Proxemic Group Behaviors using Reciprocal Multi-Agent Navigation

Liang He' and Jia Pan? and Wenping Wang? and Dinesh Manocha'

http://gamma.cs.unc.edu/Proxemic

Abstract— We present a decentralized algorithm for group-
based coherent and reciprocal multi-agent navigation. In ad-
dition to generating collision-free trajectories for each agent,
our approach is able to simulate macroscopic group movements
and proxemic behaviors that result in coherent navigation. Our
approach is general, makes no assumptions about the size or
shape of the group, and can generate smooth trajectories for
the agents. Furthermore, it can dynamically adapt to obstacles
or the behavior of other agents. The additional overhead of
generating proxemic group behaviors is relatively small and
our approach can simulate hundreds of agents in real-time. We
highlight its benefits on different benchmarks.

I. INTRODUCTION

Multi-agent navigation algorithms are widely used for
motion planning among static and dynamic obstacles [1],
for autonomous localization [2], and in the simulation of
animated characters or human crowds in games and virtual
worlds [3]. A key issue in these applications is collision-
free path planning: given a set of agents in a static or a
dynamic environment, each with its own initial and goal
positions, computing collision-free trajectories for each agent
towards its goal. In some scenarios, there are additional
constraints imposed on the trajectories corresponding to
dynamics, biomechanics, or human-like behaviors.

There is extensive literature on multi-agent navigation
and path planning. Most prior approaches treat each agent
as an independent entity or unit in terms of computing
its trajectory. However, in some challenging scenarios or
cluttered environments, these single-agent based navigation
algorithms are unable to compute collision-free trajectories,
result in unnatural behaviors, or result in trajectories that are
not smooth. These problems are more noticeable in dense
environments with a high number of agents or obstacles,
which can significantly restrict each agent’s movement [4],
[3].

In many applications we observe group-based behaviors,
in which many nearby agents exhibit similar movements
or trajectories. Such behaviors are frequently observed in
human crowds [5], artificial life [6], swarm robotics, etc.
There is considerable work on simulating group-based multi-
agent behaviors. Many real-time algorithms are based on
decentralized methods and use a combination of local and
global navigation methods to simulate a large number of

! Liang He and Dinesh Manocha are with the Department of Computer
Science, the University of North Carolina at Chapel Hill; 2 Jia Pan
and Wenping Wang are with the Department of Computer Science, the
University of Hong Kong

This research is supported in part by ARO Contract W911NF-14-1-0437
and NSF award 1305286.

(a) ORCA navigation (b) our approach

(c) ORCA navigation

(d) our approach

Fig. 1: The comparison between the trajectories generated by
ORCA algorithm [10] and our approach, for both holonomic
agents (top row) and non-holonomic agents (bottom row). ORCA
is a single-agent based navigation algorithm that can’t generate
proxemic group behaviors. In contrast, our approach can generate
smooth agent trajectories and coherent navigation. We use different
colors to indicate each agent’ group association, which is not
observable to other agents.

agents [7], [8], [9]. These algorithms have been used to
simulate coherent movements of agents while avoiding static
obstacles. However, some of these methods do not take into
account reactive behaviors [10] between different groups.
Other techniques assume that the group units or their sizes
are fixed, or are unable to generate smooth trajectories. In
this paper, we address the problem of group-based coherent
and reciprocal multi-agent navigation. A group corresponds
to two or more agents that interact to achieve a shared
goal. This includes simulating the group movements and
their proxemic behaviors, i.e human spatial behavior during
social interactions [5]. Proxemic behaviors have been ex-
tensively studied in social psychology by observing human
crowds [11]. One key observation is that in high-density
conditions, the spatial distribution of a group is characterized
by the presence of a leader who guides the other members
in crossing the space in a river-like pattern [12]. As a result,
nearby agents tend to move as a coherent group instead
of as independent individuals. However, current multi-agent
navigation algorithms are unable to generate such trajectory
behaviors.
Main Results: We present a novel algorithm for simulating
proxemic group behaviors using decentralized multi-agent
navigation. Our formulation is general, makes no assump-
tions about the groups, and can generate smooth macroscopic
proxemic behaviors for a group of agents.

Our real-time algorithm computes the groups for each
agent during each cycle of the simulation. It classifies the

neighboring agents into two types of groups: a proxemic
group that the agent tries to follow, and obstacle groups
that are bypassed by that agent. We use a velocity-space
formulation and reduce the velocity computation problem
for each agent to a multi-objective constrained optimization
problem. This includes the velocity-obstacle based con-
straints for collision-free navigation and additional connec-
tivity constraints to generate coherent movements. We use
a consistent bypassing scheme so that each agent avoids
collisions with the obstacle groups. We also use a dynamic
following strategy among the agents in the proxemic group.
We demonstrate the performance of our algorithm on multi-
ple scenarios and also compare the performance with prior
multi-agent reciprocal collision avoidance algorithms.

As compared to prior multi-agent navigation algorithms,
our approach offers the following benefits:

e Our formulation is general and can handle arbitrarily
sized or shaped groups.

e The proxemic group behaviors are dynamically gener-
ated and our approach can adapt to the obstacles and to
the behaviors of other agents.

e Our algorithm can generate smooth trajectories and
perform coherent navigation for different groups (as
shown in Figure 1).

o The additional runtime overhead over a single-agent
based reciprocal collision avoidance algorithm is at
most 14%. Our approach can generate collision-free
trajectories as well as macro-level proxemic behaviors.

The rest of the paper is organized in the following manner.
We give a brief overview of prior multi-agent navigation
algorithms in Section II. We introduce our notation and give
an overview of our approach in Section III. We describe the
group-based multi-agent navigation algorithm in Section IV
and highlight its performance in Section V.

II. RELATED WORK

There is extensive work on distributed multi-agent navi-
gation algorithms. In this section, we mainly classify them
based on single agent-based and group-based navigation
strategies.

Most approaches decompose the multi-agent motion plan-
ning problem into a set of independent agent planning sub-
problems. This greatly reduces the complexity of each sub-
problem and enables the use of single-agent global path plan-
ners [1] to compute the preferred velocity or the preferred
direction of motion for each agent. One main issue in such
distributed planning methods is how to locally adapt each
agent’s movement to avoid collisions with nearby agents and
dynamic obstacles. Some of the commonly used techniques
are based on potential fields [13], dynamic windows [14], and
reciprocal velocity obstacles (RVO) [10] and its variants [15],
[16]. However, such pairwise computation methods may
fail to find a feasible solution for all agents in cluttered
situations because the agents may block each other along
their respective directions of motion. Some recent techniques
handle such scenarios by reducing their velocity [17], [18]
in dense settings.

Fig. 2: Comparison between reciprocal collision avoidance without
and with proxemic behavior. (a) is the crowd at time ¢y, and (b), (c)
are the crowd at time ¢; for navigation without and with proxemic
behaviors, respectively. In the crowd with proxemic behavior, the
groups in the previous time to will be approximately maintained,
while in the crowd without proxemic behavior, each agent will move
independently.

Some recent methods solved the distributed multi-agent
planning problem by clustering different agents into groups.
Curtis et al. [19] and Krontiris et al. [20] re-arrange the
shapes of these groups for better utilization of the free space.
Kimmel et al. [21] control the positions of group members
so that they can walk around static obstacles. Santos et
al. [22] extend RVO to enable reciprocal avoidance among
the groups by considering each group as a super-agent. This
method requires a pre-defined group assignment, and the
group index of each agent must be observable to its nearby
agents. He et al. [7] present a strategy to enable an agent to
walk around the aggregated agents, but it is not able to gen-
erate proxemic navigation behaviors. There is considerable
work on continuum crowd simulation algorithms that use
continuous mathematical models based on fluid or granular
flows for medium and high-density crowds. These models
have also been combined with discrete agent methods [3],
[23] to simulate crowds of varying densities. Our approach
is orthogonal to these methods, uses only discrete level
agent representations and can generate smooth trajectories
and smooth navigation flows for nearby agents.

III. OVERVIEW

In this section, we first introduce our notation and give an
overview of our approach.

A. Problem Definition

Our goal is to simulate macro-level proxemic behaviors
for a group of agents using decentralized multi-agent, micro-
level, navigation algorithms. This problem can be formally
defined as follows. We take as given a set of n decision-
making agents sharing a (2D) environment consisting of
obstacles. For simplicity, we assume the geometric shape of
each agent a is represented as a disc of radius r,, and its
current position p, and velocity v, are observable to nearby
agents. Each agent employs a continual cycle of sensing and
acting with a time period 7. During each cycle, the agent
observes nearby agents and obstacles within a certain neigh-
borhood, and tends to compute a local trajectory towards
its goal position g,. The trajectory should be collision-free
and also satisfy other constraints. Each agent is assumed
to have a preferred velocity vE™, and this is the velocity
at which the agent would travel if there were no other
agents or obstacles in the environment. Prior multi-agent

navigation algorithms based on velocity obstacles [24], [10]
compute a new velocity v using constrained optimization.
The velocity-level constraints are used to compute the new
collision-free velocity and we augment them with additional
constraints to generate macro-scale proxemic behaviors.

1) Micro-level Velocity Constraints: The micro-level or
ORCA constraints are used to specify the space of velocities
that can guarantee a collision-free motion during 7 [10]. The
constraints are represented as the boundary of a half plane
containing the space of feasible, collision-free velocities.
Given two agents a and b, we compute the minimum vector u
of the change in relative velocity needed to avoid collisions.
This constraint can be guaranteed by requiring each agent
to change its current velocity by at least 1/2u, and can be
expressed as:

ORCAy = {vI(v ~ (va + yuw) 020k (D)

where 1 is the normalized vector of u. All of the neighboring
agent a’s neighbors will impose similar ORCA constraints
on a’s velocity.

2) Macro-level Proxemic Behaviors: The proxemic be-
havior imposes additional restrictions on the agents’ move-
ment, and we formalize these restrictions as macro-level
driving functions (MDF) defined over the pedestrians. These
MDFs are used to compute the velocities that are able to
achieve the coherent movement of clustered agents, which
have similar positions and velocities. Such proxemic behav-
ior can be formally described by leveraging the concept of
connected agents. Given two agents a and b, we say they
are connected if both of them belong to the same group
G, and they can move towards each other along a straight
line connecting them without colliding with any other agents
outside the group G, i.e. Ve ¢ G, PapsN(c®D(0,7,)) = 0,
where D(0, r,) is a disc centered at the origin with radius r,,
and p,pys is the line segment connecting two agents’ center
P. and p;. We denote the connected relationship between a
and b as a function

conn(a, b) = 1 ifa an.d b are connected @)
0 otherwise.
A group G is connected if and only if each of its members
has at least one fellow agent (in G) to which it can be
connected:

conn(G) = {1 if Va € G,3b € G,conn(a,b) =1

0 otherwise.

3)

In order to generate proxemic behaviors and minimize the
collisions between the agents, each agent should geomet-
rically stay inside a group that is well connected. In this
way, all group members can easily make progress without
too much effort by following a leader and walking along the
group’s flow. This guarantees that every group member has
at least one feasible moving strategy in a dense environment.
Based on the concept of connected agents, the corresponding
multi-agent navigation problem can be formalized as follows:
given the groups G!,...,G" defined over the agents, how

to perform collision-free navigation and keep each of them
connected whenever possible during the navigation, i.e. how
to maximize the MDF) ., conn(G"). Note that unlike the
micro-level constraints, this macro-level formulation is de-
fined over the entire set of agents. We present a decentralized
algorithm to compute a solution to this problem.

3) Velocity Computation Problem: We can summarize our
new velocity computation problem for each agent as follows:
Given agents {a} and their velocities {v, }, we can formulate
our multi-agent navigation as a multi-objective constrained
optimization problem. Formally,

newy) argmin [lv, — vgrefH,Va @
va™} = argmax y . conn(G?),

subject to the ORCA constraints: Va, v, € (), “a ORCA,p-

B. Our Approach

In order to generate the macro-level proxemic group
behaviors in a decentralized manner, each agent a initially
clusters its neighboring agents into a set of groups {G7}.
This clustering result is used to infer how its neighbors are
grouped with respect to the rest of the agent groups, {G*},
and then used to adapt the velocity of a to stay within {G? }.
In particular, the agent a first observes its neighborhood in
terms of the positions and velocities of all agents within
a certain radius, and then clusters the neighboring agents
with similar positions and velocities into different groups
{G7}. Bach of these groups, {G7}, has a close proximity to
a. This clustering only requires the local information about
other agents around a and can be computed in a decentralized
manner. We associate a group velocity v; with each group,
and that group velocity is equal to the average current
velocity of all the agents in that group. The agent a will
select to join one of the groups whose direction of motion is
most similar to a’s current preferred velocity. This group is
called the proxemic group and is denoted as G;. Its elements
are called the proxemic agents with respect to a. All other
groups are considered as obstacles with a time-variable shape
moving with the corresponding group velocity. These groups
are called the obstacle groups and their members are obstacle
agents. Next, the agent a computes the local trajectory that
can generate proxemic behavior in two steps. The first step
concerns the infer-group proxemic avoidance where a makes
a high level decision about whether to bypass each of the
obstacle groups from the left side or from the right side.
The side on which to bypass is selected in such a way that
the entire proxemic group G7 will likely bypass the obstacle
groups in a consistent manner without splitting or mixing
with other groups. The second step relates to the intra-group
proxemic behavior in which the agent a selects one proxemic
agent to follow in order to make progress towards its goal
and agent a maintains the proxemic group behavior. After
that, the agent can compute its preferred velocity and use
that to obtain an actual velocity that satisfies the micro-
level ORCA constraints. Figure 4b illustrates the difference
between navigation with and without proxemic behaviors.

andvelociionof e Agentbased o CEE e
N clustering p e
other robots select bypass side
Apply velocity to . . Intra-group
T Avoid collisions . N

-— -— .

robot's actuators / between agents proxemic av01daqce.

update position decide follow policy

Fig. 3: The pipeline of our algorithm.

IV. GROUP-BASED MULTI-AGENT NAVIGATION

In this section, we present our algorithm for group-based
multi-agent navigation. The goal is to compute coherent
movement for all agents within a group so as to simulate the
proxemic behaviors. Fundamentally, we compute a solution
to the multi-objective optimization problem stated in Equa-
tion 4. We describe our decentralized approach for a single
agent a, whose preferred velocity is given as input, and we
compute the actual velocity using the optimization algorithm.
Our solution consists of multiple steps. First, we cluster a’s
neighborhood into a proxemic group G} and several obstacle
groups. The agent then chooses a high-level navigation policy
(left or right) to bypass the obstacle groups in such a way that
if all proxemic agents consistently use the same policy, then
the entire proxemic group would bypass obstacle groups as a
whole. Next, the agent a decides how to follow one proxemic
agent within the proxemic group G to make progress toward
the goal. Finally, the actual velocity is computed that satisfies
all these constraints. The pipeline for our approach is shown
in Figure 3.

A. Agent-based Clustering

Let N, be the set of neighboring agents that are currently
within the local neighborhood of the agent a: N, = {b |
lps — Pall < ma}, where n, is the radius of a’s neighbor-
hood. Then we cluster the neighboring agents into multiple
groups, {G?}, according to their positions and velocities.

As computed, the agent groups {G%} can be classified
into two types. Some of them are of the similar direction
of motion as the agent a, and some of them may collide
with the agent a in the near future. We assume the shape of
each group is given by the convex hull CH(G) of the set of
agents constituting the group G, and that the group’s velocity
is the average velocity of all member agents and represented
as vg. Given this information, the agent a will choose to
join the group whose velocity is closest to the agent a’s
current velocity: G, = argmaxgi ,, vgi 20 Va VG- G} is
the proxemic group, and all other groups are the obstacle
groups.

B. Inter-Group Proxemic Avoidance: Bypass Side Selection

Next, the agent determines the suitable side on which to
bypass the obstacle groups, and we build on the concept
of velocity obstacles [10] as shown in Figure 4a. Given a
group G and its velocity vg, the velocity obstacle VO, ¢
for agent a induced by group G is defined as the set of agent
a’s velocities v, that will result in a collision with GG at some
point within time window 7 assuming that group G keeps

(b)

Fig. 4: (a) The velocity obstacle VOQ‘G for agent a induced by
a group G of agents. If G only contains a single agent b, VOq|q
reduces to the traditional veloc1ty obstacle VO, induced by the

agent b. The black agents e, and e’ are the two most extreme
agents in the group G. (b) Collision avoidance policy: The agent
a’s nearby agents are divided into two groups, encircled by the red
and black dashed lines, respectively. To reach the goal position gq,
a needs to bypass the obstacle group. For agent a, the two most
extreme agents in the obstacle group are e]' and ej.. In this example,
¢ will the leader and a, b will choose to be followers.

its velocity vg:

VO; ¢ = {v[3t € [0,7] such that
Pa+ (V= vg)t € CH(G) & D(0,74)}, (5)

where D(0,r,) is a disc centered at the origin with radius
7. This equation implies that if agent a chooses a velocity
outside the velocity obstacle VO, ¢, it will not collide with
group G within the time window 7. As shown in Figure 4a,
the convex hull CH(G) need not be computed explicitly,
instead the velocity obstacle can be fully defined by the
extreme agents in radial directions in the group, as observed
from p,. We denote the most ”clockwise” agent as e;, and
the most “counterclockwise” agent as €. These two agents
e’ and e/, are most important in terms of computing the
avoidance trajectory of agent a.

For agents in the same group, they may choose different
extreme agents from the same obstacle group, because they
have different positions and velocities relative to the obstacle
group. However, this will not be an issue as long as they
select the same side (all e; or e,) while bypassing the
obstacle group. If so, the entire group will keep moving
coherently and will not collide with the other groups. To
achieve this, the agent will use the group velocity to decide
on which side of the obstacle group it needs to bypass. In
particular, given the proxemic group G7 and one obstacle
group G, let their average velocity vector be vg: and vg
and average positions be pg: and pg, respectively. The
relative position and velocity between these two groups can
be represented as p’ = pg: — pg and V'
respectively. The side s the agent a should choose to avoid
G can be computed according to the relationship between
the normal n of the 2D plane and the cross product between
v/ and p’

= VGZ — Vg

if(v xp')-n<0
otherwise.

(6)

_Jr (right)
)1 (left)

The solution of Equation 6 provides a rough direction of
motion for each agent. Since the group shape can be non-

convex, and the convex hull of different groups may overlap
with each other, we need a more sophisticated strategy within
the proxemic group for coherent movement.

C. Intra-Group Proxemic Avoidance: Follow Strategy

After computing the avoidance side for the entire group,
we can achieve coherent navigation at the group level.
The main issue is to keep the agents connected during the
navigation. In order to simulate this trajectory behavior, we
let each agent dynamically follow some other agents in the
same group whenever possible. In this way, the members in
a group will move along the same local path and will have
the minimal risk for group mix-up. To achieve this, we first
need to decide whether one agent should be a leader or a
follower in the group, and if it is a follower, we need to
determine whom it should follow. Suppose we are given an
agent ¢ € G and its goal position g, = e5. For the agent
a, we check whether there is some member b € G such that
lps — 8all < |lPa — 84l and conn(a,b) = 1. In the other
words, b can be connected to a and its position is closer to
g, than a. If so, then a will be a follower; otherwise it would
be a leader. One example of followers and leaders is shown
in Figure 4b.

If the agent a is a follower, we choose its following target
as follows. First, we find all the agents b in the group that
satisfy |py — 8al| < ||Pe — 8l and conn(a,b) = 1, and
the set of all qualified agents is denoted as F'. In order to
compute a stable connected group, we choose a’s following
target as one agent in F' that is closest to a. If b is too
far away from a then when a tries to follow b, the group
shape may change. This will make it hard to perform group
reciprocal avoidance. Formally, a’s following target can be
selected as: b* = arg min,e g ;4 [|Py — Pal|- After selecting
the following agent b, the new preferred velocity vi*" for
a is set along the direction p, — p,, which is used by
ORCA constraints for local collision avoidance. A following
example is shown between the agents a and b in Figure 4b.
If the agent is a leader (e.g., the agent ¢ in Figure 4b), its
preferred velocity is set to its coherent avoidance velocity.

D. Avoiding Collisions between Agents

The adapted preferred velocity computed is used as the
input to the ORCA agent-agent collision avoidance module.
The ORCA algorithm computes the agents actual velocity
and makes sure the agent avoids collisions with nearby indi-
vidual agents. The agent need only avoid pairwise collisions
with immediately neighboring agents. This cycle repeats
indefinitely, and is carried out by each agent individually.

V. IMPLEMENTATION AND PERFORMANCE

In this section, we describe our implementation and
highlight the performance of our navigation algorithm on
several challenging benchmarks. We first adapt each agent’s
preferred velocity to simulate the proxemic behavior at the
group-level, and then use RVO-based agent-agent collision
avoidance to compute the actual velocity of each agent. We
use two variants of RVO-based algorithms: ORCA [10] and

Benchmark 3

[Benchmark 1 Benchmark 2
tpf | #steps [#colls

Method | tpf] #steps | #colls | tpf [#steps | #colls |

HRVO 6.1 0 oo | 5.8 476 403 9.5 538 327
ORCA 52 =) oo | 6.2 399 442 8.7 460 287
Meso-scale 6.9 [} oo | 6.5 489 361 | 10.2 478 362
Ours + HRVO | 6.5 357 12 | 6.9 187 0| 109 401 0
Ours + ORCA | 6.2 373 8|72 213 1 11.2 415 1

TABLE I: The comparison between our approach and previous
methods on three benchmarks from three aspects: the tpf (running
time per frame, in ms), the number of steps taken for all agents
to reach the goal, and the number of agent-agent collisions during
the navigation. The co in # steps and # collisions means that some
agents are not able to reach their goal during the simulation.

HRVO [25]. We have implemented our algorithms in C++
on an Intel Core i7 CPU running at 3.30GHz with 16GB of
RAM on Windows 7.

We use three different benchmarks to evaluate the perfor-
mance. The first benchmark uses holonomic agents, while the
other two benchmarks use car-like non-holonomic agents.
For each benchmark, we compare the navigation results
of our algorithms with prior multi-agent navigation algo-
rithms: individual-agent based algorithms, ORCA [10] and
HRVO [25], and one group-level navigation approach, the
meso-scale ORCA [7]. The trajectories generated by the
different methods are compared using three criteria: the
actual simulation time, the number of steps required when
all agents reach the goal positions, and the number of agent-
agent collisions that occur during multi-agent navigation.
More results are available in our technical report [26] and
the supplemental video.

A. Benchmark 1: Two Groups of Agents

In this scenario, as shown in Figure 5, two groups of
holonomic agents are moving towards each other in a narrow
lane. Since there is little space for navigation, previous multi-
agent navigation approaches are unable to compute collision
free paths in this scenario (as shown by the HRVO and
ORCA algorithms in Table I and the first row in Figure 5). In
contrast, our algorithm can easily compute smooth collision-
free paths for all agents by taking into account the proxemic
behaviors. Our method has a small (about 5% to 12%)
computational overhead as compared to ORCA and can
easily handle hundreds of agents at real-time frame rates.
In addition, our method results in relatively fewer collisions
during the navigation.

Fig. 5: In benchmark 1, two groups of agents are moving towards
each other. The top row shows the trajectory behaviors’ results using
the ORCA-only algorithm, in which the agents do not exhibit the
proxemic behavior. The bottom row highlights the performance of
our algorithm that can generate coherent, proxemic behaviors and
results in smooth trajectories.

B. Benchmark 2: Randomly Placed Non-holonomic Agents

In this benchmark, we generate two groups of non-
holonomic agents with random initial positions that are
moving towards each other in opposite directions, as shown
in Figure 6. The results in Table I and Figure 6 for this

benchmark show the ability of our method to generate a
suitable number of groups in a decentralized manner. The
agents start by forming two groups, and the right group
automatically splits into two subgroups for more efficient
navigation based on our optimization formulation. After that,
the agents stay in their proxemic groups and reach the
goal smoothly with at most one collision. In contrast, prior
methods result in a large number of agent-agent collisions.

Fig. 6: In benchmark 2, the agents are randomly placed in two
groups at the beginning and then move towards each other.

C. Benchmark 3: Multi-Group Agents in a Cluttered Scene

In this benchmark, we use a rectangular track as the
environment and generate four groups of non-holonomic
agents moving around the track. The results of our method
are shown in Figure 7 and Table I. Each group uses one
corner of the track as its goal. During the navigation, the
agents dynamically adjust their velocity to stay inside the
associated group. As compared with prior approaches, our
method can generate smooth and coherent paths with at most
one collision, and the computational time is comparable to
previous methods.

Fig. 7: In benchmark 3, four groups of agents are moving around a
rectangular track. During the navigation, all agents exhibit proxemic
group behaviors.

D. Trajectory Smoothness

We also compare the smoothness of the trajectories gen-
erated by ORCA and our approach on two different bench-
marks for holonomic and non-holonomic agents respectively.
As shown by the results in Figure 1, the trajectories provided
by the ORCA algorithm will intertwine with each other,
especially in the locations at which agents with different
goals meet each other. Our approach leverages proxemic
behavior to enable agents to avoid each other in a group
manner and to generate smooth paths.

VI. CONCLUSIONS AND FUTURE WORK

We present a novel multi-agent navigation algorithm that
can automatically generate proxemic group behaviors. Our
approach is general and makes no assumptions about group
size or shape and can dynamically adapt to the environment.
Moreover, it results in smooth and coherent navigation be-
haviors as compared to prior multi-agent reciprocal collision
avoidance algorithms. We demonstrate its performance on
complex benchmarks and highlight the benefits. The addi-
tional runtime overhead is 10 — 14%.

[1]
[2]

[3]
[4]

[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

REFERENCES

S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” I/RR,
vol. 20, no. 5, pp. 378-400, 2001.

D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic ap-
proach to collaborative multi-robot localization,” Autonomous Robots,
vol. 8, no. 3, pp. 325-344, 2000.

R. Narain, A. Golas, S. Curtis, and M. C. Lin, “Aggregate dynamics
for dense crowd simulation,” TOG, vol. 28, no. 5, pp. 122:1-8, 2009.
J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha, “Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans,” in RSS, 2009.

S. Bandini, A. Gorrini, L. Maneti, and G., “Crowd and pedestrian
dynamics: Empirical investigation and simulation,” in Measuring Be-
havior, 2012.

O. B. Bayazit, J.-M. Lien, and N. M. Amato, “Better group behaviors
in complex environments using global roadmaps,” Artificial Life 8,
vol. 8, p. 362, 2003.

L. He and J. van den Berg, “Meso-scale planning for multi-agent
navigation,” in ICRA, 2013, pp. 2839-2844.

I. Karamouzas and S. Guy, “Prioritized group navigation with forma-
tion velocity obstacles,” in ICRA, 2015, pp. 5983-5989.

I. Karamouzas and M. Overmars, “Simulating and evaluating the local
behavior of small pedestrian groups,” TVCG, vol. 18, no. 3, pp. 394—
406, 2012.

J. van den Berg, S. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Robotics Research, ser. Springer Tracts
in Advanced Robotics, 2011, vol. 70, pp. 3-19.

E. S. Knowles, “Boundaries around group interaction: The effect of
group size and member status on boundary permeability.” Journal of
Personality and Social Psychology, vol. 26, no. 3, p. 327, 1973.

L. Manenti, S. Manzoni, G. Vizzari, K. Ohtsuka, and K. Shimura,
“An agent-based proxemic model for pedestrian and group dynamics:
Motivations and first experiments,” in Multi-Agent-Based Simulation
XII, ser. Lecture Notes in Computer Science, 2012, vol. 7124, pp.
74-89.

Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in /CRA, 1991, pp. 1398-
1404 vol.2.

D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” RAM, vol. 4, no. 1, pp. 23-33, 1997.

D. Wilkie, J. van den Berg, and D. Manocha, “Generalized velocity
obstacles,” in IROS, 2009, pp. 5573-5578.

D. Bareiss and J. van den Berg, “Generalized reciprocal collision
avoidance,” IJRR, 2015, to appear.

I. Karamouzas, R. Geraerts, and A. van der Stappen, “Space-time
group motion planning,” in Algorithmic Foundations of Robotics X,
ser. Springer Tracts in Advanced Robotics, E. Frazzoli, T. Lozano-
Perez, N. Roy, and D. Rus, Eds., 2013, vol. 86, pp. 227-243.

A. Best, S. Narang, S. Curtis, and D. Manocha, “Densesense: Interac-
tive crowd simulation using density-dependent filters,” in SCA, 2014.
S. Curtis, J. Snape, and D. Manocha, “Way portals: Efficient multi-
agent navigation with line-segment goals,” in 13D, 2012, pp. 15-22.
A. Krontiris, S. Louis, and K. Bekris, “Multi-level formation roadmaps
for collision-free dynamic shape changes with non-holonomic teams,”
in ICRA, 2012, pp. 1570-1575.

A. Kimmel, A. Dobson, and K. Bekris, “Maintaining team coherence
under the velocity obstacle framework,” in AAMAS, 2012, pp. 247—
256.

V. G. Santos and L. Chaimowicz, “Cohesion and segregation in swarm
navigation,” Robotica, vol. 32, pp. 209-223, 3 2014.

A. Golas, R. Narain, S. Curtis, and M. C. Lin, “Hybrid long-range
collision avoidance for crowd simulation,” vol. 20, no. 7, 2014, pp.
1022-1034.

P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” IJRR, vol. 17, no. 7, pp. 760-772, 1998.

J. Snape, S. Guy, J. van den Berg, and D. Manocha, “Smooth
coordination and navigation for multiple differential-drive robots,” in
Experimental Robotics, ser. Springer Tracts in Advanced Robotics,
2014, vol. 79, pp. 601-613.

L. He, J. Pan, S. Narang, W. Wang, and D. Manocha, “Dynamic
group behaviors for interactive crowd simulation,” CoRR, vol.
abs/1602.03623, 2015. [Online]. Available: http://arxiv.org/abs/1602.
03623

