
R-LODs: Fast LOD-Based Ray Tracing of Massive Models
Sung-Eui Yoon Christian Lauterbach Dinesh Manocha

http://gamma.cs.unc.edu/RAY

Introduction: In recent years, there has been a renewed interest in
real-time ray tracing for interactive applications. This is due to many
factors: firstly, processor speed has continued to rise at exponential
rates as predicted by Moore’s Law and is approaching the raw com-
putational power needed for interactive ray tracing. Secondly, ray
tracing algorithms can be highly parallelized on shared memory and
distributed memory systems. Therefore, the current hardware trend
towards desktop systems with multi-core CPUs and programmable
GPUs can be used to accelerate ray tracing. Finally, recent algo-
rithmic improvements that exploit ray coherence can achieve a sig-
nificant improvement in rendering time [Reshetov et al. 2005; Wald
2004].

Our goal is to perform interactive ray tracing of massive mod-
els consisting of tens or hundreds of millions of triangles on cur-
rent desktop systems. Such gigabyte-sized models are the result of
advances in model acquisition, computer-aided design (CAD), and
simulation technologies. Their complexity makes interactive visu-
alization and walk-throughs a challenging task. Ray tracing has an
important property in the context of rendering massive models: its
asymptotic performance is logarithmic in the number of primitives
for a given resolution. This is due to the use of hierarchical data
structures such as bounding volume hierarchies or kd-trees. The
asymptotic complexity makes ray tracing an attractive choice, es-
pecially for rendering of massive models.

However, we found that the logarithmic growth continues only as
long as the system has sufficient memory to store the entire model
and hierarchical data structures. As models grow much larger, the
size of the hierarchical structure also increases linearly and the un-
derlying ray tracer performs its computations in an out-of-core man-
ner. A major trend in computing hardware has been the increasing
gap between processor speed and memory speed. Moreover, disk I/O
accesses are in general more than three orders of magnitude slower
than main memory accesses. Because of these gaps, hardware ad-
vances are not expected to provide an efficient solution to the prob-
lem of ray tracing massive models.
Our approach: We propose a new algorithm to accelerate ray trac-
ing of massive models using geometric levels-of-detail (LODs). Our
approach computes simple and drastic simplifications, denoted R-
LODs, of polygonal models. A R-LOD consists of a plane with ma-
terial attributes (e.g. color), which is a drastic simplification of the
descendant triangles contained in an inner node of the kd-tree. Each
R-LOD is also associated with a surface deviation error which is used
to quantify the projected screen-space error at runtime. The R-LODs
have a compact representation and are tightly integrated with the kd-
tree. We present a simple and efficient LOD error metric to bound
the error for primary and secondary rays. Additionally, we use tech-
niques based on spatial coherence and cache-oblivious layouts [Yoon
and Manocha 2006] to improve the performance of our LOD based
ray tracing algorithm. R-LODs also alleviate the temporal aliasing
that can arise during ray tracing of highly tessellated models.

We have implemented and tested our system on two machines run-
ning Windows XP 32-bit and 64-bit with two dual-core Xeon CPUs
and have evaluated its performance on three different models: a CAD
double eagle tanker (81M triangles), a forest model (32M triangles),
and a scanned St. Matthew model (128M triangles). The perfor-
mance gain of our LOD based ray tracer is proportional to the reduc-
tion in the number of intersection tests and, more importantly, the
working set size (See Fig. 2). The frame rate improvement varies
from 2 times on models with small working set size to almost 20–50

times on models with very large working set size. Furthermore, we
are able to render most of these models at 5–12 frames a second with
primary rays and 1–8 frames a second when we include reflections
and shadow rays. These results are shown in the video. These per-
formances are measured at 512 × 512 with 2 × 2 super-sampling in
64-bit machine with two Xeon CPUs.

Figure 1: St. Matthew Model: We use our LOD-based algorithm to accelerate ray
tracing of St. Matthew model with shadows and reflections. We ray trace the 128M
triangle model at 512 × 512 resolution with pixels-of-error (PoE) = 4 and 2 × 2

anti-aliasing. We are able to achieve 2 − 3 frames per second on two dual-core Xeon
processor workstation with 4GB of memory. We observe 2 − 20 times increase in the
frame rate due to R-LODs with very little loss in image quality.

0 5 10 15 20
0

0.5

1

Pixels-of-Error(PoE)

R
el

at
iv

e 
va

lu
es

 
(E

ac
h 

m
ax

 v
al

ue
 is

 
lin

ea
rly

 s
ca

le
d 

to
 1

) # of intersected nodes per ray
Size of working set
Render time

Figure 2: Performance variation as a function of PoE: We measure the rendering time,
average number of processed node per ray, and size of working set during rendering St.
Matthew model with different PoE values. All these values are shown in a scale-invariant
manner by linearly scaling their maximum values to 1. The performance of our LOD-
based ray tracer drastically decreases as we linearly increase the PoE.

Advantages of our approach: Our ray tracing algorithm offers
the following benefits:

1. Simplicity: R-LODs are very easy to implement and their rep-
resentation has small runtime overhead. Our algorithm main-
tains the simplicity, coherence, and performance of the kd-tree
data structure.

2. Front size: R-LODs reduce the size of the front traversed in
the kd-tree. This results in fewer ray intersection tests and de-
creases the size of the working set.

3. Coherence: R-LODs make memory accesses more coherent
and reduce the number of L1/L2 cache misses and page faults.
Furthermore, they can also improve the performance of spatial
coherence techniques.

4. Interactivity: The LOD based ray tracer provides a framework
for interactive ray tracing due to the fact that we can trade off
image quality for improved frame rate.

5. Generality: Our algorithm is applicable to a wide variety of
polygonal models, including scanned and CAD models.

References
RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-level ray tracing algo-

rithm. ACM Trans. Graph. 24, 3, 1176–1185.
WALD, I. 2004. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis,

Computer Graphics Group, Saarland University.
YOON, S.-E., AND MANOCHA, D. 2006. Cache-Efficient Layouts of Bounding Volume

Hierarchies. In Computer Graphics Forum (Eurographics). Conditionally accepted.


