiko and A. Kelly, “Differentially constrained motion replan-
ning using state lattices with graduated fidelity,” in Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference
on. IEEE, 2008, pp. 2611–2616.

[26] E. Kushilevitz, R. Ostrovsky, and Y. Rabani, “Efficient search for
approximate nearest neighbor in high dimensional spaces,” SIAM
Journal on Computing, vol. 30, no. 2, pp. 457–474, 2000.

[27] C. Park, J. Pan, and D. Manocha, “Parallel RRT using Poisson-disk
sampling,” Department of Computer Science, University of North
Carolina at Chapel Hill, Tech. Rep., 2013.

[28] M. Ebeida, S. Mitchell, A. Patney, A. Davidson, and J. Owens,
“A simple algorithm for maximal poisson-disk sampling in high
dimensions,” Computer Graphics Forum, vol. 31, no. 2, pp. 785–794,
2012.

[29] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor
search using GPU,” in Computer Vision and Pattern Recognition
Workshops, 2008. CVPRW’08. IEEE Computer Society Conference on.
IEEE, 2008, pp. 1–6.

[30] J. Pan, C. Lauterbach, and D. Manocha, “Efficient nearest-neighbor
computation for GPU-based motion planning,” in Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on.
IEEE, 2010, pp. 2243–2248.

[31] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: a hierarchical
structure for rapid interference detection,” in Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques.
ACM, 1996, pp. 171–180.

[32] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,
“Fast BVH construction on GPUs,” in Computer Graphics Forum,
vol. 28, no. 2. Wiley Online Library, 2009, pp. 375–384.

[33] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012, http://ompl.kavrakilab.org.

[34] R. Bohlin and L. Kavraki, “Path planning using lazy prm,” in Inter-
national Conference on Robotics and Automation, vol. 1, 2000, pp.
521–528.

