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Abstract
We present a method to efficiently construct and render a smooth surface for approximation of large functional
scattered data. Using a subdivision surface framework and techniques from terrain rendering, the resulting surface
can be explored from any viewpoint while maintaining high surface fairness and interactive frame rates. We
show the approximation error to be sufficiently small for several large data sets. Our system allows for adaptive
simplification and provides continuous levels of detail, taking into account the local variation and distribution of
the data.

Categories and Subject Descriptors(according to ACM
CCS): G.1.2 [Approximation]:Approximation of surfaces,
Least squares approximation, Piecewise polynomial approx-
imation; I.3.3 [Picture/Image Generation]:Display algo-
rithms, Viewing algorithms; I.3.5 [Computational Geometry
and Object Modeling]:Surface representation.

1. Introduction

In recent years, technology for acquisition of three-
dimensional data has reached a level of resolution that makes
it hard to interactively visualize and explore the acquired
data sets. For instance, aerial light detection and ranging
(LIDAR) techniques are employed to analyze atmospheric
composition and dynamics both on Earth and in outer space.
Such techniques easily produce data sets with 108 samples.
Similar data sizes are obtained in other scientific applica-
tions where, for instance, seismic data, aero-magnetic data,
terrain and other types of surface data are acquired. In par-
ticular, data from these applications is typically irregularly
sampled. Fitting smooth surfaces to such huge scattered data
sets allows us to visualize and navigate the data.

The problem of functional scattered data fitting can be de-
fined as follows. Given a finite set of points(xi ,yi) ∈ Ω,
i = 1, . . . ,N, whereΩ ⊂ R2 is a bounded domain in the
plane, and corresponding valueszi ∈ R, i = 1, . . . ,N, we
want to construct a smooth surface that approximates the

scattered data, taking into account local variation and dis-
tribution of the data. It should be computed and evaluated
efficiently even for large scattered data sets (N > 106). Fur-
thermore, the resulting surface should be rendered at inter-
active frame rates on current PC graphics hardware.

Generating very large terrain models is applicable for
flight simulators, games, and other massive virtual environ-
ments. By adaptively fitting and subdividing terrain, detail is
maintained where necessary and smaller meshes are stored
on disk. Our method is suitable for large areas of smooth
terrain (but not terrain with sharp discontinuities). Addition-
ally, visualization applications often desire unlimited view
point flexibility with high surface quality.

In this paper, we present a method to quickly construct
and efficiently render surfaces for approximating large func-
tional scattered data sets using subdivision surfaces. We
combine several techniques from terrain rendering with the
subdivision framework. This approach integrates the adap-
tive, continuous, level-of-detail offered by the subdivision
framework and simplification capability of our hybrid terrain
rendering method. It treats the processes of data approxima-
tion, surface triangulation, and interactive visualization in a
unified framework. Our algorithm allows exploration of the
resulting surfaces from any viewpoint at interactive rates. It
has the following characteristics:
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• It can smoothly approximate large sets of scattered data,
as opposed to data on regular grids;
• It can provide adaptive, continuous level-of-detail for fast

and high-quality rendering of complex data, by taking into
account the data distribution and local variation;
• It can incorporate any error metric to automatically sim-

plify the resulting meshes and seamlessly control contin-
uous detail generation.

We demonstrate our algorithm on several data sets includ-
ing scattered terrain elevation data, scientific functions, and
large simulated terrain data. In the fly-through of these data
sets, we observed noticeable performance improvement with
higher visual quality especially around areas with highly
varying detail. We also show that the resulting errors of the
approximated surfaces to be sufficiently small on these data
sets.

2. Previous Work

In this section, we survey related work in scattered data ap-
proximation and terrain rendering.

2.1. Scattered Data Approximation

Several scattered data fitting approaches have been proposed
15, 22, 27, 34. Various methods are based on bivariate splines.
Several types of splines can be used, for instance tensor
product splines10, 14, 18 and their generalizations to NURBS
surfaces31. These spline spaces are basically restricted to
rectangular domains. The tensor product methods are typi-
cally applied to data given on grids. In contrast, there is no
guaranteed solution for interpolating data of irregular dis-
tribution. Global least squares approximation and similar
methods have to deal with the problem of rank deficiency.
On the other hand, lower dimensional spaces and/or adap-
tive refinement combined with precomputation in those ar-
eas where the approximation error is too high can be em-
ployed24, 33, 37.

Other spline methods include those based on simplex
splines 38, box splines8, 20, or splines of finite-element
type 9, 11, 28. These local methods offer much more flexibil-
ity than tensor product splines in general. However, global
least squares approximation and other global methods were
often employed to alleviate the difficulting in estimating
derivatives at irregularly distributed data points using FEM
11, 17, 29, 38.

A very active area of research are radial basis methods
2, 3, 16, 30. Here, the interpolating surfaces is constructed as a
linear combination of functions of the formΦ(‖·−(xi ,yi)‖),
i = 1, . . . ,N, whereΦ is a suitable univariate function. If
Φ satisfies certain requirements, the interpolation problem
s(xi ,yi) = zi , i = 1, . . . ,N, is solvable for any given data. To
compute the surface, a linear system of sizeN×N has to be
solved. Since this system can be ill-conditioned, an expen-
sive preconditioning is required in many situations.

2.2. Rendering

Numerous methods for efficient rendering of terrain data
have been proposed in the literature. However, these tech-
niques usually operate on piecewise linear surface represen-
tations only. In fact, most of these approaches are restricted
to data that are regularly sampled on a rectangular grid, com-
monly referred to as adigital elevation map(DEM) ordigital
terrain map(DTM) with colors associated.

To achieve interactive frame rates, techniques based on
determining visible and occluded terrain regions6, 7, exploit-
ing smart data structures or vertical ray coherence for ray
casting 5, 23, and incorporating level-of-detail (LOD) rep-
resentations35, 36 have been proposed to speed up render-
ing. To reduce visual discontinuities due to LOD switching,
continuous LOD techniques have been developed by sev-
eral researchers12, 13, 25. In 25, continuous LOD rendering is
achieved with on-line simplification while maintaining user-
specified screen-space error bounds25 and improved in12

with additional optimizations including incremental trian-
gle stripping, predefined triangle counts, and flexible view-
dependent error metrics. The computational cost of view-
dependent error metrics is reduced by a method of nested
spheres presented in1 and generalized in26.

The methods based ontriangulated irregular networks
(TINs) do not require data to be sampled on a uniform grid.
Using incremental Delaunay triangulation, a multiresolution
representation of arbitrary terrain data is obtained for every
resolution level of TINs4. The approach in21 further im-
proves this method by computing triangulation on-the-fly to
avoiding the storage requirements of the hierarchy.

Using subdivision surfaces for terrain rendering has been
presented in32. An efficient implementation of the modified
butterfly scheme is described using half-edge structures with
mid-vertices. This method is demonstrated on an 8x8 terrain
mesh and alone is not sufficient for large terrain visualiza-
tion.

3. Overview

In this section we briefly describe various components of
our algorithm and their interactions. Given a large number of
functional scattered data points that lie on a smooth surface,
our goal is to reconstruct high quality views of that surface
from novel view points at interactive frame rates. By high
quality, we mean smoothness that can be characterized by at
leastC1-continuity. Modern graphics hardware acceleration
offers display of millions of triangles per second, therefore a
triangle mesh is a suitable output of the process.

We address this problem by taking into account the fol-
lowing:

• The approximated surface must fit to the scattered data
points.
• The fitted surface must be smooth, at leastC1-continuous

and preferably of higher degrees of continuity.
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• Rendering of the resulting surface must not degrade its
quality.
• The approximation algorithm must limit the complexity

of fitted surfaces and the rendering pipeline should per-
form adaptive tessellation and simplification for interac-
tive display.

The work of Haberet al. 19 achieves several of these goals,
however the rendering is restrictively slow for views near
the surface that display large areas of the surface. That work
does not offer adaptive LOD, thus the entire surface is ren-
dered at the detail required by the near view. When the view
includes a large area, the detailed mesh becomes too large
to efficiently display. Adaptive LOD techniques provide a
method to refine the surface detail only where needed. Ter-
rain rendering is an application where this is required – dis-
playing high detail near the viewer while large areas ap-
proaching the horizon are simplified.

We choose a subdivision surface to fit the scattered data
set and make use of terrain rendering techniques to maintain
interactive frame rates for rendering large scattered data sets.
The subdivision framework combined with terrain rendering
techniques offers dynamic, continuous, and adaptive levels
of detail with high quality rendering of smooth surfaces.

3.1. Adaptive Triangulation

As a preprocessing step, a planar triangulationT is fit to the
scattered data in the domainΩ. The vertices ofT are de-
noted byVi , i = 1, . . . ,n. The triangulationT is represented
as a binary triangle tree (BTT), which consists of isosce-
les right triangles. The children of a triangle are created by
an edge from the triangle’s apex to the midpoint of the hy-
potenuse.

Figure 1 illustrates the construction of a BTT mesh. Tri-
angles are divided untilN4 or fewer points remain in any
triangle. The BTT is therefore adapted to the local varia-
tion and distribution of the scattered data. We typically use
N4 = 5, . . . ,15 in our computations. Splitting a triangle may
require neighboring triangles to be split to avoid T-junctions.
This forced splitting continues recursively. An example is
shown in bold in Fig. 1: the thickest line is split first and
causes three additional splits.

3.2. Scattered Data Approximation

For the scattered data approximation, we use a similar ap-
proach to the one presented in19. However, instead of fitting
the control points of uniformly distributed cubic Bernstein-
Bézier triangles to compute a bivariate cubic spline surface,
we now fit the control points of a subdivision surface control
mesh, which is adapted to the local variation and distribution
of the scattered data.

We employ local least squares computations using singu-
lar value decompositions of small matrices. Controlling the
local degree of least squares polynomials according to the
local density of the scattered data points and the condition

Figure 1: A binary triangle tree (BTT) hierarchy is illus-
trated (left). A BTT is fit to scattered data with a maximum
N4 of two points per triangle. A recursive forced split is
shown in bold.

number of the least squares problem ensures a numerically
stable computation of the surface fitting.

3.3. Surface Rendering

The subdivision surface control mesh for large data sets is
prohibitively large to be rendered directly. Therefore deci-
mation of the mesh is required. Our mesh varies in complex-
ity due to variable data density. We develop a hybrid render-
ing algorithm based on the approaches in1, 12, 26, 39.

After the fitting has been completed, object space error
metrics are precomputed and stored in the BTT. These met-
rics include the error to the subdivision limit surface at the
leaves, nested variance between triangles and their simpli-
fied form, and nested bounding spheres. This hierarchy can
be used for view frustum culling and adaptive runtime tes-
sellation. These object space error metrics are projected to
screen space efficiently during display. Each frame involves
a depth first traversal of the BTT mesh, while maintaining
full connectivity information. This is required for tessella-
tion of the subdivision surface. The BTT and subdivision
surface are tessellated finely enough to satisfy a specified
pixel error.

4. Scattered Data Fitting

Our approach to scattered data fitting borrows some ideas
from the method presented in19. In this section, we describe
the key idea of our new approach as well as the main differ-
ences to the previous method. Details of our implementation
that are not significantly different from the previous method
are omitted in this section for the sake of conciseness.

We start from the verticesVi ∈ R2, i = 1, . . . ,n, of the tri-
angulationT of Ω. For each vertexVi , we collect the scat-
tered data points(x̃ j , ỹ j ), j = 1, . . . ,m, from within a certain
local areaaroundVi . The size of such a local area is deter-
mined by the local density of the scattered data points. Each

c© The Eurographics Association and Blackwell Publishers 2002.



V. Scheib, J. Haber, M. C. Lin, and H.-P. Seidel / Efficient Fitting and Rendering of Large Scattered Data Sets Using Subdivision Surfaces

Figure 2: Local fitting of Bézier triangle patches from the
method presented in19 (left) compared to our BTT vertex
fitting (right). The highlighted triangle and vertex are shown
with their respective initialized local area circles. Meshs are
shown at densities for sampling 320 data points with N4 =
10.

triangle ofT contains, by construction, a maximum ofN4
data points. Depending on the local topology ofT , a vertex
Vi may have four to eight incident triangles and edges. By
using the average length of the incident edges as the initial
radius for a circular local area, we cover about 12 triangles
on average in the local neighborhood ofVi with that circle.
If the number of data points inside the circle is too low (e.g.
less than three, which is the minimum number to compute
a linear approximation, see below), the radius of the circle
is increased. Conversely, if there are too many data points,
we apply thinning. This is done by binning data points into
a regular grid and retaining only the most central data point
from each cell. Due to the adaptive construction of the BTT,
however, these situations rarely occur. The process of finding
the data points that lie inside the local area around a vertex
can be efficiently carried out using the same approach and
data structures as described in19.

Our method of fitting local data reflects variations in data
density very well. Figure 2 compares our method with that
in 19. That work fit Bernstein-Bézier triangle patches in a
regular grid, shown on the left. The 32 shaded triangles
represent the patches fit directly from the data. Remaining
patches are determined by smoothness constraints. The lo-
cal areas used have a fixed minimum size, which guarantees
coverage of all data points. Our vertex local areas, based on
average edge length, are shown on the right. These meshes
illustrate a situation of 320 data points. The BTT subdivides
into at least 32 triangles forN4 = 10. The number of fitting
operations is variable depending on the triangulation.

We now fit a bivariate least squares polynomialpq
i of de-

greeq≤ 3 to themscattered data points(x̃ j , ỹ j ) from the lo-
cal area around vertexVi using singular value decomposition
(SVD). The degreeq of pq

i may vary from vertex to vertex
and is chosen adaptively w.r.t. the local density of the scat-
tered data points. The numbercq of unknown coefficients of
pq

i depends onq and is equal to 10, 6, 3, or 1 ifq is 3, 2, 1,
or 0, respectively. Depending onm, we initially chooseq so
thatm≥ cq.

Due to the SVD, we obtain the condition number of each
local least squares problem by the ratio of the largest singular
value to the smallest singular value. If this condition number
exceeds a prescribed bound, we consider the problem to be
ill-conditioned. This situation might appear, if the scattered
data points from a local area lie close to an algebraic curve
of degreeq. In this case, we drop the degreeq of the least
squares polynomial and re-compute the SVD again for the
new degreeq′ = q−1. If the new least squares problem is
ill-conditioned again andq′ > 0, we drop the degree further
down until q′ = 0. The quality of the resulting subdivision
surface is quite sensitive to the choice of the bound of the
condition number. Although a high average degree of the
least squares polynomials resulting from a high bound can
reduce the average approximation error at the data points,
our numerical simulations show that individual data points
may exhibit a larger approximation error. If, however, the
bound is chosen too low, more and more polynomials pos-
sess a lower degree, resulting in a lower (local) approxima-
tion order of the polynomials. We typically use values from
100, . . . ,200 for the bound of the condition number.

Finally, we evaluate the least squares polynomialpq
i at

Vi and assign the computed value as a height value toVi ,
i = 1, . . . ,n. The resulting three-dimensional points inΩ×R
are now interpreted as the control points of a subdivision
surface control meshM, which can be rendered efficiently
using the the technique presented in the following section.

5. Rendering the Subdivision Surface

To display the surface at interactive rates, the rendering al-
gorithm places several constraints on the methods used. We
have combined the subdivision framework with terrain ren-
dering techniques. The subdivision framework provides a
smooth limit surface which approximates the input data.
Storing a low resolution control mesh, the limit surface is
approached by recursively tessellating the mesh. The posi-
tions of vertices created by tessellation are computed using
a weighted stencil of local vertices. The complexity of the
polygonalized rendering of the subdivision surface can be
increased until its screen projection has a sufficiently small
error. However, rendering the control mesh of the subdivi-
sion surface alone proves too expensive for large data sets.
Thus, an adaptive simplification technique as part of our ren-
dering algorithm is used to simplify the control mesh where
detail is not needed. An overview of this interpolation and
decimation method is illustrated in Figure 3. Observe the
curved surface approximating the input data on the left. The
control mesh is shown in in thicker lines. On the right the
control mesh is automatically simplified for fast rendering.

The majority of the surface triangles rendered will be gen-
erated by our hybrid terrain rendering algorithm, as simpli-
fied control mesh triangles. When the viewpoint is near the
surface the full detail of the control mesh will be exposed.
These triangles will be tessellated by the subdivision surface
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Figure 3: This figure illustrates the different levels of detail in the finally rendered mesh. The top shows example mesh topology.
The bottom shows a 1D example including initial data points (diamonds) and subdivision surface control points (circles). There
are four types of edges distinguished by line type and labeled: a) adaptively tessellated butterfly subdivision surface – fit to the
input data, b) stitching edges connecting higher subdivision levels to lower, c) subdivision surface control mesh fully exposed but
satisfying screen space error metrics and not subdivided, d) simplified control mesh – distant from the eye point, and accounting
for the majority of the surface area.

until sufficient detail is achieved for screen display. These ar-
eas will be the ones the viewpoint is very near to, or areas of
the surface for which the density of the scattered data points
is low. In both cases, the higher order interpolation provides
a higher quality surface compared to the linear interpolation
of the terrain rendering algorithm alone. Any triangle that
has only one or two edges tessellated will require stitching
edges to avoid T-junctions and cracks.

Beyond being a suitable representation for our approxi-
mating surface, the subdivision surface must work in con-
cert with the terrain rendering algorithm. This has led us to
the selection of the modified butterfly subdivision scheme
coupled with a longest edge bisection of an adaptive binary
triangle tree.

5.1. Butterfly Subdivision Scheme

The modified butterfly subdivision surface39 is an inter-
polating triangular mesh scheme. It providesC1-continuity
from any triangular control mesh, allowing for vertices of
any valence. This is required for compatibility with the BTT
method described in 5.2. For the ten point case the limit sur-
face reproduces polynomials of degree 3. The interpolating
property of this scheme ensures that all vertices are always
on the limit surface. Thus, even when simplified, the con-
trol mesh will be on the curved surface we have fit to the
scattered data. Figure 4 shows the stencils used to compute
tessellations.

The butterfly tessellation only occurs on portions of the
control mesh fully exposed by the terrain rendering algo-
rithm. Adjacent triangles are maintained at most only one
subdivision level apart. If some edges of a triangle are sub-
divided, while others are not, stitching edges are inserted to
avoid T-junctions and cracks. These edges are not subdivided
further.

Figure 4: The modified butterfly scheme ten point stencil
(left), and extraordinary vertex stencil (right). A new vertex
is created at the position of the circle by the weighted sum of
the stencil vertices. Weights a, . . . ,d and s0, . . . ,sn are spec-
ified in 39.

Tessellation is halted by one condition. When an edge is
tessellated, the distance, on the plane perpendicular to the
edge, between the new vertex and the edge is considered its
error. This is a close approximation to the Hausdorff distance
between the current edge and its limit surface. Projecting the
error vector to the screen provides a metric in terms of pixels.

5.2. Binary Triangle Tree

The binary triangle tree (BTT) is well suited to terrain-like
surface rendering. Notably, it offers adaptive tessellation in
a manner which does not produce T-junctions or cracks. The
size of the triangles can vary rapidly between areas of the
mesh. Additionally, this type of subdivision is easy to im-
plement and efficient. Unlike many terrain rendering appli-
cations using this type of mesh, we allow the highest reso-
lution mesh to be of varying density, i.e. the binary tree is
not complete. This provides for efficient storage of our max-
imum mesh based on the local density of input data points.

Each triangleTi in the tree has an object space error met-
ric σi and bounding radiusr i associated with it. These nested
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Figure 5: An illustration of nested circles in 2D on a BTT.
Centers are marked by soft dots of increasing size higher in
the tree. Not all BTT edges are shown, only edges connected
to centers.

values are computed in a bottom up order, each node rep-
resents the maximum value of its self and its children. For
each leaf triangle,σi is initialized with an approximate er-
ror to the subdivision limit surface. The three edges ofTi are
subdivided and the maximum distance from the new vertices
to Ti is used. The bounding sphere of each triangleTi is cen-
tered at its apexAi and encloses the bounding spheres of its
children:r i = maxj (||Ai −A j ||+ r j ) for children apex ver-
ticesA j and radiir j . Leaf triangles are initialized withr i = 0.
This is illustrated in figure 5.

Traversal of the BTT is performed as a depth first search,
stopping if a triangle’s bounding radius falls completely out-
side of the view frustum or the object space error is negligi-
ble when projected to the screen:

(ξσi + r i)
2 < ||Ai −e||2

where the pixel error thresholdξ is specified as the minimum
size of a pixel in world space ande is the position of the eye
point. More detail can be found in26.

Triangles are always enabled as pairs of both left and right
children – splitting one right triangle and replacing it with
two smaller ones. Additionally, the base of a triangle which
is being split must be shared with a triangle of equal depth.
If it is not, the opposite triangle is first split. This may result
in a recursive split across several triangles. At each step in
the BTT traversal, each triangle will have neighbors which
vary in depth by no more than one level. Explicit connectiv-
ity information for face-face, face-vertex, and vertex-edge
relationships is maintained during this traversal. The result
is the portion of the BTT to be rendered, which is also a
BTT. This is transferred to the subdivision subsystem. Any
exposed leaf triangles will be subdivided as necessary.

6. Comparison and Results

In this section we discuss the performance of our prototype
implementation. We analyze the surface approximation error

as well as rendering speed and visual quality. We also com-
pare the performance of our method with that of the Bézier
patch implementation19 on several of our data sets.

6.1. Data Sets

We used several data sets to test and profile our implemen-
tation. Each data set has an associated fly-through animation
which is played back from a script file. Each data set has a
short name used to refer to it:

• SciVis: 10,000 data points from simulation of a magnetic
drive unit with four poles and known holes in the non-
square domain;
• Sparse: 45,000 sparse data points taken from 12×12 km2

hillside country;
• Dense: 736,000 dense contour points from 12× 12 km2

terrain with a large river;
• Fractal: 1,000,000 evenly distributed random samples

over a fractal terrain;
• Fractal4: 4,000,000 data points obtained by tiling Fractal

terrain data set four times.

6.2. Approximation Error

Some error between the rendered approximation surface and
the input data points is expected. We present the results
based on several error metrics.

A Hausdorff distance is used to compute the maximum
error. This is divided by the diagonal of the scattered data’s
bounding box, providing a normalized metric between data
sets. Similarly, a root mean square (RMS) value of the av-
erage error is computed and normalized for each set. To un-
derstand the distribution of the errors, the percentage of data
points above certain errors are recorded. These error values
are specified as percentages of the scattered data’s span in
height. Table 1 lists error values for our data sets.

The internal data points are compared to a fully subdi-
vided control mesh. We exclude data points near the border
of the domain from the error metrics. These regions are un-
able to be properly subdivided by the butterfly scheme. Each
iteration of the butterfly subdivision brings the mesh nearer
to the limit surface. However, subsequent iterations con-
tribute less than early iterations. Our implementation subdi-
vides until system memory is exhausted. The larger data sets,
Dense and Fractal, are subdivided only twice while only the
control mesh is used for Fractal4. The error values reported
are conservative for these data sets.

Terrain data sets, covering large areas of predominantly
rolling hills, are handled well by our system. Extremely high
resolution data, including hundreds of points across a tree
top, requires filtering to meet our smooth surface require-
ment. Mathematical functions are generally fit well, unless
they contain discontinuities.

6.3. Rendering Performance

We have tested our implementation on several PC worksta-
tions. Figure 6 shows the average frames per second for the
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Precomp (sec) Memory Usage (MB) Max Abs Error RMS Error Data w/ Err> 5% Data w/ Err> 1% Data w/ Err> 0.1%
N Our Prev Our Pre/F Pre/R Our Prev Our Prev Our Prev Our Prev Our Prev

10K 0.187 0.234 13 2 344 0.010279 0.01791 0.000887 0.001738 0.00% 10.1% 48.75% 43.19% 85.40% 100.0%
45K 0.562 0.765 16 6 348 0.009883 0.00240 0.001546 0.000227 0.00% 0.00% 49.02% 5.602% 85.94% 79.39%

736K 12.98 12.17 83 80 422 0.001144 0.00085 0.000069 0.000031 0.00% 0.00% 1.909% 0.390% 54.83% 47.23%
1M 19.11 19.99 116 110 452 0.009841 0.00141 0.000100 0.000027 0.00% 0.00% 0.526% 0.026% 66.15% 36.47%
4M 81.48 45.00 530 435 > 2G 0.000801 0.00093 0.000045 0.000011 0.00% 0.00% 0.011% 0.007% 32.00% 27.08%

Table 1: Performance analysis and comparison to a previous Bézier patch implementation. Precomp lists the time to sort and
fit scattered data points. The previous work uses substantially more memory durring rendering (Pre/R) than for fitting (Pre/F),
while our algorithm uses the same memory footprint for both fitting and rendering. Max absolute and RMS error values are
normalized by the data’s bounding-box diagonal.
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Figure 6: Average frames per second for two data sets and
resolutions for scripted fly-through animations.

fly-through animations. Two large data sets and two resolu-
tions are compared. Our application’s bottleneck is the CPU,
as seen when comparing platforms with equivalent graphics
cards.

Data gathered for performance analysis, and the accom-
panying videos, is generated from scripted animation paths.
A wide variety of viewpoints are explored, both near and
far from the surface. Additionally, slow and fast viewpoint
movements and rotation are included.

The graphs in Figure 7 show timings taken from two data
sets. They represent frame time, view angle, and triangles
displayed during the playback of a scripted animation path.
The most influential factor on performance of both imple-
mentations is the vertical viewing angle. This is shown in
the center graph as degrees deviation from the horizontal
plane. The performance of the previous implementation is
severely affected by views which cover large areas of the
surface. These views correspond with near-horizontal views.
The top graph displays the computation time in seconds
for each frame of the animation. Note the large variation
in frame time for the previous implementation. The bottom
graph shows, on a log scale, the triangles rasterized for each
frame. The old implementation frequently renders two or-
ders of magnitude more triangles than the new implementa-
tion.

The strong computational expense of the previous imple-
mentation is due to its lack of adaptive tessellation. That

implementation renders Bézier patches at discrete levels of
detail. When high detail is required near the viewpoint, all
patches are forced to that LOD. If many of these are visi-
ble, the triangle count becomes unmanageable. Our adaptive
implementation is not as affected by changes in viewpoint
or orientation. Additionally, because the new method gener-
ates the mesh every frame, there is no reliance on temporal
coherence. The previous implementation drops in frame rate
noticeably when quickly switching between LODs.

We note that although our method is more conservative
with triangles, newer hardware acceleration products lessen
this bottleneck. We were unable, however, to compare our
implementation with the previous implementation on vari-
ous platforms. The display time memory requirements of the
previous method were too large for our workstations on our
large data sets.

The butterfly tessellation represents only a small fraction
(2%) of the computational cost of our system. A large por-
tion of time is spent building and resetting the rendered por-
tion of the BTT, and preparing data structures to be used by
the subdivision surface subsystem. Methods exist that ad-
dress these issues, which we did not pursue.

6.4. Visual Comparison

Figures 8 and 9 compare still images of the two implementa-
tions. Their textured surfaces are very similar (but not iden-
tical). However, viewing the wireframe of the meshes in-
dicates significant differences. Figure 9 clearly shows the
adaptive tessellation, adding detail to near geometry and sil-
houettes. The combination of subdivision methods can be
seen in Figure 10. The BTT mesh is refined by the butterfly
subdivision for surface points near the camera.

During animations some visual popping is apparent even
with a one-pixel error tolerance. This is due to insertion of
new vertices with significantly deviant normals. An error
metric sensitive to normals can be used, however we found
this too slow when viewing very large data sets.

7. Conclusion and Future Work

We have described a method for computing a smooth sur-
face for approximation of large scattered data sets. The re-
sulting subdivision surface can be rendered efficiently from

c© The Eurographics Association and Blackwell Publishers 2002.
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Figure 7: Frame computation times and triangle counts for two fly-through animations of the Dense and Fractal data sets (left
and right, respectively). Our new implementation (black) is compared with the Bézier patch method19(white). Values are plotted
over time in seconds of the animations. These are the same as seen in the accompanying videos. Note the strong impact viewing
angle has upon the Bézier patch method.

arbitrary viewpoints using our hybrid rendering algorithm.
An adaptive, continuous, level-of-detail is provided by tak-
ing into account the distribution and local variation of the
scattered data. We have shown our method to result in small
approximation errors and interactive rendering frame rates
for several large scattered data sets.

Further performance gain for rendering is expected us-
ing just released PC graphics boards that support display of
subdivision surfaces. Our CPU bound implementation will
benifit from this feature. Additionally, hardware subdivision
reduces the overall bandwidth used on the graphics card.

We expect that tiling methods would benefit this algo-
rithm. Instead of using error metrics on every triangle, they
could be done on groups. Tiling methods have been ex-
plored for Bézier patchs and subdivision surfaces. Addition-
ally, subdivision could be performed uniformly across a tile.
Although more difficult to implement, these methods may
significantly improve performance.
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