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Fig. 1. A real-time interactive virtual environment where striking objects produces dynamic sounds using our method (left); a ball
striking plates of various sizes plays a melody (middle); and a set of wind chimes blowing in a virtual forest (right).

Abstract— Modal sound synthesis has been used to create realistic sounds from rigid-body objects, but requires accurate real-world
material parameters. These material parameters can be estimated from recorded sounds of an impacted object, but external factors can
interfere with accurate parameter estimation. We present a novel technique for estimating the damping parameters of materials from
recorded impact sounds that probabilistically models these external factors. We represent the combined effects of material damping,
support damping, and sampling inaccuracies with a probabilistic generative model, then use maximum likelihood estimation to fit a
damping model to recorded data. This technique greatly reduces the human effort needed and does not require the precise object
geometry or the exact hit location. We validate the effectiveness of this technique with a comprehensive analysis of a synthetic dataset
and a perceptual study on object identification. We also present a study establishing human performance on the same parameter
estimation task for comparison.

Index Terms—Damping modeling, sound synthesis, modal analysis, statistical modeling

1 INTRODUCTION

Interactive virtual environments are more effective when they maintain
a strong sense of immersion. To preserve immersion, objects colliding
with one another or being impacted by a user should produce different
sounds depending on the location, direction, and magnitude of impact.
For rigid objects such as tables, dishes, and dice, a physically-based,
real-time technique, modal sound synthesis, can be used to analyze
the vibrations of the objects and produce dynamic impact sounds [28].
Modal sound synthesis improves a user’s immersion, but it requires
accurate real-world material parameters. Damping, which determines
the rate at which vibrations and sound decay over time, is crucial
in differentiating between different materials. Some parameters, e.g.
density and Young’s modulus, can be looked up for known materials,
but damping properties can be difficult to identify and parameterize.

Traditionally, material parameters are selected through laborious hu-
man hand-tuning. We present a study evaluating human efficiency and
precision at this task in section Sect. 5.2. Even with a simple, easy-to-
use GUI optimized to minimize during modal analysis, the study shows
that significant human effort is needed to select accurate parameters.
The study also finds that humans are able to distinguish between sounds
with minor differences in material parameters, suggesting that material
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parameters from a library may not sufficiently reproduce the sound of a
specific real-world object.

Automated material parameter estimation provides a means to es-
timate the material parameters of a specific object while reducing re-
quired human effort. Given an object made of a particular material, we
can strike the object and record the resulting sound. Existing methods
use the sound, along with mandatory knowledge about the shape and
properties of the struck object, to estimate a number of material param-
eters [33]. The material parameters can be applied to sound synthesis
of any virtual object, “virtualizing” the audio characteristics of a given
material in the physical world. While recent techniques have been able
to estimate material damping properties, they assume minimal effect
on damping from external factors.

For example, an object struck for the purposes of recording either
needs to be held by hand or left to rest on another surface. The interface
between the object and its support will introduce additional damping.
To account for this support damping, recordings must be made with
supports that introduce minimal damping, requiring a carefully con-
trolled recording environment using special support [29], e.g. strings
or rubber bands, to suspend the object [32]. Other factors that affect
estimated damping values, such as complex modes of vibration, back-
ground noise, and accumulated error during estimation are assumed by
prior work to be minimized. Satisfying all of the assumptions made by
prior work requires significant human effort.

In this paper, we present a practical and efficient probablistic algo-
rithm to estimate material damping properties directly from recorded
impact sounds that accounts for these different factors affecting damp-
ing, reducing their effects on the estimated parameters. Unlike previous
work [32], this method is fast and requires no prior knowledge about
the recorded object’s geometry, size, or hit location(s). We are able to
virtualize the specific materials of a given object in the real world and
easily transfer these audio parameters to other synthetic objects in the
virtual scene. Our method requires significantly less human time and
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Fig. 2. Our pipeline for estimating material parameters from recorded audio and using the parameters to synthesize sound for objects of the same
material. Inputs are in green with italic text. If the object and hit points are unknown, the pipeline can begin with recorded sounds instead.

effort to acquire material damping parameters than previous methods,
while producing parameters of similar quality. The key contributions
of this work include:

• A new probabilistic material damping model that independently
considers each source of damping (Sect. 4.4);

• Application of this probabilistic model to acquisition of material
damping parameters for synthesizing virtual sounds (Sect. 4.5);

• A study evaluating human effectiveness at manual estimation of
material parameters from recorded audio clips (Sect. 5.2); and

• Quantitative (Sect. 5.3) and perceptual (Sect. 5.4) evaluation of
captured damping parameters for virtualized sounds.

We validate our method through comparison between estimated
and ground-truth damping values, an auditory perceptual study, and
comparison against alternative techniques. Fig. 1 demonstrates our
system in several complex virtual environments consisting of real-time
interaction with virtual objects of different materials. Figure 2 shows
the full pipeline for estimating material parameters and using them to
synthesize sound.

2 PREVIOUS WORK

Parameter estimation has been extensively studied across a diverse
engineering and scientific domains, as well as in computer graphics.
We focus our discussion only on works related to sound synthesis.

Sound synthesis techniques attempt to recreate realistic audio, while
providing variance between sounds so that each is distinct and natural.
For offline applications, wave-based methods produce high-quality
sound [41], though in this paper we focus on real-time methods for
interactive applications. Strings and drums can be simulated through
physical models, such as the Karplus-Strong algorithm [20] and digital
waveguide synthesis [36].

For simple objects with known analytical modes of vibration, the fre-
quencies of their modes can be used to synthesize impact sounds [39].
For more complicated rigid objects, a discretized model of the object
can be used to approximate the vibrations of the modes and synthe-
size sound for any conceivable object [10, 28]. Interactions between a
sounding object and a striking tool can be modeled to better simulate
the attack of the sound [1, 4]. Simulation of acoustic radiation can help
spatialize synthesized modal sound [18], and can be approximated for
interactive applications [23]. Acceleration of synthesis can be achieved
by culling modes based on perceptual metrics [30], by performing effi-
cient vectorization [40], through parallelism on CPUs and GPGPUs [6],
and by exploiting geometric symmetries [22].

In order to create an object that vibrates at user-selected frequencies,
the unwanted frequencies can be reduced by resting the object on foam
blocks [5]. A contact model can be used to modify the damping matrix
for sound synthesis based on forces applied by other objects [44].

Damping has long been a concern in the construction of buildings
and other structures [27], but also plays a significant role in modal
sound synthesis. There are a number of ways to model the physical
phenomena behind damping to varying degrees of accuracy [35, 42].
Various damping models describe the damping of an object as a function
of its mass and stiffness [2].

Statistical modeling of sound has found applications in summariz-
ing and analyzing sound. The late reverberations of sounds in rooms
have been modeled as Gaussian noise, whose summary statistics convey
properties of the environment [38]. It has also been found that humans
inherently use summary statistics to understand sounds [26].

Studies on human perception of material in sound provide im-
portant clues about perceptually important parameters. Studies have
evaluated which parameters humans rely on for material identification,
finding that damping rate and frequency (i.e. pitch) are particularly
important [14, 21, 25]. Similar studies have focused on perception of
object size from sound [13, 15]. Material perception is also affected by
concurrent visual stimuli [12].

Estimation of material properties can be performed experimen-
tally with specialized measurement equipment [11]. Impact sounds
convey information about an object’s vibrations, but it is currently im-
possible to fully reconstruct an object from its sound without sufficient
constraints on the problem [19]. Previous analysis/synthesis techniques
model deterministic features or modes of input sounds, then apply
random variation to create plausible synthetic sounds [24, 34]. With
many audio samples at known locations on the object’s surface, the
spectral content can be interpolated to approximate the sound at an
arbitrary point [29]. Alternatively, the Young’s modulus for small parts
of the object can be individually optimized to best recreate the input
sounds [43].

These techniques produce results specific for a single object that
cannot be easily transferred to another shape. A more recent technique
focuses on estimating material parameters from a single audio record-
ing, where the resulting material parameters are not specific to any one
geometry and have more versatile applications [33]. This technique
has been extended to support optimization over arbitrary damping mod-
els [37]. However, both assume that the object geometry, its exact
dimensions, and the precise hit point are all known, which is not always
the case with pre-existing audio recordings.

3 MODAL SOUND SYNTHESIS

As an object vibrates, its surface deforms and oscillates. These oscilla-
tions produce pressure waves in the surrounding air which propagate
through the environment. Upon reaching the ear, the variation in pres-
sure over time is perceived as sound. The standard range of human
hearing covers sound waves between 20 Hz and 20 kHz. In this section,
we briefly review a popular sound synthesis technique and explain the
need for accurate damping parameters.



3.1 Modal Analysis
Linear modal sound synthesis is a common technique to produce the
modal components of a sound. We review only the most relevant
details in this section. A more detailed explanation can be found in
supplementary material Section 1, but complete derivations can be
found in prior work [28, 37]

Modal sound synthesis assumes that an object’s vibrations can be
broken down as a linear combination of its modes of vibration. Each
mode of vibration i describes vibrations at a natural frequency ωin
with an exponential damping rate di. Each object has a different set
of modes depending on the object’s shape and material. Modal sound
synthesis uses this information about shape and material to perform an
eigenanalysis of the object to determine the set of frequencies. On the
other hand, the damping rate for each mode is determined as a function
of that mode’s frequency and a set of material damping parameters.

3.2 Material Damping Modeling
There are a number of material damping models that model the rela-
tionship between frequency and damping. These model damping of
vibrations as a result of the object’s material, not its geometry. While
many damping models are possible, only a subset of models avoid
complex modes which are difficult to model and slow to evaluate in
real-time.

The most common damping model for sound synthesis is Rayleigh
(proportional) damping [31]. In this paper, we refer to the values
ci = 2di, as c arises more naturally from the mathematical formulation
and is more commonly used in related work. Once the frequencies of
the object’s vibration are known, the damping rate for each mode with
natural frequency ωin is:

ci = α1 +α2ω
2
in. (1)

In Caughey damping, each ci is a polynomial function of ω2
in to an

arbitrary degree [7, 8]. Generalized Proportional Damping (GPD) is an
even more general model, where each ci can be an arbitrary function
of ω2

in as long as the function is analytical and continuous near each
ω2

in [3].
We consider one additional GPD-derived damping model: a hybrid

model incorporating Rayleigh damping and a power law damping
model [37]. The damping rates are described according to the function:

ci = γ1 + γ2ω
2γ3
in . (2)

When γ1 is 0, this becomes the power law damping model, and when γ3
is 1, this becomes the Rayleigh damping model. Since previous work
has found that the optimal damping model varies depending on the
object [37], this hybrid model can model damping best represented by
Rayleigh or power law damping.

For a given damping model, the real-valued parameters (e.g. α j , γ j)
are the damping parameters which define the damping of each mode.
By varying these values, the same object can be made to sound like a
wide range of materials. Damping parameters have been shown to be
perceptually geometry-invariant for a wide range of geometries under
the Rayleigh damping model [32]; it is reasonable to assume this holds
for other damping models as well. Thus, if damping parameters can
be estimated for a metal bowl, synthesizing sound for a solid cube
with those parameters will produce a metallic sound. However, the
geometry-invariance assumption has only been thoroughly tested on
thick, very rigid objects [32], and the assumption may fail for thin-
shelled objects [9], less rigid objects, objects with loosely-coupled
points of self-collision, or objects demonstrating nonlinear vibrational
behavior.

4 PROBABILISTIC DAMPING MODELING

In order to perform the synthesis process described previously in Sec-
tion 3, we need to know the object’s geometry, Young’s Modulus,
density, Poisson’s Ratio, and damping parameters for a chosen damp-
ing model. We now consider how this information can be obtained in
the first place. The geometry can either be taken from a real-world
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Fig. 3. Features extracted from multiple impact sounds on a porcelain
plate. λ is the eigenvalue of the mode of vibration (related to the fre-
quency), while c is the rate of exponential decay. For any value of λ , there
is a range of possible d values, which can be captured in a statistical
model.

object or designed for a virtual object. Young’s Modulus, density, and
Poisson’s Ratio can be measured from real-world objects, but for many
materials these values have been published and approximate values
can be selected for synthesis purposes. Damping parameters, on the
other hand, are specific to their damping model and are difficult to find
for arbitrary materials. In this section, we present our technique for
estimating these damping parameters from recorded real-world impact
sounds.

4.1 Feature Extraction from Audio
Our technique uses multiple recorded impact sounds to estimate mate-
rial parameters. A mode that is heavily damped by external factors in
one sound may be relatively undamped in another, providing additional
information about the range of possible damping values. Our method
uses recorded impact sounds as input.

The first step in our approach is to extract the modal components of
each input sound. Assuming the sounds come from rigid objects, the
sound produced will be mostly modal and can be decomposed into a
set of features. Each feature corresponds to one mode of vibration and
can be parameterized as a damped sinusoid with a damped frequency
ωid , an initial amplitude ai, and an exponential damping coefficient di.

To extract these features, we adopt the algorithm proposed by Ren
et al. [33]. We only capture the linear behavior needed for damping
parameter estimation, but their algorithm also provides a method for
capturing the nonlinear residual effects for richer resynthesis.

See supplemental material Section 2 for a brief description and our
additional modifications to the algorithm. The most notable modifica-
tion is that we account for background noise (modeled as additive white
Gaussian noise) by estimating the amplitude of the noise floor. The
extracted (ωid ,ai,di) features are converted into pairs of (λi,ci) values,
where λi is the eigenvalue corresponding to that mode of vibration and
ci = 2di.

4.2 Distributions of Damping Values
With (λi,ci) features extracted from multiple input sounds, we now
interpret the results. Fig. 3 shows an example of features extracted from
impact sounds on a porcelain plate. Note that for any given eigenvalue
λ , there exists a range of extracted damping values. This is especially
noticeable where feature points appear as a vertical line, showing that
even the same mode of vibration may have a variable rate of decay.
These results are inconsistent with the damping models in Equation 1
and Equation 2, which propose a one-to-one mapping between λ and
c. Instead, we propose that there is significant error present in the
extracted damping value of each feature, and that error can be modeled
with a statistical distribution.



Fig. 4. A porcelain bowl struck in the same location produces different
sound when supported with a tight grip (left) or supported by resting on a
single point (right). Without accounting for the effect of the support, prior
methods would not be able to estimate accurate material parameters
from these sounds.

The prior work of Ren et al. [33] estimates damping parameters
using a least-squares metric to compare spectrograms. Statistically, a
least-squares fit of a damping model is equivalent to assuming there
is normally-distributed error around the model. We will refer to least-
squares fitting of damping models as LSQ. However, we have found
experimentally that least-squares fits tend to overestimate the mate-
rial damping parameters, and resynthesized sounds all sound heavily
overdamped.

Another notable property of Fig. 3 is the clear line of points forming
a lower bound to the data (with a few outliers). We have found experi-
mentally that a damping model fit to this lower bound curve results in
resynthsized sounds much closer to the input sounds. If the damping
model should fit the lower bound, then all error is positive and can only
increase the extracted damping values. Statistically, this indicates a
one-sided error distribution; e.g. half normal, exponential, or chi-square
distribution. Computationally, a lower bound Rayleigh damping model
can also be found as a line along the lower convex hull of the points.
We refer to lower-bound fitting of damping models as LB.

However, as can be seen in Fig. 3, outliers often appear below the
clean LB curve, and for other objects such a clean curve does not appear
in the first place. A strict LB fit will be highly sensitive to outliers, as
it must assume all error is positive. It is difficult to detect and remove
outliers in extracted feature datasets. To solve this problem, we examine
the physical sources of error in extracted damping values and construct
an appropriate statistical distribution modeling that error. Ideally, this
should produce a more robust lower bound fit which handles outliers
based on their statistical probability of occurrence.

4.3 External Damping Factors
To accurately model error in damping values, we consider a number of
physical phenomena that may affect estimates of the material damping
values. These external damping factors are distinct from the material
damping, which occurs due to the internal structure of a material.

4.3.1 Support Damping
An object’s method of support can be varied; the object could be sitting
on a desk, held in a hand, or dangling from a ceiling. In this paper, we
define a support broadly as any long-lasting contact with the sounding
object of interest, with enough friction to maintain its contact with
the object even when the object is struck. Regardless of the form of
support, some energy from the object’s vibrations will be transferred
to the support, causing additional damping. In real-world situations
where the object is unlikely to be minimally supported, the additional
damping significantly affects the sound.

Refer to Figure 4 for an example of the effect of the support on
the resulting sound. A tight grip on the bowl’s rim produces a more
damped sound compared to gentle balancing on fingertips.

4.3.2 Complex Modes
Complex modes of vibration are slight deviations from normal mode
behavior. Unlike normal modes, complex modes are not linearly sep-
arable: energy may be transferred between modes while vibrating. A
mode that loses energy to others will produce higher damping values,

while a mode that gains energy from others will produce lower damping
values. Most systems only have slightly complex modes (i.e. there is
little energy transfer), so normal modes are a close approximation [17],
but not an exact one. Since we make the assumption of normal modes,
the slight transfers of energy are a source of error in damping value
estimates.

4.3.3 Background Noise
Background noise in recorded sounds is too variable to realistically
model. The feature extraction step of the method is designed to specif-
ically extract modal features from the sound. This mostly eliminates
persistent “hums” which do not match the modal exponential-decay
model. We modify the feature extraction method to account for additive
white Gaussian noise (Sect. 4.1). This further removes the influence
of persistent background noise, though there may still be some remain-
ing Gaussian (normal) error in the spectrograms and their resulting
extracted damping values.

Acoustic reflections and reverberations from room acoustics are
confounding factors. Without knowing the properties of the room
acoustics, we cannot separate the effect of a damping material from
the effect of the acoustics. For our model, we still assume minimal
room reverberations, but some small sources of transient noise or early
reflections may be appropriately modeled by normally distributed error.

4.3.4 Feature Extraction Error
The feature extraction step itself is not perfect; some error is introduced
in the process. For example, spectrograms have limited spectral and
temporal resolution, and the Fourier transform’s assumption of peri-
odicity in each window is an approximation. The discretization of the
spectrogram will produce small amounts of error. Sidelobes resulting
from Fourier transforms may appear as separate peaks or affect the
estimated damping rate of nearby modes.

4.3.5 Acoustic Radiation
Uneven acoustic radiation from the object may mean that different
microphone placements will result in different initial mode amplitudes.
This can be accounted for by keeping the object and microphone sta-
tionary during an impact sound. However, the relative positions of
the microphone and object do not need to be fixed across all input
sounds. Moving the microphone between sounds will not change the
frequencies or exponential rates of decay, and thus does not need to be
accounted for in our model.

4.3.6 External Factor Summary
Current damping parameter estimation techniques do not explicitly con-
sider these factors, instead attributing all damping to the material. [37].
The resulting damping parameters therefore model the combined effect
of the material and the recording environment. These parameters may
not properly transfer to an object of the same material in a different
environment. This limits the sounds which can be used for accurate
damping parameter estimation: the sounds must be recorded in a care-
fully controlled setting. With a thoroughly robust technique that can
separately model environmental factors, we can reduce the factors’
impact on the estimated parameters. The external factors cannot be
fully removed, but reducing their impact may result in more physically-
accurate material parameters.

4.4 Generative Model for Combined Damping
We now introduce a generative model for sampling damping values.
The model defines the probability distribution for an extracted damping
value ci, given the eigenvalue λi and a set of parameters θ . θ contains
parameters representing both the material and the environment. The
material damping parameters, such as α1 and α2, are referred to as
θd for generality. The model can be written as p(ci|λi,θ), and asks,
“given a known material and environment, what is the probability of
measuring any particular damping value?”

The value ci is a damping value obtained from the feature extraction
step. In the absence of any external factors, ci would only consist of
material damping. To account for the external factors, we model ci



as a random variable based on the sum of normally and exponentially
distributed random variables.

4.4.1 Normal Distribution
A normal distribution models the effect of some external factors. The
normal distribution accounts for (1) energy transfer due to complex
modes, (2) small sources of background noise, and (3) error in feature
extraction due to spectrogram discretization. We assume that each
of these factors are an additive, normally distributed random variable.
The sum of these normally distributed factors (cn

i ) is also normally
distributed:

p(cn
i |λi,θd ,σ) = N

(
c(λi,θd),σ

2
)

(3)

The distribution is centered on the damping function c evaluated at an
eigenvalue λ with damping parameters θd , with a standard deviation σ

resulting from the combination of factors.

4.4.2 Exponential Distribution
An exponential distribution models the effect of the object’s support.

p(ce
i |η) = Exp(η) = ηe−ηce

i . (4)

ce
i is the resulting exponential damping resulting from the object’s

support, while η is the rate parameter of the exponential distribution.
This distribution is an approximation, but in attempting to create a
robust lower bound method, it serves the role of a one-sided distribution
fitting to the lower bound of damping values.

Zheng and James defined a model to approximate additional per-
mode damping based on contacts with other objects [44]. However, a
statistical analysis of this model is highly dependent on the distribu-
tion of elements of the matrix of eigenvectors φ . We are not aware
of any prior work that has attempted to statistically model the distri-
bution of eigenvector matrix φ elements, and our own analysis using
Kolmogorov-Smirnov goodness-of-fit tests found no probable common
distributions. In the absence of a more well-defined model and with the
main requirement of a one-sided distribution satisfied, the exponential
distribution was selected empirically based on extracted feature data.

4.4.3 Exponentially Modified Gaussian
The combined damping value ci can then be modeled as the combina-
tion of (1) the normally-distributed factors cn

i due to complex modes,
noises, and other sources of errors, and (2) the exponentially-distributed
factor ce

i due to the support damping. Assuming that the factors are
independent (for mathematical feasibility), they can be formulated as
two separate sources of exponential decay of the mode amplitude zi:

zi(t) = aie−cn
i te−ce

i t cos(ωidt) (5)

= aie−(c
n
i +ce

i )t cos(ωidt). (6)

The probability density function of the sum of the normal and ex-
ponential distributions (cn

i + ce
i ) is the convolution of their individual

probability density functions. The resulting distribution is an exponen-
tially modified Gaussian (EMG) distribution. EMG distributions have
been used extensively in chromatography [16], but have also found uses
in other domains. The probability density function for the EMG is:

p(ci|λi,θd ,σ ,η) =
η

2
e

η

2 (2c(λi,θd)+ησ 2−2ci) erfc(si) (7)

si =
c(λi,θd)+ησ2− ci√

2σ
, (8)

where erfc is the complementary error function, defined as:

erfc(x) = 1− erf(x) =
2√
π

∫
∞

x
e−y2

dy. (9)

This defines the probability of observing an extracted damping value,
given the material damping and environmental damping parameters.
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Fig. 5. Parameter estimation on sound features. Each feature consists of
an eigenvalue λi and its corresponding damping coefficient ci. Estimated
Rayleigh damping curves are plotted, with the variation from the curve
caused by external factors. Our method, using the EMG distribution,
provides the closest fit to the lower bound of the data while being relatively
unaffected by outliers.

This is the complete generative model for damping values, encompass-
ing multiple sources of damping and errors. Since only the modes’
frequencies and damping values are needed for this model, we do not
need to assume that the mode shapes remain unchanged. The full set of
parameters θ is (θd ,σ ,η), which together define the distribution.

4.5 Parameter Estimation

With the generative model established, we now describe the estima-
tion of damping parameters. We estimate the parameters θ through
maximum likelihood estimation (MLE). The generative model above
uses known parameters to produce data from a distribution. MLE is an
optimization method that reverses the process: use known data from a
distribution to produce best-fitting parameters. Given a set of extracted
(λi,ci) pairs as data and a set of parameters, we can use the generative
model to compute the log-likelihood of the data given the parameters:

log p(d|λ ,θd ,σ ,η) = ∑
i

log
(

η

2

)
+ηc(λi,θd)+

η2σ2

2
−ηci + log(erfc(si)) . (10)

Using the log-likelihood simplifies computation, removing expo-
nentiation and turning a product of probabilities into a sum of log
probabilities. We want to find the parameters which maximize this log-
likelihood—and hence also maximize the original probability. These
maximizing parameters are those which best explain the extracted data,
“fitting” the probability distribution to the data. We compute the analyt-
ical gradient of the log-likelihood function and perform gradient ascent
to find these optimal parameters.

We compute the full average derivative for the n (λi,ci) samples.
We define a term ti and use the scaled complementary error function



Fig. 6. Three objects from our impact sound dataset: a porcelain cup
(left), a small glass tile (center), and a wood block (right). Note the ways
that each object is supported. These supports interfere with damping
parameter estimation.

erfcx(si) = exp(s2
i )erfc(si) to simplify notation:

ti =
−2

erfc(si)
√

π
e−s2

i =
−2

erfcx(si)
√

π
. (11)

The derivatives for η and σ must be computed for all damping
models. Their derivatives are as follows:

∂ log p
∂η

=
n
η
+nησ

2 +∑
i

c(λi,θd)− ci + ti
σ√

2
, (12)

∂ log p
∂σ

= nλ
2
σ +∑

i
ti

(
ησ2 + ci− c(λi,θd)√

2σ2

)
. (13)

The derivatives for θd will depend on the damping function itself. We
will present the derivatives for Rayleigh damping here; derivatives for
alternative models are not difficult to compute. For Rayleigh damping’s
linear c = α1 +α2λ function, the derivatives for α1 and α2 are:

∂ log p
∂α1

= ηn+∑
i

ti√
2σ

, (14)

∂ log p
∂α2

= ∑
i

ηλi +
tiλi√

2σ
. (15)

With the derivative established, we can perform standard gradient
ascent until convergence. The final damping parameters in θd are
the optimal parameters for the material of the struck object. These
damping parameters can be used to represent the recorded material
for modal sound synthesis, with other effects (e.g. room acoustics,
supports) modeled separately [44].

Figure 5(a) shows features extracted from 19 impact sounds on a
metal plate, while Figure 5(b) shows features extracted from 40 impact
sounds on a glass mug. The figure compares our EMG fit with MLE
optimization against the baseline LSQ and LB methods (see Sect. 4.2).
In each case, LSQ overfits the data, while LB is strongly affected by
low outliers and underfits the data.

Overall, The effect of external damping factors cannot be entirely
removed, and in real-world situations the extracted damping values
may all be much higher than the material damping function alone. This
positively biases the estimator: the estimated parameters will often
be larger than the ground truth. By accounting for external factors,
this estimator has less bias than other methods, and is therefore more
accurate.

5 RESULTS

We have implemented the damping parameter estimation method de-
scribed in this paper and tested its effectiveness through both numerical
analysis and perceptual validation. With this method, the process for
material damping parameter estimation involves striking an object re-
peatedly, ideally with varying hit locations and support methods. This
approach has less strict requirements about the recording environment
than previous work; sounds can be recorded in a quiet room, as long
as there are few transient sounds and the room is not heavily rever-
berative. Full recording and implementation details can be found in
supplementary material Section 5.1.
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Fig. 7. Plot of log-likelihood maximization converging over the course of
parameter estimation. Optimization was performed on 752 frequency-
damping points extracted from porcelain plate impact sounds, and con-
verged after 39,009 iterations for a total of 16.3s in an one-time prepro-
cessing.

Fig. 8. A simulated porcelain bowl is struck in multiple locations, with and
without a supporting grip.

We have recorded numerous impact sounds on a set of fifteen rigid
objects, where the hit points and the method of support are documented
for each impact. Figure 6 shows a sample of these objects, with various
hit locations and methods of support. There are an average of nearly
50 impact sounds sampled per object. All objects were supported by
hand, often either with an edge being pinched between two fingers or
the center resting on a few fingertips.

We implemented the parameter optimization algorithm in Python
and NumPy. On a laptop with a dual core 2.53 GHz Intel Core i5-
540M processor, optimization over thousands of features from tens
of input sounds and hundreds of thousands of iterations takes 1-5
minutes to complete. See Figure 7 to see an example of convergence
behavior. Note that we are attempting to maximize the log-likelihood,
as the parameters which maximize the log-likelihood also maximize the
underlying probability. Upon convergence, the optimized θd parameters
model the damping properties of the recorded material.

Table 1 contains results from extraction on some of the objects.
When γ3 = 1, the model is identical to Rayleigh damping. Even small
changes in γ3 can have a large impact on the resulting damping. For ex-
ample, a 10 kHz mode on the Porcelain plate has a damping coefficient
d = 20 with the provided parameters (γ3 = 1.027), but changing γ3 to
exactly 1 reduces the damping coefficient to d = 12.

In general for these damping models, larger parameters create virtual
materials with more damping and shorter sounds. For example, the
two objects with the most damping are the wood block and plastic
bowl, whose materials are known to be naturally heavily damped. The
porcelain plate, travertine tile, and glass tile all had similar estimated
parameters.

5.1 Real-time Synthesis and Rendering
Each sounding object is preprocessed using estimated material parame-
ters, then synthesis of sounds can be performed in real time. During
synthesis, support damping is simulated when appropriate; refer to sup-



Porcelain Plate Travertine Tile Wood Block Steel Wrench Plastic Bowl Glass Tile

Rayleigh α1 3.9 1.3 39.0 2.3 39.8 2.0
α2 1e-8 2.5e-8 1.3e-7 6.9e-8 1.3e-7 7.8e-8

Hybrid
γ1 3.9 1.3 39.0 2.4 34.83 1.9
γ2 5.2e-9 2.5e-8 2.1e-7 5.5e-8 4.1e-7 1.5e-7
γ3 1.027 1.001 0.978 1.011 0.95 0.974

Table 1. Damping parameters estimated using our technique. The listed objects are a subset of those used in our impact sound dataset. These
parameters are described in Section 3.2. When γ3 = 1, the remaining hybrid damping parameters are equivalent to their Rayleigh damping
counterparts. These parameters can be used to virtually recreate the material of the real-world object.

plemental material Section 4. Figure 1 shows multiple scenes from our
real-time demo, with multiple objects of various shapes and materials.
Figure 8 shows another scene, where a bowl is supported by either
strings or a hand, producing different sounds depending on the hit point
and support type.

5.2 Human Hand-Tuning Evaluation

In the absence of an automated method for damping parameter estima-
tion, parameters have traditionally been estimated by hand. We present
a study evaluating the effectiveness of human damping parameter es-
timation, using human subjects to hand-tune material parameters for
multiple objects. Specifically, we are interested in the tuning of the
damping parameters and the specific modulus, defined as the ratio of
Young’s modulus to density. We seek to evaluate the distributions of
subjects’ selected material parameters. For example, are subjects able
to agree on a single unique set of material parameters, and if so, to what
degree of precision? We also seek to determine the time and sound
samples needed for subjects to reach their conclusions.

5.2.1 Experimental Setup

We constructed an easy-to-use GUI enabling interactive adjustment of
material parameters for sounds produced through modal sound synthe-
sis. For each object in the study, we created a corresponding 3D model
by hand (a laborious process requiring precise measurements) and per-
formed modal analysis on that model once (a few hours of computation
time). The damping parameters and specific modulus for an object can
be adjusted as a post-processing step, without needing to repeat the
lengthy modal analysis step. With these optimizations, resynthesis with
modified parameters took less than two seconds, allowing for rapid
iteration. In the interface, each parameter was controlled with a slider,
with a range of plausible realistic values presented on normalized scales
from 0–100.

Subjects were recruited primarily through mailing lists and were not
required to have any background in parameter tuning or impact sound
analysis. Subjects were compensated financially for their participation.
Subjects were given real-world objects, placed on small foam blocks
to reduce support damping. For each object, the subjects’ task was
to tune material parameters such that the synthesized sound produced
by the application most closely matched the sound they heard when
striking the real object. Subjects were instructed to find the most
accurate parameters possible, regardless of the time needed. Subjects
first performed this task with a training object, in order to reduce
learning effects. The six objects evaluated were all disk-shaped objects
of approximately the same radius and thickness. Every subject hand-
tuned material parameters for all six objects in a random order.

The study was divided into two sections. The first 20 subjects hand-
tuned three parameters for each object: the two Rayleigh damping
parameters and the specific modulus. The following 20 subjects hand-
tuned two parameters for each object: just the two Rayleigh damping
parameters. For the two-parameter section, the specific modulus was
set to the mode of the subject-selected specific moduli from the three-
parameter section. The three-parameter section models the real-world
case where all three parameters must be picked in order to virtualize an
object.
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Fig. 9. Distributions of human-tuned material parameters for wood and
porcelain discs. α1 and α2 are Rayleigh damping parameters, E/ρ is
the specific modulus, and all parameters were tuned on normalized
scales from 0–100. The observed distributions indicate that subjects had
difficulty finding a unique optimal solution for the specific modulus, and
for α1 in the case of highly-damped objects.

5.2.2 Results and Analysis

We first consider the distributions of subjects’ selected material param-
eters. Fig. 9 shows results from the three-parameter section of the study
for a few selected objects: a wood disc and a porcelain disc. For highly
reverberant objects such as the porcelain disk, subjects could generally
agree on Rayleigh damping’s α1 parameter for each object. However,
for highly damped objects such as the wood disk, α1 responses were
less consistent. The distributions of α2 parameters for each object show
agreement between subjects, indicated by the relatively low standard
deviations and frequently unimodal distributions. The specific modulus,
which modifies the pitch of the synthesized sound, often resulted in
multimodal distributions.

We also consider the time and number of sounds needed for subjects
to reach their conclusions. Fig. 10 contains histograms for the amount
of time and number of synthesized sounds needed for subjects to finalize
their selections. The median time needed was 165 s to tune three
parameters, and 145 s to tune two parameters. The median number
of synthesized sounds needed was 35 to tune three parameters, and
28 to tune two parameters. The range of times (33–614 s) and sounds
(5–182) was highly variable, and the effect of parameter count on times
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Fig. 10. Box-and-whisker plots of the time and number of synthesized
sounds needed for subjects to reach their final hand-tuned material
parameters, with deviant observations plotted as outliers. Our method is
an automated version of the 2-parameter study, and significantly reduces
the human labor needed.

and sounds did not reach statistical significance by t-test.
Human hand-tuning requires around 145 s and 28 sounds per object,

requiring dedicated human attention for the entire duration. Hand-
tuning also requires creating an accurate 3D model of the object and
performing modal analysis, possibly adding hours of extra human ef-
fort. In contrast, our automated method operates effectively with 10–20
sounds and does not require a 3D model of the object. Parameter es-
timation then takes a few minutes, during which no human attention
is required. Overall, our method significantly reduces the amount of
human labor needed to create virtualized objects. Compared to prior
work, our method reduces human labor by not requiring carefully con-
trolled recording environments, creation of a 3D model, and knowledge
of object geometry and hit points.

5.3 Synthetic Validation
Synthetic validation provides a numerical comparison against ground-
truth damping parameters. We synthesized a variety of sounds with
known damping parameters and passed the resulting sounds through the
parameter estimation process to see if the original ground-truth values
could be recovered using our algorithm. Sounds were synthesized from
the geometry of 18 geometric models. Five materials were chosen
by randomly sampling material parameters from a range of realistic
values. For each object, ten support points were sampled at random
on the surface of the object, each with a random amount of contact
force. Then, 100 sounds were synthesized for each combination of
object and material. Each sound sampled its impact point randomly
on the exterior surface and picked one support point to be active. The
resulting sounds were passed through the feature extraction process for
Rayleigh damping, and extracted features from a varying number of
sounds were used to estimate the original parameters.

Parameter estimation was performed with three different estimators:
EMG (our method, see Sect. 4.4) and the two baselines LSQ and LB
(see Sect. 4.2). Direct comparison against the algorithm of Ren et
al. [33] is infeasible due to the significant differences in inputs and
outputs. However, their method will produce results most similar to
the least squares (LSQ) estimator. We compared the error between the
ground-truth parameters and the estimated parameters while using a
varying number of input sounds. For each tested number of impact
sounds, 30 different sets of sounds of that cardinality were sampled,
and the resulting errors averaged.

5.3.1 Discussion
Fig. 11 shows the relative error for each parameter and each estimator.
For all materials in this synthetic data, both the EMG and LB estimators
significantly outperformed the LSQ estimator (p < .05). With real-
world data, the EMG and LB estimators more frequently decouple, as
the EMG estimator’s statistical model better adapts to noise and other
artifacts of recording. These synthetic sounds, without noise or other
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Fig. 11. As the number of sounds used for parameter estimation increase,
error in Rayleigh damping parameter α1 decreases. Overall, our method
outperforms the other two alternatives.

effects, are the ideal situation for the LB estimator, and do not leverage
the full capabilities of the EMG estimator.

α1 estimates have minimal error, especially with larger amounts of
data. For discussion of α2 estimates, please refer to supplementary
material Section 5.3. However it is difficult to determine from strictly
quantitative results what effect any error in estimation will have on
users in a virtual environment. The actual effect of the error can be
evaluated through perceptual evaluation.

5.4 Perceptual Evaluation

Numerical comparisons against previous work are difficult since our
method is the first work to estimate damping parameters given only
input audio with no knowledge of geometry, size, or hit point. In this
study, we considered recorded real-world sounds, and sounds synthe-
sized using three sets of damping parameters: parameters from Ren et
al. [33], parameters from the human hand-tuning study (Sect. 5.2), and
parameters estimated using our method to create 4 datasets. We sought
to evaluate how well the synthesized sounds recreate the real-world
sounds. Subjects evaluated sounds individually, answering questions
about qualities of the sounds and estimating properties of the object or
impact. Synthesized sounds that more accurately recreate properties of
the real-world sounds should produces similar patterns of answers to
questions.

5.4.1 Experimental Setup

The study was conducted in an online web questionnaire, and subjects
were recruited through mailing lists and online posts, but no financial
compensation was offered. No prior experience in auditory perception
was expected. Subjects were asked to wear headphones or earbuds to
ensure a consistent auditory environment. All sounds were scaled to
the same volume, though difference in sound playback devices may
have affected perception. Subjects listened to a series of impact sounds,
answering questions about each. Variables involved are sound datasets
(4: as listed above), object shape (2: disc or rod), and material class
(5: wood, metal, plastic, glass, porcelain). All together, this produces a
total of 40 sounds to evaluate.

24 subjects participated in the study, but more specific demographic
information was not collected. Each subject listened to all 40 impact
sounds in randomized order. For each sound, subjects were asked
which object shape and material class they suspected created the sound.
Subjects also were asked to rate descriptive qualities of the sound—the
duration, ringiness, tonality, and pitch—on 7-point ordinal scales. The
extreme ends of the scales were descriptively labeled, e.g. tonality
ranged from “mixed tones” to “pure tone”. Subjects could listen to
each sound multiple times as needed. A brief training section provided
example sounds and definitions for the descriptive qualities.

5.4.2 Results: Confusion Matrices

Even with recorded sounds, user identification of material is not always
accurate. In evaluation of synthetic datasets, we compare the pattern of
errors to those of the recorded sounds, with a closer match suggesting
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Fig. 12. Material confusion matrices for the disc-shaped objects in our
study. All tested datasets (including Recorded) show significant labeling
errors. However, our method (EMG) replicates the pattern of errors seen
in the recorded and hand-tuned datasets more closely than the Ren
dataset, suggesting more accurate recreations of the real-world sounds.

more realistic synthesized sounds. Fig. 12 shows confusion matrices
for material class identification for the disc-shaped objects.

The recorded dataset demonstrates mis-labelings such as heavy con-
fusion between wood and plastic, perception of the glass and ceramic
discs as metal, and high accuracy on the metal disc. The hand-tuned
dataset differs primarily in perception of its glass and ceramic objects;
these differences could be due to human error while hand-tuning or
due to inherent assumptions in the underlying modal synthesis model.
The Ren dataset largely reproduces the matrix from their original pa-
per [33], although it does not recreate the error patterns (particularly
metal) seen in our recorded or hand-tuned datasets. Our dataset (EMG)
most closely resembles the hand-tuned results, with the exception of
plastic being identified as ceramic by some subjects.

We evaluate the pairwise similarity between these matrices by com-
puting the Frobenius norm of the element-wise difference of the two.
The two most similar matrices are the hand-tuned and EMG dataset
results, with a difference norm of 16.03. In comparison, between Ren
and the hand-tuned data, the norm is 22.09. Against recorded sounds,
EMG’s norm was 23.11, while Ren’s norm was 31.85 and hand-tune’s
norm is 22.83. The high similarity (low difference norm) between
our EMG results and the hand-tuned results suggests that our method
automatically produces sounds perceptually similar to what would be
selected by human hand-tuning.

5.4.3 Results: Descriptive Qualities

We evaluate the descriptive quality ratings by performing a multi-
factorial repeated measures ANOVA. Each of the variables (sound
dataset, object shape, and material) is considered an ANOVA factor,
each a repeated measure across subjects. The main effects of dataset,
shape, and material are all significant for all four descriptive qual-
ities. For example, for perception of pitch, the effects of material
(F4,92 = 95.61, p < .05), shape (F1,23 = 30.35, p < .05), and dataset
(F3,69 = 22.79, p < .05) are all significant. This is not surprising, as
each of these effects alone can dramatically change the sound. Al-
most all interaction effects are significant, with the exceptions of ma-
terial*dataset on tonality (F12,276 = 2.814, p = .107). A full table of
effects can be found in supplementary material Table 1.

Fig. 13 contains the mean values for each descriptive quality, ma-
terial, and dataset (using combined results for shapes). For pitch and
tonality, most dataset means are closely-clustered. Duration and ringi-
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Fig. 13. The mean selected value for each descriptive quality, material,
and dataset. Most datasets are tightly clustered for pitch and tonality,
with more differences in duration and ringiness. While our EMG dataset
contains some differences in duration and ringiness, it is closer to the
recorded means than the Ren dataset.

ness show more difference: while hand-tuned and recorded are closely
aligned, Ren and EMG occasionally display more variance.

Synthetic datasets that produce more realistic sounds should have
descriptive qualities similar to the recorded dataset. To evaluate this, we
look at the absolute error between each subject’s recorded and synthetic
ratings for each sound. Across all materials and shapes, hand-tuned
sounds were closest to the recorded sounds for duration and ringiness.
For pitch and tonality, all datasets produced more similar results. Com-
paring these with a one-way ANOVA produces no significant effect of
dataset on average error (F2,117 = 2.81, p = .064). A full analysis can
be found in supplementary material Section 5.4.

Hand-tuned parameters produce the closest ratings to the recorded
dataset on these perceptual scales. The Ren dataset contains many
discrepancies from the real dataset, shown in the duration, pitch, and
ringiness of the more reverberative materials. Our EMG dataset prop-
erly reproduces the perceptions of the pitch and tonality of the recorded
objects, but in some cases produces higher duration and ringiness. Our
EMG method demonstrates an improvement over the Ren dataset in
the fit to recorded sounds.

6 CONCLUSION

We have presented a method for estimating material damping param-
eters using only recorded impact sounds as input. We validated these
contributions through parameter estimation on impact sounds on rigid
objects, using both an auditory user study and synthetic validation. This
method estimates real-world material parameters from audio recordings
and recreates virtualized materials and their rich sound effects arising
from dynamic interaction in virtual environments.

6.1 Limitations and Future Work
Our method removes a number of assumptions used by prior damping
parameter estimation techniques [33]. For example, our method does
not require knowledge of the object’s geometry, and it reduces the
strict assumptions on the object’s support and the presence of back-
ground noise. However, some common assumptions of prior works
remain: (1) application to rigid objects and their vibrations can be
accurately modeled by linear analysis. (2) difficulty to fully remove
all external damping factors—the presence of loud transient noises,
a tightly-coupled support, or a highly reverberative room may still
impose residual effects.



We do not assume prior knowledge on the object geometry, size,
material parameters, or the impact location. However, this technique
currently does not estimate properties of the object other than damping.
Generalization of this work or use of learning algorithms can potentially
estimate these parameters automatically. A single sound is not enough
to estimate parameter α1 with sufficient accuracy; upwards of 10–
20 sounds may be needed. In our human parameter tuning study,
subjects were initially untrained; experts may produce slightly different
parameter distributions.
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