
The visual beauty of today’s games is
undeniable, and powerful CPUs and
GPUs are a big part of that success.
Deep inside the game engine, however, there are

new and emerging technologies that can enhance

a title’s immersive appeal in ways not thought

of before. For example, many widely used game

engines are better at harnessing the laws of

physics to make characters interact in more

life-like ways, thanks to an energetic team of

university researchers, with some help from Intel.

Most action-oriented games involve the physics

of detecting collisions between objects, whether

in shooting targets, careening through streets, or

just using a paddle in Pong* to bat a ball around.

When clearing a level in a shooting game, such

as those built using current game engines, the

targets must be realistic, unless the goal is to

mow down mindless zombies, such as in the

venerable Resident Evil* franchise. Most games

need more than potential targets plodding

forward mechanically, jostling each other as they

come into range. Those non-player characters

(NPCs) might be fellow soldiers and must move

smoothly to enhance the game’s appeal.

Many long-time gamers can remember certain

titles where characters would run around in

clipped circles, bounce into unseen walls, or

otherwise do dumb, unbelievable things. Those

are unacceptable to today’s players, and thanks

to researchers at the University of North Carolina

(UNC) at Chapel Hill, plus some top Intel application

engineers, those days are over. The UNC team has

developed a set of libraries for C, C++, and C# with

tools that are updated and optimized for multi-core

and many-core processors, bringing more realism

to the gaming experience.

Intel has a long history of funding graphics

research at major institutions and pushing

the state of the art. Intel’s visual computing

product development and enabling teams

have supported research in visual computing

at UNC for more than a decade. This support

includes fellowships and stipends for graduate

students at UNC working on their PhDs; hosting

professors and summer interns from UNC at

Intel sites in Santa Clara, California, and Hillsboro,

Oregon; equipment support; and employing

many MS and PhD graduates.

A recent technical paper, “Reciprocal Collision

Avoidance and Navigation for Video Games,”

co-authored by four members of the Department

of Computer Science at UNC and two Intel

engineers, describes how games can take

advantage of multi-core architectures to

incorporate large numbers of virtual agents in

game levels with increasing visual fidelity. The

rest of this article reviews the work in that paper.

By Garret Romaine

New Work on

Collision Avoidance

and Navigation

Results in More

Realistic Multi-

agent Simulations

for Games

No

The above image demonstrates the application of

UNC’s crowd simulation library in an urban scene.

This scene has more than a hundred agents and many

high agents are in close proximity to each library. RVO2

Library can reliably perform collision avoidance and

local navigation for each agent in a few microseconds,

and thereby enable real-time crowd simulation.

More
Bumping

Around

intel visual adrenaline no. 12, 2012 13

http://software.intel.com/en-us/articles/reciprocal-collision-avoidance/

Make Way for My Agent
The ability to anticipate and measure collisions

between two or more objects is crucial to

computer animation, modeling, and virtual

environments. Game developers and researchers

have been working on designing efficient

techniques for generating realistic avoidance

behaviors between objects and characters, and

their environments. Without this work, the

entire playing experience suffers.

Traditional methods for generating the behavior

or trajectory of characters—or agents—often

rely on force-based models, which generate

the trajectory of each agent based on a particle

system in which each particle applies a force

on nearby particles. The laws of physics define

the way the particles move, while developers

create the rules for specific behaviors such as

separation and alignment.

Velocity-based collision avoidance, a concept

originally developed in robotics and recently

extended to multi-agent and crowd simulation,

computes the new velocity for each agent in

a distributed manner at each time-step of the

simulation. The original concept of velocity obstacle

was designed for a single robot navigating among

moving obstacles. Its application to multi-agent

and crowd simulation can result in not-so-smooth

motion for agents in close proximity, and it can

cause congestion in resulting crowd simulation.

Enter the innovative reciprocal velocity obstacle

(RVO) concept designed by the researchers at UNC.

The concept of an RVO involves anticipating other

agents’ reactions and is performed in a distributed

manner. In effect, each agent in an impending

collision takes some of the responsibility for

avoiding the collision. However, problems can

arise if, for example, two agents walking toward

each other try to pass on the same side. It is the

same problem as when two pedestrians get into

a “dance” as they try to keep moving, but each

one keeps stepping into the other’s way. To

keep agents moving freely, researchers have

further refined mathematical calculations and

developed the hybrid reciprocal velocity obstacle

(HRVO) method and the optimal reciprocal

collision avoidance (ORCA) method based on

optimization techniques. Both these approaches

can generate smooth trajectories for each agent,

as well as many emergent behaviors observed in

real-world crowds. The ORCA algorithm and its

implementation, RVO2 Library, are used in the

game Warhammer 40,000: Space Marine*.

The UNC team knew that the existing approaches

to collision detection and avoidance for multiple

objects could be relatively slow. The team also

realized that the utilization of multi-core and

many-core architectures in PCs and consoles would

allow large numbers of agents to be simulated

at higher-quality levels if they could develop

enhanced versions of the RVO-based algorithms

that could use the multiple cores and data

parallelism capabilities of current Intel® processors.

So the team set out to determine how to create

libraries for different languages so that game

developers could automatically generate realistic

avoidance behaviors for groups of agents.

Part of the Engine Now
Publishing a paper and gaining recognition at

conferences is important for academics because

it helps measure their impact in their research

field. Another recognition point is when their

work actually shows up in a public product.

RVO2 Library, a collection of resources including

pre-written code, subroutines, and classes, has

already been downloaded by more than 3,000

users and integrated into several games or

game engines to either perform local collision

avoidance and navigation or improve upon the

default implementations in the game engines.

The UNC team has released the following

related libraries:

•	 HRVO Library for C++

•	 RVO2 Library for C++

•	 RVO2 Library for C#

•	 RVO2-3D Library for C++

The acclaim has started to roll in, starting with

THQ’s inclusion of RVO2 Library for C++ in the

game Warhammer 40,000: Space Marine* from

developer Relic Entertainment. On their web

site, at http://gamma.cs.unc.edu/RVO2/, the UNC

team quotes from a review of the game by the

(London) Daily Telegraph in September 2011:

“It’s worth noting, however, that no matter

how many orks are barreling your way (and

often there will be a lot) the frame-rate never

takes a hit.”

Deepak Vembar, application engineer for Intel’s

Visual Computing Group, said working with the

UNC team, both with the optimization and in

co-authoring the paper, was a privilege. “Intel

and UNC have worked together to fund a lot

of graphics and simulation research,” he said.

“They came up with a more elegant solution for

simulating crowds or multiple agents, and that’s

an interesting topic in itself. There’s a lot of

research going into it.”

According to Vembar, it was exciting to work

on a project that affected the entire gaming

ecosystem. “Their code isn’t just pure research.

It’s part of many games. We’re trying to help

The Gaming Triangle

In the 1950s, the area around Raleigh-
Durham, North Carolina, became known as
the “Research Triangle” because of the many
prestigious universities located within a roughly
three-sided geography. Thanks to the number
of technically skilled graduates emerging from
schools such as the University of North Carolina
at Chapel Hill, North Carolina State University,
and Duke University, the region has attracted
numerous large employers, developing a
reputation for high-paying, interesting jobs.

Lately, the sheer number of gaming
companies springing up or moving to the
area has resulted in the area acquiring a new
name: the Gaming Triangle. There are over
30 gaming companies, including Epic Games,
Electronic Arts, Red Storm Entertainment,
and Insomniac Games. In addition, the triangle
is home to Joystick Labs, an accelerator that
launches startup video-game studios through
a mix of early-stage seed funding, mentorship,
education, and networking.

At least 1,000 employees work in the area,
which boasts the developers of two of the
top five game engines. There is the annual
East Coast Game Conference in Raleigh for
developers and game industry professionals,
plus the popular Carolina Games Summit.
The State of North Carolina now offers tax
incentives for game companies and other
businesses developing interactive and digital
media, and the Triangle Game Initiative
was formed as a trade association for the
Raleigh-Durham, North Carolina, interactive
entertainment industry.

14

collision avoidance in games

http://gamma.cs.unc.edu/RVO2/

push the boundaries of parallel programming using APIs like Intel® Threading

Building Blocks for tasking and to parallelize the workloads. We optimized the

code to use Intel Threading Building Blocks so it scales from four cores to six

cores and beyond, and it’s optimized for scaling across cores. And it’s built to

take advantage of distributing the load across the CPUs in the system.”

The paper covers collision avoidance and agent-velocity computation in detail,

with comparison tables and screenshots from the Intel® tools used in the

optimization phase. The net result was the optimization of both HRVO Library

and RVO2 Library. As the paper states:

“Both HRVO Library and RVO2 Library choose a new velocity by

computing the velocity that is closest to the preferred velocity and is

collision-free. If the goal position of the virtual agent is visible, then the

preferred velocity is in the direction of the goal. If the goal position is not

visible, the preferred velocity should be directed to the nearest node on

the waypoint graph to the goal (or to some point on the nearest edge on a

navigation mesh path) or roadmap that leads to the goal.”

Intel on Campus
Intel works with top graphics researchers to help move the state of the art

forward, according to Mitchell J. Lum, an Intel product marketing engineer.

“Choosing which projects to fund isn’t easy, but the team at UNC is very well-

published and recognized,” he said. “That made it easier to select them. Some

research will pay off in the near term, and some will take years to mature.”

Just as Intel researchers work on problems that are several years out, faculty

members decide where they want to be on the research spectrum. Some

work, by its nature, is highly speculative and may never result in marketable

products. According to Lum, the UNC team, led by Ming C. Lin and Dinesh

Manocha, “. . . has chosen to conduct research that could create breakthroughs

relatively soon, in a one-to-three year time frame, as opposed to something

so revolutionary that it won’t show up in a game for five years.”

As Lum points out, the UNC team has worked on crowd and multi-agent

simulation for quite some time; Dr. Lin’s 1993 PhD thesis at the University

of California, Berkeley, was entitled “Efficient Collision Detection for

Animation and Robotics.” UNC researchers understand the challenges

involved in designing such algorithms and systems. The UNC team has

released a number of libraries for collision detection over the last 15 years.

These libraries have been downloaded by more than 100,000 users and

licensed by 50 commercial vendors. In the same manner, “Crowd and multi-

agent simulation is picking up traction now,” Lum said. “This is something

that game companies are working on. It’s nice to see the practical application

of UNC’s research.” •

Intel® VTune™ Amplifer XE to the Rescue

The University of North Carolina at Chapel Hill team received plenty of help from Intel’s visual computing
team to tune and optimize their RVO2 Library. They used Intel® VTune™ Amplifier XE to analyze existing
bottlenecks and take advantage of multi-core processors. The result is that RVO2 Library neatly splits the
algorithm steps for each virtual agent using either OpenMP* or Intel® Threading Building Blocks.

To test their library, the team relied on help from Intel to create a sample scenario consisting of 1,000
virtual agents, arranged on the perimeter of a circle of known radius with the goal to navigate cleanly to the
other side. The benchmark scenario was run on an Intel® Core™ i7 processor Extreme Edition 980X with six
cores each with hyper-threading technology (six cores/12 threads). Analysis of concurrency and hotspots by
Intel VTune Amplifier XE showed that the application is well threaded with the major significant hotspots in
the code having optimal CPU utilization time. The team determined that all 12 threads in the CPU were fully
subscribed, with very few inactive periods.

Here is the algorithm used in RVO2 Library:

input [A] : list of agents, t : time step
loop

for all A in [A] do
Get current position and velocity for A
Compute n nearest neighbors [A’] in [A]
for A
for all A’ in [A’] do

Get current position and velocity
for A’
Construct velocity obstacle VO(A,A’)
Construct ORCA(A,A’)

end for
Construct ORCA(A) from intersection of all
ORCA(A,A’)
Compute preferred velocity pv for A
Compute new velocity for A in ORCA(A)
closest to pv using 2D linear programming
if 2D linear program is infeasible then

Compute new velocity for A closest
to pv using 3D linear programming

end if
end for
for all A in [A] do

Set velocity to new velocity for A
Increment position for A by t * new
velocity

end for
end loop

intel visual adrenaline no. 12, 2012 15

collision avoidance in games

