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Figure 1: Interactive collision detection on a complex, deformable benchmark: an animated sequence of a flamenco dancer with 26 K vertices,
75 K edges and 50K triangles, consisting of 350 frames. We observed up to a 15X reduction in elementary tests and a 4.9X increase in speed
on this benchmark. Our new method calculates all self-collisions and inter-object collisions in 200 ms per frame.

Abstract

We present a new approach to accelerate collision detection for
deformable models. Our formulation applies to all triangulated
models and significantly reduces the number of elementary tests
between features of the mesh, i.e., vertices, edges and faces. We
introduce the notion of Representative-Triangles, standard geomet-
ric triangles augmented with mesh feature information and use this
representation to achieve better collision query performance. The
resulting approach can be combined with bounding volume hier-
archies and works well for both inter-object and self-collision de-
tection. We demonstrate the benefit of Representative-Triangles on
continuous collision detection for cloth simulation and N-body col-
lision scenarios. We observe up to a one-order of magnitude re-
duction in feature-pair tests and up to a 5X improvement in query
time.
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1 Introduction

Collision detection is a ubiquitous task in physical simulation and
motion planning algorithms. Broadly, there are two basic types of
collision queries: discrete and continuous. Discrete collision detec-
tion (CD) tests the mesh configuration at specific time instances. On
the other hand, continuous collision detection (CCD) determines if
there are any collisions in the interval bounded by two times. The
simplest formulation of CCD performs linear interpolation on the
vertex positions and determines if corresponding swept triangle fea-
tures collide during the time interval.

A significant fraction of the collision query time for both types of
queries is spent in performing exact intersection tests between the
primitives. Each triangle consists of three types of features: ver-
tices, edges and faces. For discrete CD, the exact tests can be re-
duced to six elementary tests between the edges of one triangle with
the face of the other [Tropp et al. 2006]. Each test requires solving a
linear equation. Equivalently, for CCD, 15 elementary tests need to
be performed. Each entails finding the roots of a cubic polynomial
equation [Provot 1997].

In order to accelerate collision queries, many techniques have been
proposed that cull away many of the O(n2) triangle-pairs which
don’t collide. These include methods based on bounding volume
hierarchies (BVHs), built upon the mesh’s triangles. The perfor-
mance of these techniques is governed by their culling efficiency.
Poor culling efficiency can produce a high number of candidate tri-
angle pairs, most of which are false positives. In particular, current
triangle-based approaches, i.e., techniques that use triangles as the
fundamental primitive, may not be able to perform CCD queries at
interactive rates on deformable meshes composed of tens of thou-
sands of triangles [Hutter and Fuhrmann 2007; Govindaraju et al.
2005; Tang et al. 2007; Wong 2005].

Main Contributions: We present a novel approach to improve the
performance of collision queries on triangulated models. Our ap-
proach is applicable to discrete as well as continuous collision de-
tection. The main idea behind our approach is the use of feature-
based hierarchies and representations, as opposed to triangle-based
hierarchies. In a feature-based hierarchy, the individual features are
explicitly stored at the leaf nodes of a BVH. We show that feature-
based hierarchies improve performance by:

1. Eliminating duplicate elementary tests that naturally arise in
triangle-based formulations.

2. Providing higher culling efficiency.

We introduce the concept of Representative-Triangles (R-
Triangles) in order to obtain the benefits of feature-based hierar-
chies by using a single BVH. An R-Triangle is a standard trian-
gle, augmented with mesh feature information. We present a sim-
ple algorithm to compute R-Triangles for a mesh and utilize them
to eliminate duplicate elementary tests and to improve culling effi-
ciency. The use of R-Triangles is orthogonal to the type of accel-
eration structure. They can be combined with BVHs of any bound-
ing volume type or any other technique which operates on triangle-
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pairs.

We use R-Triangles to improve the performance of continuous
collision detection in deformable models and N-body collisions
by combining them with a BVH of axis-aligned bounding boxes
(AABB). We have applied our algorithm to cloth simulation and N-
body collision benchmarks with tens of thousands of triangles and
have reduced elementary tests 10-30X and improved query time up
to 5X.

Oranization: The rest of the paper is organized in the following
manner. We briefly survey prior work on collision detection and
introduce the terminology for this paper in Section 2. Section 3
highlights the benefits of feature-based hierarchies for collision de-
tection. We introduce R-Triangles in Section 4 and present algo-
rithms to compute them efficiently. We highlight the performance
of our approach in Section 5, analyze the performance in Section 6
and discuss future work in section 7.

2 Related Work and Background

The problem of collision detection has been extensively studied in
various fields including computer graphics, robotics, computational
geometry and simulation. Good recent surveys on different algo-
rithms are given in [Ericson 2004; Lin andManocha 2003; Teschner
et al. 2005]. In this section, we give a brief overview of hierarchical
methods, feature-based algorithms and continuous collision detec-
tion.

2.1 Bounding Volume Hierarchies

BVHs are commonly used to accelerate collision queries. These
include hierarchies based on simple BVs such as spheres [Hub-
bard 1993; Bradshaw and O’Sullivan 2004] or AABBs [van den
Bergen 1997]. Other hierarchies use tight fitting BVs such as ori-
ented bounding boxes [Gottschalk et al. 1996], discretely oriented
polytopes (k-DOPs) [Klosowski et al. 1998], or a hybrid combina-
tion of BVs [Sanna and Milani 2004]. There is a trade-off between
simple BVs and tight-fitting BVs. In particular, the simple BVs
have a lower storage overhead and a fast overlap test, but may re-
sult in poor culling efficiency. On the other hand, tight-fitting BVHs
have a higher culling efficiency, but are more costly to use.

In the case of rigid models, the BVHs are computed once, before
simulation. For deformable models, the BVHs are recomputed or
updated for each frame. These include simple update algorithms to
maintain high culling efficiency based on linear-time refitting algo-
rithms [Larsson and Akenine-Möller 2006; Zachmann and Weller
2006], or selective restructuring [Otaduy et al. 2007; Yoon et al.
2007]. Other approaches to improve the culling efficiency of BVH-
based algorithms use normal cones for self-collisions [Provot 1997]
or GPU-based accelerations [Govindaraju et al. 2005; Sud et al.
2006]. R-Triangles can be combined with all of these acceleration
techniques.

2.2 Feature-Based Collision Detection

Most prior acceleration algorithms seek to find potentially colliding
triangle pairs; we classify them as triangle-based methods. Many
other collision detection algorithms directly utilize vertex, edge
and face features [Ericson 2004] and we refer to them as feature-
based algorithms. These include efficient algorithms based on ex-
ternal Voronoi regions of the features of convex polytopes [Lin and
Canny 1991; Mirtich 1998] and its extension to non-convex models
[Ehmann and Lin 2001]. In practice, they are mainly limited to rigid
models as recomputing the Voronoi regions for deformable models
can be expensive. [Hutter and Fuhrmann 2007] recently proposed

Figure 2: A cloth simulation with 20 K vertices, 60 K edges and 40
K triangles consisting of 1044 frames. We observed up to a 28X
reduction in elementary tests and a 5.1X increase in speed on this
benchmark.

using BVs on features for deformable models. We compare our
algorithm with their formulation in Sec. 6.

2.3 Continuous Collision Detection

The problem of interactive CCD between complex deformable
models is quite challenging. The performance of these algorithms
can be accelerated based on continuous normal cone tests [Tang
et al. 2007] or GPU-based accelerations [Govindaraju et al. 2005].
Many approaches have also been proposed to reduce the number
of elementary tests by taking into account adjacency information
[Govindaraju et al. 2005; Wong 2005; Hutter and Fuhrmann 2007;
Tang et al. 2007] and randomized marking schemes [Wong and
Baciu 2006]. We compare our algorithm with some of these ap-
proaches in Section 6.

2.4 Notation and Terminology

Throughout this paper we use the following terms and notation:

• A feature is one of the fundamental geometric components of
a mesh used in the elementary collision tests–a vertex, an edge
or a face.

• A triangle is a data structure which includes knowledge of all
the features that make up the structure of the triangle. A face
is the mesh feature used in elementary tests.

• M is a mesh with sets of vertices, edges and faces (V , E and
F respectively.)

• Two features are incident if either feature includes the other
in its construction. Two edges with a shared vertex are inci-
dent. A face is incident to all of its vertices. A face is trivially
incident to itself.

• A contact is a collision between feature pairs–vertex-face
(VF) and edge-edge (EE) for CCD and edge-face for CD. In
particular, the CCD test for two triangles requires finding the
roots of a polynomial for six VF and nine EE pairs.

• A regular triangular mesh is a closed-manifold mesh of trian-
gles where all vertices have degree six.

3 Feature-based hierarchies

In this section, we introduce feature-based hierarchies and show
that they can considerably improve the performance of collision
detection algorithms. We describe a set of feature-based BVHs to
improve culling efficiency and eliminate duplicate elementary tests.

Culling Efficiency: We wish to cull triangle pairs that are clearly
not overlapping. Culling efficiency is measured in terms of the
number of false positives – triangle pairs that are tested, but don’t
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actually intersect. Ideal culling efficiency would result in no false
positives.

Duplicate Elementary Tests: Fig. 3 shows a single vertex, v1,
incident to six triangles. v1 makes contact with triangle t1. The
culling algorithm will produce a triangle pair with t1 and every tri-
angle incident to v1. In a straightforward implementation, the VF
test, VF(v1, t1), will be performed six times, each time producing
the same result. Also note that all of the EE tests involving the
edges incident to v1 will be performed twice, because each edge
is shared by two triangles. We wish to cheaply eliminate all such
duplicate elementary tests.

Figure 3: The elementary test between vertex v1 and the face of
triangle t1 would naturally be dispatched six times.

3.1 Feature-based hierarchies

The problem of duplicate queries exists because culling is per-
formed on triangles, but exact tests depend on features, most of
which are shared by multiple triangles. Eliminating duplicate
queries also mitigates some of the impact of poor culling efficiency.
However, we also want to directly improve the culling efficiency.
The volume a feature occupies can be much smaller than that of its
triangle. We can improve culling efficiency by using BVs of the
features to cull away non-overlapping features.

Feature-based hierarchies are a set of independent BVHs; one BVH
built on each feature type used in the exact elementary collision
tests. In order to perform CCD we would require a vertex BVH (V-
BVH), edge BVH (E-BVH) and face BVH (F-BVH). To find the
contacts we would test for collisions between V-BVH and F-BVH
and for self-collisions within the E-BVH.

This formulation addresses both issues. First, the separate hierar-
chies improve culling efficiency by performing culling on the fea-
tures’ BVs. In Fig. 4(a), the two triangles’ BVs overlap. Based
on this information we would perform nine EE tests. In Fig. 4(b),
we see that there are only two pairs of overlapping edge bounding
volumes. This tells us that only two EE tests are necessary. This
finer granularity of culling leads to fewer elementary tests and fewer
false positives.

Feature-based hierarchies also solve the problem of query duplica-
tion. The duplications illustrated by the example in Fig. 3 couldn’t
happen because each vertex is represented in the vertex hierarchy
only once. Candidate feature pairs from the traversal of the two
hierarchies would be completely unique.

3.1.1 Issues

Although simple in principle and implementation, there is overhead
inherent in using multiple hierarchies. In practice, separate feature-
based hierarchies can take 4-7X more space than a single, triangle-
based BVH. Moreover, each hierarchy requires full maintenance
work: updating, refitting, restructuring, etc. At each time step, col-
lision detection would begin with the traversal of two or more sets
of hierarchies. As a result, the cost can be high.

Figure 4: Fig. (a) shows two triangles’, t1 and t2, overlapping BVs.
With only this knowledge, we would need to perform nine EE tests:
(e1,i, e2,j), i, j = 1...3, Fig. (b) shows the two pairs of edge BVs
that actually overlap. The edge BVs reduce the number of tests to
two pairs: (e1,3, e2,2) and (e1,3, e2,1)

4 Representative-Triangles

We would like to have all the benefits of feature-based hierarchies,
namely, automatic elimination of duplicate queries without run-
time bookkeeping and improved culling efficiency, but with the cost
of a single hierarchy.

Representative-Triangles (R-Triangles) make that possible. An R-
Triangle is an augmented triangle. In addition to the basic structural
data a triangle carries, an R-Triangle also carries feature assign-
ments and feature bounding volumes. The assignment allows an R-
Triangle to represent some subset of its features. This knowledge is
used while processing candidate triangle pairs to uniquely dispatch
elementary tests. An R-Triangle also carries bounding volume in-
formation for the features that it represents. These feature BVs are
used to improve culling efficiency. To create valid R-Triangles from
a mesh,M , of triangles, we assign each feature of the mesh to a tri-
angle, maintaining the following properties:

I Every feature λ ∈ {V ∪ E}, must be represented by a
triangle.

II Every feature λ ∈ {V ∪E}, can be assigned to no more
than one triangle.

III If a feature λ ∈ {V ∪ E} is assigned to triangle t, then
t must be incident to λ.

Triangles implicitly represent their own faces. These properties,
taken together, insure that every feature is represented by a single,
incident triangle.

There are multiple ways to assign features to R-Triangles that sat-
isfy the three properties. Meeting these requirements eliminates the
possibility of performing the same elementary test more than once.
We call the relationship between a feature and its R-Triangle a rep-
resentation assignment. A representation assignment schema, or
simply assignment schema determines which feature is assigned to
which triangle.

The R-Triangles are used in place of the standard triangles in the
preferred triangle-based acceleration structure. The acceleration
structure follows its normal execution to find potentially colliding
triangle pairs. Assignments can be varied across the mesh. Not
all R-Triangles will necessarily have symmetric sets of features as-
signed to them. The set of assigned features can be any combination
of the triangle’s six features (i.e., three vertices and three edges.)

4.1 Improved Culling Efficiency

We use the feature bounding volumes in the R-Triangle to improve
overall culling efficiency. This exactly replicates the functional-
ity of the feature-based hierarchy; the lowest level of culling is on
feature BVs. We limit the set of feature-BV overlap tests actually
performed for a pair of triangles based on the represented features

63



of that pair. We determine if the R-Triangles represent compatible
feature pairs. A candidate triangle pair represents compatible fea-
ture pairs if it represents features which correspond to an elemen-
tary test, e.g., an edge represented by each triangle in the candidate
pair would lead to an EE test in CCD. We perform overlap tests on
the compatible feature pairs before dispatching the corresponding
elementary test in Algorithm 1. Linking the feature BVs to their R-
Triangles insures that we won’t do any duplicate BV-overlap tests
any more than we would do duplicate elementary tests for the rea-
sons given in the next section.

4.2 Eliminating Duplicate Queries

R-Triangles eliminate duplicate queries using a simple idea: for
each compatible feature pair represented by the triangle pair, we
dispatch the corresponding elementary test. The details of this al-
gorithm are given in Sec. 5 as Algorithm 1.

Theorem 4.1 For a pair of colliding features in contact, Algorithm
1 guarantees that exactly one elementary test on those features will
be dispatched.

Proof We will prove this by contradiction. Let us assume there is
a contact, C between features λ1 and λ2 of model M for which
the corresponding elementary test is either never performed or per-
formed multiple times.

First we address the possibility of never performing the elementary
test. We know that each feature must be assigned to an R-Triangle
because of Property I. Let t1 and t2 be the R-Triangles of λ1 and
λ2, respectively. We also know that ti is in the set of triangles inci-
dent to λi, i = [1, 2] because of Property III. We assume that if two
features intersect, the culling algorithm’s candidate triangle pairs
include the pairs in the product set of the triangles incident to each
feature exactly once. So, we know that the pair (t1, t2) must be in-
cluded in the candidate triangle pairs. When Algorithm 1 is passed
this pair, it will note that there is at least one compatible feature pair
(λ1, λ2) and dispatch the corresponding elementary test. We have
our first contradiction – at least one elementary test is dispatched
for the contact C.

Second, we address the possibility of the elementary test being dis-
patched more than once. We know by Property II that λi can only
be represented by ti, i = [1, 2]. That means that no other triangles
in the mesh can participate in dispatching the elementary test for
the feature pair (λ1, λ2). As previously indicated, the triangle-pair
culling method produces the candidate triangle pair (t1, t2) only
once and no other pair can dispatch that elementary test. We have
the second contradiction – the elementary test is dispatched only
once. QED.

4.3 Optimal Representation

Any assignment schema which satisfies the given properties elimi-
nates duplicate elementary tests. An optimal representation assign-
ment would dispatch the absolute minimum number of elementary
tests to find all contacts.

Fig. 5 shows two cases of optimal representative assign-
ment. In Fig. 5(a), the two bold-faced edges intersect, so,
the culling algorithm will produce four triangle candidate pairs:
(t1, t3), (t1, t4), (t2, t3) and (t2, t4). These four pairs are pro-
cessed as follows:

• (t1, t4) - t1 represents no features. t4, likewise, represents no
features. No elementary tasks are dispatched.

• (t1, t3) and (t2, t4) - One triangle represents no features. One
triangle represents one edge. There are no compatible feature

(a) (b)

Figure 5: Fig. (a) shows an optimal representative assignment for
an EE contact. Fig. (b) shows the same for a VF contact. Repre-
sentation is indicated in the following manner: a line close to and
parallel with an edge lies inside its R-Triangle. Similarly, a dot
near a vertex lies inside the vertex’s R-Triangle. The contact is be-
tween the two thick edges in (a) and the vertex in the center of the
fan on the left (represented by t3) with t7 in (b).

Figure 6: A cloth simulation with 47 K vertices, 139 K edges and
92 K triangles consisting of 464 frames. We observed up to a 12X
reduction in elementary tests and a 4.98X increase in speed on this
benchmark using R-Triangles.

pairs. So, no elementary tasks are dispatched.

• (t2, t3) - t2 represents one edge. t3 also represents one edge.
There is one compatible feature pair. One EE test is dis-
patched.

For two arbitrary triangles, we would ordinarily have to perform
15 elementary tests. In this case, only one of them produces a colli-
sion; there are 14 unneeded tests. However, with this representation
assignment, a single elementary test is performed. A single contact
is found. This is an optimal representative assignment for this sce-
nario.

Similarly, Fig. 5(b) shows an ideal assignment for a vertex-face
contact. The culling algorithm produces six candidate triangle
pairs, but for reasons similar to those above, only a single VF ele-
mentary test is dispatched. Again, this is an optimal assignment for
this contact.

The representative assignments in Fig. 5 are optimal for one iso-
lated contact. We avoided performing additional elementary tests
by assigning the non-colliding features as far away from the con-
tact as possible. That distance, however, is constrained; the feature
must be assigned to another incident triangle. If the incident trian-
gle is also involved in a collision, or if, due to culling inefficiency,
the culling algorithm includes that triangle in one or more candidate
pairs, the tests we avoided in examining the scenarios in Fig. 5 will
then be dispatched.

So, although there may exist an optimal representation assignment,
it is dependent on the configuration of the mesh and the character-
istics of the culling algorithm. For arbitrary collision scenarios, this
can’t be known a priori.
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4.3.1 Feasibility of Optimal Representation

Our approach makes no assumptions about the nature of the mesh’s
deformation. At the same time, we want an assignment schema that
will be as close to optimal as possible over the entire sequence. We
will show that such a schema does not exist and we are free to adopt
any convenient assignment schema.

Wong and Baciu [2006] indicate that the ideal schema would be to
assign the features to the smallest set of triangles possible. Or, con-
versely, it would result in the maximum number of triangles with no
assigned features. While they don’t provide supporting arguments,
their suggestion has certain a intuitive appeal. Concentrating fea-
ture representation in a small subset of the triangles feels like it
would aid performance.

(a)

(b)

Figure 7: A sample regular mesh with two different representative
assignment schemes. (a) shows the Maximal Schema (unassigned
triangles are shaded grey for emphasis.) (b) shows the Uniform
Schema.

Fig. 7 shows two different assignment schema for a regular mesh.
Fig. 7(a) shows the result of applying the schema in which we max-
imize the number of unassigned triangles. We’ll refer to this schema
as the Maximal Schema. In this particular case, the size of the set

of unassigned triangles is
|F |
2
. This is possible because of the reg-

ularity of the mesh; we can efficiently alternate between assigned
and unassigned triangles. If we were to add one more triangle to the
unassigned set, we would have two adjacent, unassigned triangles
– leading to an edge, their shared edge, being unassigned. So, for a
regular mesh, the size of the set of unassigned triangles cannot ex-

ceed
|F |
2
. If the mesh has any vertices with odd degree or the mesh

is open, the maximum for that set is strictly less. So, a regular mesh
would have the largest unassigned set (relative to |F |).

Fig. 7(b) shows an alternative schema; every triangle is an R-
Triangle with the same number of assigned features. We’ll refer to
this schema as the Uniform Schema. If we re-examine the scenarios
from Fig. 5 with the schema from Fig. 7 we get the assignments
shown in Fig. 8. Evaluating these scenarios would yield the results
shown in Table 1.

For an EE contact the total numbers of elementary tests that are
performed for each assignment schema are equal. For the VF con-
tact, there is a marginal difference. The Maximal Schema has the
best possible performance when the vertex contacts an unassigned
triangle, with only three elementary tests dispatched. However, in
the worst case, when the vertex contacts an assigned triangle, it
performs 36 tests. In this case, there is an even distribution of unas-

Maximal Schema Uniform Schema

EE Contact

(a) (b)

VF Contact

(c) (d)

Figure 8: The two scenarios from Fig. 5 with two assignment
schema from Fig. 7 applied. Note that in the VF tests it was neces-
sary to consider both types of faces for the contact face.

Total

Fig. Number of Number of Elementary Total
Scenario VF Tests EE Tests Tests Contacts

Fig. 8a 4 9 13 1

Fig. 8b 4 9 13 1

Fig. 8c.i 3 0 3 1

Fig. 8c.ii 9 27 36 1

Fig. 8d.i 9 9 18 1

Fig. 8d.ii 9 9 18 1

Table 1: The number of elementary tests dispatched for a single
contact based on the two assignment schema illustrated in Fig. 7.

signed triangles and assigned triangles. Thus, the best-case and
worst-case collisions have equal probability of occurring and the
expected cost of using this schema would be 19.5 elementary tests.
The Uniform Schema has a consistent cost of 18 elementary tests
for both types of vertex-face contacts.

We draw several conclusions from this analysis. First, although
there may exist a locally optimal representative assignment, there is
no globally optimal assignment schema because optimality depends
on the actual contacts. Second, the efficacy of a locally optimal as-
signment is quickly diffused by even mediocre culling efficiency,
i.e., the value of a locally optimal assignment is only realized if
none of the surrounding triangles appear in triangle candidate pairs;
this is an unlikely outcome for a system without perfect culling effi-
ciency. Third, taken as a reasonable sample set, these two schemas
indicate that different global assignment schemas are functionally
equivalent. We conclude that there is no globally optimal assign-
ment schema and we can select an assignment schema based on
alternative criteria.

4.3.2 Representation Assignment Schema

We favor the simplest and most efficient means of assigning repre-
sentatives possible. We use a greedy algorithm, which simply scans

65



through the triangles one at a time. For each triangle, it determines
which of its features haven’t been assigned yet and assigns them
to that R-Triangle. With this schema, there will be some triangles
with six features assigned, some with none and the vast majority
with between one and three assigned features.

Additionally, in simulation systems where the mesh might un-
dergo topological changes, such as tearing or fracturing, we want
to update representative assignments in an efficient fashion. This
greedy algorithm is compatible with scenarios where meshes un-
dergo topological changes. When a mesh is fractured or torn, new
triangles may be introduced, old triangles may be removed and the
boundary of the mesh may change. For each deleted triangle we
would do the following:

• Delete unsupported features, (i.e., features that are not used
by the remaining triangles.)

• Assign the supported features whose R-Triangle was deleted
to one of the remaining incident triangles.

For new triangles, we simply provide the newly created triangles as
the set of triangles to iterate over.

5 Implementation and Results

5.1 Implementation Details

We implemented the system described here in C/C++. The BVH
simply partitions triangles across the mid-point of the longest axis
of a BV. The tests were run on an Intel Xeon 3 Ghz machine with 3
GBytes of RAM running 32-bit Windows XP.

Representation Encoding: We encode representation assignment
in a four-bit mask. The first two bits indicate the number of vertices
an R-Triangle represents, the last two, the number of edges. To
make this compact representation work, we re-order the features so
that if triangle t represents n features, they are the first n features
in its ordered feature list. This re-ordering is benign because it
merely changes the local indexing of the features from the specific
triangle’s perspective, but the mesh remains unchanged.

Four-bit encoding means that the representation data can be placed
directly into the triangle identifier with minimum impact on the size
of the identifier space. The single greatest advantage of placing this
information into the identifier is that all of the information required
to decide if two triangles have compatible features is immediately
available; no extra fetches to memory are required.

We use this simple encoding to easily determine if two triangles
have compatible feature pairs. We have at least one compatible
feature pair if either triangle represents at least one vertex or both
represent at least one edge.

Processing Candidate Triangle Pairs: We observe that if a trian-
gle pair has no compatible feature pairs, then it is unnecessary to
even test if the triangles’ BVs overlap. To exploit this fact, we push
the R-Triangle functionality into the culling algorithm’s code which
processes pairs of leaf nodes. The code is shown in Algorithm 1

Element BV Type: In our implementation we chose AABBs for
the BVs of the swept faces and edges. However, any type of BV
would serve the purpose.

Edges in CD and swept vertices in CCD are simple line segments.
Instead of creating poorly fitting bounding volumes on these line
segments, we simply perform an intersection test between the line
segment and the bounding volume of the triangle. Table 2 illus-
trates the relative culling efficiency of using line-BV intersection

Algorithm 1: Using R-Triangles and feature bounding volumes
to process candidate triangle pairs

Algorithm: processLeafPair( Node node1, Node node2 )

/* Determines if the two triangles represent compatible feature pairs */

if HasCompatible(node1.tri, node2.tri) then

if Overlaps(node1, node2) then

/* Elementary test construction */

foreach Vert v represented by node1.tri do

if Overlaps( getBound(v), node2 ) then

testVF( v, node2.tri)

end
end

foreach Vert v represented by node2.tri do

if Overlaps( getBound(v), node1 ) then

testVF( v, node1.tri)

end
end

foreach Edge e1 represented by node1 do

foreach Edge e2 represented by node2 do

if Overlaps( getBound(e1), getBound(e2) ) then

testEE( e1, e2)

end
end

end
end

end

tests over BV-BV intersection tests. Line segment-BV tests im-
proved culling over BV-BV tests by 8-34%.

Memory Requirements: As already indicated, representation as-
signment incurs no additional memory costs on the collision de-
tection system. However, storing feature BVs does. For typical
simulation meshes, |V | + |E| ≈ 3|F |. There are already roughly
2|F | bounding volumes in a binary BVH. So, storing feature BVs
increase the storage requirements of the BVH by roughly 2.5 times.
Because we use line segment-BV intersection tests for VF pairs,
we eliminate the need to store BVs for swept vertices, so, in prac-
tice, the memory overhead only increases by the amount needed to
store |E| additional BVs. For our benchmarks, storing edge BVs in-
creased the memory overhead by 75% over a typical triangle-based
BVH.

If memory is particularly tight, edge BVs can be computed on de-
mand and then discarded. This has the added benefit of eliminat-
ing the need to update all feature BVs at each time step. The cost
wouldn’t be particularly onerous. Creating the BV for a swept edge
is an operation on only four vertices.

Obviously, the cost of dynamically instantiating edge BVs increases
with both the complexity of the BV type and with the number of
tests in which a particular edge is involved. In choosing this route,
this trade-off should be carefully weighed. For multi-layered cloth,
or any simulation where many features are in close proximity, the
likelihood of a feature being used in multiple tests is high and could
justify the memory cost to maintain a persistent copy of the edge
BV.

5.2 Results

Benchmarks: We tested our system on four benchmarks:

1. N-body Balls. Hundreds of balls colliding in a small space –
Fig. 9

2. Cloth-ball: A cloth drapes over a rotating ball – Fig. 2

3. Princess: A woman in a dress sits on the ground – Fig. 6

4. Flamenco: A flamenco dancer – Fig. 1
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Figure 9: An n-body simulation with 18 K vertices, 51 K edges and
34 K triangles consisting of 374 frames. We observed up to a 9X
reduction in elementary tests and a 5.3X increase in speed on this
benchmark.

Performance Comparison: We compare our algorithm against
three other algorithms. All three algorithms use the exact same
BVH data structure and maintenance schemes. They only differ in
how they process leaf-node pairs.

The first algorithm is a basic, straightforward application. It per-
forms all 15 elementary tests for every leaf-node pair it produces
(except for tests between incident features.) It is noted as “BASIC”
in the data.

The second algorithm uses a derivative of the approach described in
[Tang et al. 2007]. It processes the non-adjacent triangle pairs first
and then uses the results of the non-adjacent stage to cull the tests
between adjacent pairs. This algorithm is noted as “ADJ” in the
data. This algorithm uses a run-time database to eliminate duplicate
queries and feature BVs similar to the techniques in [Hutter and
Fuhrmann 2007].

The last algorithm uses the concept of representation for dupli-
cate queries but does not use feature BVs to perform extra culling.
This comparison illustrates the impact of the feature BVs in per-
formance. It is noted as “NO-DUPL” in the data (i.e, it has NO
DUPLicates.). This algorithm shares the significant properties of
[Wong and Baciu 2006]. Finally, the R-Triangle algorithm is la-
beled as “R-TRI” in the data.

Elementary Tests: Figs. 10(a) and (b) show the results of the four
algorithms on the benchmarks. The primary goal of R-Triangles
is to efficiently reduce the number of elementary tests performed.
In Fig. 10(a) we can see several things. First, a basic culling algo-
rithm based on triangle-based BVH produces an order of magnitude
more elementary tests than does R-Triangle, most of them dupli-
cates. In fact, in the worst case (the Cloth-ball benchmark), the BA-
SIC algorithm performs 28X more elementary tests. This illustrates
the scope of duplicate queries. The NO-DUPL algorithm uses the
same culling algorithm as BASIC, but it uses the assignment prop-
erty of R-Triangles to eliminate duplicate elementary tests. BASIC
performs approximately five times more elementary tests than NO-
DUPL. Duplication is clearly a significant issue.

R-TRI and NO-DUPL both use representation assignment to elim-
inate duplicate elementary tests. Despite that, NO-DUPL still per-
forms more tests (typically three times as many tests.) The differ-
ence is that R-TRI also uses feature BVs to further cull elemen-
tary tests. ADJ uses feature BVs to cull and also uses a run-time
database to prevent duplicate elementary tests. Unsurprisingly, it
performs the same number of tests as R-TRI.

Query Time: Reducing the number of elementary tests performed
is desirable, but it is not the final metric of success. The ADJ al-
gorithm performs as few elementary tests as R-TRI, but examining
Fig. 10(b) shows that it spends a great deal of time in culling those
tests. Although it performs one third to one sixth of the tests as
NO-DUPL, NO-DUPL’s average frame time is as much as half of
that of ADJ. This is particularly true in the Flamenco benchmark.

BV LineSeg-BV Pct. Improvement of

Benchmark Cull Rate Cull Rate LineSeg-BV over BV

Balls 72.3% 77.9% 7.8%

Cloth-ball 77.4% 87.9% 13.6%

Princess 49.l% 65.8% 34%

Flamenco 61.2% 72% 17.6%

Table 2: Improved culling efficiency of Line-Segment-BV intersec-
tion tests over bounding volume intersection tests for culling swept
vertices against swept triangles.

(a) (b)

Figure 10: (a) shows the average number of elementary tests per
frame for each of the benchmarks across all collision detection al-
gorithms. (b) shows the average time per frame for each of the
benchmarks across all collision detection algorithms.

The Flamenco benchmark is a complex model with seven layers of
cloth on a body. Self-collision and collisions are computed between
layers of cloth as well as with the body. Every layer of cloth lies
in very close proximity with the other layers. This produces a mas-
sive set of candidate triangle pairs and a correspondingly large set
of duplicate queries. R-TRI and NO-DUPL, because they eliminate
duplicate queries at the source, carry the advantage in this scenario.
ADJ must perform extensive searches in its database to determine
which feature tests have already been performed.

R-TRI and NO-DUPL are almost identical; they both use represen-
tation assignment to prevent duplicate elementary tests. R-TRI fur-
ther uses feature BVs to cull other tests. R-TRI performs the min-
imum number of possible elementary tests. The improved culling
leads to a savings in the number of elementary tests dispatched. It
carries the cost of extra BV-overlap tests. However, the savings is
greater than the cost and, for our benchmarks, R-Triangles routinely
out-performs NO-DUPL by approximately 33%.

6 Analysis and Limitations

Analysis: Representative-Triangles clearly improve collision de-
tection query time. They eliminate duplicate queries without expen-
sive memory accesses or unwieldy run-time data structures. This
directly leads to performance improvement. They further improve
culling efficiency by going beyond candidate triangle pairs and re-
solve candidate feature pairs. Taken together, these two attributes
can take an existing, triangle-based collision acceleration technique
and provide an increase in performance.

It is worth noting that these two ideas have been investigated earlier.
Hutter and Fuhrmann [2007] address the issue of culling in their pa-
per. They explicitly keep track of all features within the leaf nodes
of the BVH. They recognize the culling improvement inherent in
this finer granularity. However, like the ADJ algorithm, they must
use a run-time database to eliminate duplicate feature BV-overlap
tests and elementary tests. For large scenes with many triangles in
close proximity, this quickly breaks down and can become ineffi-
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cient.

Wong and Baciu [2006] presented an algorithm for randomly mark-
ing up triangles and using those marks to filter features during col-
lision detection to also prevent duplicate queries. Our formulation,
R-Triangles, shares a common philosophical origin with Wong and
Baciu. However, there are some key differences.

1. By coupling feature assignments and feature BVs we exploit
the same advantage of duplicate elimination but also improve
culling efficiency.

2. We present, what we feel is, a much simpler assignment algo-
rithm and provide a theoretical justification for the algorithm.

3. Our lighter assignment algorithm is more amenable to sim-
ulations in which the mesh undergoes topological changes.
When the topology changes, new assignments must be made
as efficiently as possible.

Limitations: Representative-Triangles still leave a great deal of
room for improvement. Even with duplicate query elimination and
improved feature-based BV culling, the percentage of tests that
prove to be false positives is immense (above 90%.)

Second, any scene made up of a triangle soup would gain no benefit
from R-Triangles. Every triangle, by its very nature as part of a
triangle soup, would represent all of its features. Admittedly, in this
case there would be no duplicate queries, per se. The only benefit
would be from feature BV culling.

Third, if storing feature BVs in memory, using R-Triangles in-
creases the memory requirements of the collision detection algo-
rithm. Typically, |V |+|E| ≈ 3|F |. This would obviously be signif-
icant for very large models which may fit in main memory without
R-Triangles, but which could result in out-of-core problems with
R-Triangles. In addition to having larger memory requirements, the
feature BVs must be updated at each time step. This increases the
cost of BVH maintenance.

7 Future Work

There are many avenues for future work.

Integration into Simulation: In the future, we would like to
fully apply our method into a system which simulates topologi-
cal changes. We would also integrate it into a production-quality
simulation system to evaluate its impact on the entire simulation
pipeline. There are additional characteristics of our approach that
bear further investigation.

Element Bounding Volumes: The choice of AABB as the fea-
ture bounding volume is arbitrary. We selected the AABB because
of its simplicity and cost. More advanced bounding volume types,
such as object-aligned bounding volumes (OBBs) or k-DOPs would
certainly provide superior fit and culling efficiency. It is worth in-
vestigating to see if these more advanced BV types, used as fea-
ture BVs, can justify their greater cost through increased culling
efficiency. Tang et. al [2007] indicate that replacing AABBs with
kDOPs increased their overall performance for CCD.

Dynamic Representative Re-assignment: We argued that it is not
possible to create a globally optimal representation assignment for
a mesh undergoing unknown deformations. We could exploit tem-
poral coherence to try and create locally optimal representation as-
signments which dynamically change based on the current mesh
configuration. The idea is to identify features which were involved
in elementary tests but didn’t produce a collision. We would reas-
sign them to an incident triangle which didn’t appear in a triangle

candidate pair in the previous time step. Based on temporal coher-
ence, we assume that if the triangle wasn’t involved in a collision
in the previous step, it won’t be involved in this step either.
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