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ABSTRACT
Applications of of the medial axis have been limited because
of its instability and algebraic complexity. In this paper, we
use a simplification of the medial axis, the θ-SMA, that is pa-
rameterized by a separation angle (θ) formed by the vectors
connecting a point on the medial axis to the closest points
on the boundary. We present a formal characterization of
the degree of simplification of the θ-SMA as a function of θ,
and we quantify the degree to which the simplified medial
axis retains the features of the original polyhedron.

We present a fast algorithm to compute an approximation
of the θ-SMA. It is based on a spatial subdivision scheme,
and uses fast computation of a distance field and its gradient
using graphics hardware. The complexity of the algorithm
varies based on the error threshold that is used, and is a
linear function of the input size. We have applied this al-
gorithm to approximate the SMA of models with tens or
hundreds of thousands of triangles. Its running time varies
from a few seconds, for a model consisting of hundreds of
triangles, to minutes for highly complex models.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Curve, surface, solid, and object repre-

sentations; I.4 [Image Processing and Computer Vi-

sion]: Reconstruction, Image Representation

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
Distance field, Medial axis

1. INTRODUCTION
The medial axis [5] of a solid, defined as the set of centers

of maximal balls contained in the solid, has been proposed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SM’03 June 16-20, 2003 Seattle, Washington, USA
Copyright 2003 ACM 1-58113-706-0/03/0006 ...$5.00.

as a tool for shape analysis, surface reconstruction, motion
planning, and many other applications. It is useful because
it provides a local lower-dimensional characterization of the
solid. In particular, for a solid in 3D the medial axis con-
sists of a union of surfaces that provide information about
the shape and topology of the solid. If the distance to the
boundary is also stored for each medial axis point, the result-
ing structure is known as the medial axis transform (MAT)
and the entire boundary representation can be reconstructed
from it.

The use of the medial axis has been limited mainly by
two significant drawbacks: First, it is unstable, in that small
deformations in the boundary of the solid can lead to large
changes in the medial axis. Second, it is difficult to com-
pute because of the underlying algebraic complexity. For
a polyhedron, the surfaces constituting the medial axis are
quadrics, and the seam curves can have degree four. For
solids with curved boundaries, the medial axis sheets and
seam curves can have much higher degree. Geometric com-
putation with primitives of such high degree is hard to make
both reliable and fast.

In this paper, we investigate a subset of the medial axis,
which we call the θ-simplified medial axis, or θ-SMA. The
θ refers to the angle formed by the vectors connecting a
point on the medial axis to its corresponding closest points
on the object boundary. We call this angle the separation

angle, and the θ-SMA is simply the set of medial axis points
for which the separation angle exceeds θ. The relationship
between the stability of the medial axis and the separation
angle has been known in the literature and used in many
applications including surface reconstruction and skeleton-
based modeling [1, 13, 26].

Main Results: We present novel properties of the θ-
SMA and a fast algorithm to compute an approximation
of the θ-SMA of a complex polyhedron. The θ-SMA, as
indicated above, is parameterized by a minimum separation
angle θ. It has the property that Mθi

⊂ Mθj
whenever θi >

θj . Moreover, Mθ more closely approximates the medial
axis as θ → 0, and becomes more stable as θ → π. We
describe a formal characterization of the simplification of the
medial axis as a function of θ. Given the distance function at
each point on Mθ , an approximation to the boundary of the
original solid can be reconstructed, and we give a formula
relating the tightness of this approximation to θ.

We also present a novel and fast algorithm to compute an
approximation to Mθ at an adjustable resolution ε. The ε
determines the maximum error between the computed ap-



proximation and θ-SMA. It is based on efficient computation
of a distance field and its gradient using a spatial decompo-
sition. The complexity of the resulting algorithm is Θ(n/ε3)
where n is the number of primitives in the model and ε is the
resolution (voxel width). We describe an adaptive subdivi-
sion scheme for computing a bounded-error approximation.
Moreover, we present a number of techniques to improve the
quality of the approximation by smoothing operations and
accelerate the performance of the overall algorithm.

The algorithm has been implemented and applied to com-
plex polyhedra composed of tens or hundreds of thousands
of triangles. Its running time ranges from a few seconds, for
a model composed of hundreds of triangles, to minutes for
highly complex models, with measurements performed on a
2 GHz PC with an nVidia GeForce 4 graphics card.

As compared to other approximate schemes, our approach
offers the following advantages:

• Complex Models: It can handle very large and com-
plex models as the running time is a linear function of
the input size.

• Efficiency: We use fast algorithms for computing the
distance field and its gradient based on interpolation-
based rasterization hardware. As a result, our algo-
rithm can handle complex models composed of tens of
thousands of polygons in a few minutes.

• Approximation: The ε-approximation to the θ-SMA
is everywhere within

√
3/2 ε of the medial axis, and it

converges to the true θ-SMA as ε → 0.

• Stability: The criterion for simplification is scale-
invariant, so that small shallow bulges are ignored, but
thin, extended features in the medial axis are repre-
sented.

• Simplification: The simplification criterion is rather
intuitive, depending only on the separation angle.

The rest of the paper is organized as follows. In Section 2
we give an overview of related work. In Section 3 we de-
fine Mθ and present some of its properties. In Section 4 we
present our algorithm, and in Section 5 we analyze the time
complexity of our algorithms and various sources of error in
the approximation. We describe our implementation in Sec-
tion 6 and highlight its performance on a number of complex
models. In Section 7 we compare our approach to others in
the literature, and we conclude in Section 8.

2. RELATED WORK
There is an extensive literature on both the computation

and the simplification of the MAT and related construc-
tions. In this section, we give a brief overview of exact and
approximate algorithms for MAT computation as well as
simplification.

2.1 Medial Axis Computation
At a broad level, algorithms for medial-axis computa-

tion can be classified into four categories: thinning algo-
rithms, distance field based algorithms, algebraic methods,
and surface-sampling approaches. These categories differ in
terms of the underlying representations used for the medial-
axis as well as how they compute it.

2.1.1 Thinning Algorithms
Thinning algorithms use a voxel-based representation of

the initial figure, and perform erosion operations to arrive at
a set of voxels approximating the medial axis. Lam et al. [19]
give a survey of these approaches, and Zhang et al. [32]
compare various methods. These methods are significant in
the areas of image processing and pattern recognition, since
the input data is represented as a discrete grid.

2.1.2 Distance Field Computations
Many approaches compute an approximation of the me-

dial axis based on distance fields. Danielsson [12] uses a
scanning approach in 2D to create an image in which each
pixel contains the Euclidean distance to the nearest pixel
on the boundary of the figure being analyzed. Moreover,
the resulting distance map can be analyzed for local direc-
tional maxima to get an approximation of the medial axis.
This algorithm has also been extended to three and higher
dimensions [22].

Vleugels and Overmars [30] use a spatial subdivision to
represent the medial axis, relying on nearest-neighbor queries
to determine whether a cell must be further subdivided.
They subdivide if the cell has vertices in different Voronoi
regions and is larger than a certain threshold.

Hoff et al. [17] use interpolation-based graphics hardware
to render a polygonal approximation of the distance field.
The distance field is created in the depth buffer. We have
extended this algorithm to compute the gradient of the dis-
tance field, also using rasterization hardware. We then use
the gradient field for fast computation of the medial axis.

Siddiqi et al. [25] have also presented an approximate al-
gorithm based on distance fields. Their analysis is based on
a differential equation simulating the inward progress of a
front starting at the boundary of the object. They compute
a vector field that, at every point p, is equal to the vector
from the nearest point on the surface, to p. They consider a
point to be on the medial axis if the mean flux of the vector
field, entering a neighborhood of the point, is positive.

2.1.3 Algebraic Methods
There is a family of methods that rely fundamentally on

the fact that the algebraic form is explicitly known for each
surface patch (i.e., each sheet) of the medial axis of a poly-
hedron.

Etzion and Rappoport [16] represent the curves and sur-
faces symbolically, but use a spatial subdivision to resolve
the connectivity of the curves. They use algebraic tests to
determine whether the surfaces pass into the cells of the
subdivision, and subdivide until either the proper connec-
tivity is determined, or a minimum cell size is reached. The
presence of a minimum cell size means that it is not always
possible to fully resolve the local connectivity of sheets and
seams.

Most algorithms that represent the medial axis symboli-
cally use a tracing approach [21]. Starting from a junction
point on the medial axis, a seam emanating from the junc-
tion is followed. The seam terminates at another junction
and the process is applied recursively. Using such an ap-
proach, Chiang [8] gives an algorithm for computing the me-
dial axis of a planar region bounded by piecewise C2 curves.
Also, Dutta and Hoffmann [15] and Hoffmann [18] present
an approach to compute the medial axes of constructive solid
geometry (CSG) models.



Sherbrooke et al. [24], Reddy and Turkiyyah [23], and
Culver et al. [11] have demonstrated tracing algorithms for
polyhedra, all using different methods to find the endpoints
of the seam curves. Culver et al. represent the medial axis
exactly by means of systems of algebraic equations manipu-
lated using rational arithmetic. Their method computes an
exact representation of the medial axis provided there are
no degeneracies (such as more than four seams intersecting
at a point).

All of the methods in this family have been applied to
polyhedra composed of only a few hundred faces. It is not
clear whether they can be applied to complex models com-
posed of tens or hundreds of thousands of faces. Either their
running time is more than O(n2), where n is the number of
faces, or these algorithms are susceptible to accuracy and
robustness problems.

2.1.4 Surface Sampling Approaches
Surface sampling methods represent the initial figure as a

dense cloud of sample points presumed to be on or near the
boundary. The medial axis of the figure is approximated by
a subset of the Voronoi diagram of the point cloud. Different
algorithms based on this approach use different methods for
selecting the desired subset of the Voronoi diagram. Many
such variations have been proposed. Boissonnat [6] classified
certain triangles of the Delaunay tetrahedralization of the
point cloud as interior to the model; the Voronoi vertices
dual to those tetrahedra approximate the medial axis.

Using a similar approach, Amenta et al. [1] construct
an approximate, simplified medial axis which they use as
a stage in a surface reconstruction from the original point
cloud, a common application for this approach. Dey and
Zhao [13, 14] also create a simplified surface model of a
medial axis. Turkiyyah et al. [29] focus on improved ac-
curacy rather than simplification. They follow the initial
approximation with a numerical optimization step to move
the sample points so that the Voronoi vertices are closer to
the true medial axis. All of these authors give good surveys
of this literature ([1, 13, 29]).

These algorithms have been applied to models composed
of tens of thousands of points. One of the main issues when
applying these algorithms to polyhedral models is in gener-
ating appropriate point samples on the boundary to ensure
a tight approximation of the medial axis. In general, the
worst-case running time of these algorithms can be O(n2),
where n is the number of point samples. Recently, Attali
and Boissonnat [2] have shown that the running time is only
linear when the points are distributed on a fixed number of
well-sampled facets. However, the point sampling of the
surface has to satisfy certain criteria.

2.2 Medial Axis Simplification
A fundamental problem with the medial axis as a tool in

shape analysis and surface reconstruction is that it is un-

stable, in the sense that small perturbations in the surface
model lead to large changes in the structure of the medial
axis. For a polyhedral model, every pair of adjacent faces
produces a medial axis sheet extending to the edge connect-
ing the two faces, producing a cluttered and uninformative
medial axis. A number of methods for simplifying the me-
dial axis have been proposed.

One of the criteria to identify parts of a medial axis that
are stable is what we call the separation angle S(x). It

is the maximum angle formed by the vectors connecting the
medial axis point x to its closest points on the boundary, and
portions of the medial axis with a larger separation angle
tend to be more stable. This has been noted by several
researchers based on analyzing functions on the boundary
surface [4], investigating the effect of noise [3] or samples [7]
on the medial axis or in other skeleton-based applications
[26]. Amenta et al. [1] use a similar criterion to determine
whether a point on the medial axis is stable.

Dey and Zhao [13, 14] use a pair of criteria to retain
faces from the Voronoi diagram of a set of points. For one
criterion, they consider the angle between an approximate
inward-pointing surface normal and a Delaunay edge (dual
to a Voronoi face). If that angle is small, the Voronoi face
is retained. The other criterion retains Voronoi faces if they
are much farther from the surface sample points than the
sample points are from each other.

Styner et al. [27] iteratively merge and prune sheets ac-
cording to a pair of cost functions designed to minimize the
change to the reconstructed model. They achieve a substan-
tial reduction in medial axis complexity.

Choi and Seidel [10] study the stability of the medial axis
and derive a bound on one measure of the instability of the
medial axis for solids satisfying certain hypotheses.

3. θ-SIMPLIFIED MEDIAL AXIS
In this section we formally define the θ-SMA and give

some of its properties. While the relationship between the
separation angle and stability is well known, we are not
aware of this particular subset of the medial axis being stud-
ied as an object in its own right. We show the degree to
which it is more stable than the medial axis. Moreover, we
define the θ-SMAT, which includes the distance information
just as the MAT does, and show that the original model
can be reconstructed from the θ-SMAT to an accuracy that
depends in a simple way on θ. The significance of this rela-
tionship is that it is a way of quantifying the importance of
the portion of the medial axis retained in the θ-SMA. If the
original model can be reconstructed with reasonable accu-
racy, then one can argue that the most significant portions
of the medial axis are being preserved.

Notation and Terminology: In this paper, vectors and
points will be in boldface. Sets and functions will generally
be denoted by capital letters. Unless otherwise specified, X
will denote a solid with a polyhedral boundary.

Given a set of geometric primitives S = {Pi}, the Voronoi

region of a primitive Pi is the set of points that are at least
as close to Pi as to any other primitive. The collection of
Voronoi regions is the generalized Voronoi diagram, or GVD.
The medial axis of a polyhedron is a subset of the GVD of
its faces, edges, and vertices.

We will say that an edge or vertex of X is reflex if its in-
cident faces are not coplanar and it intersects the boundary
of a ball whose interior lies in the interior of X.

Let X be a polyhedral solid with medial axis M . Re-
call that M can be characterized as the closure of the set
of points in the interior of X having at least two nearest
neighbors on the boundary of X. (Sometimes the require-
ment that the points be in the interior of X is relaxed.)
Consider a point x ∈ M , and let NS(x) denote the set of
its nearest neighboring points on the boundary of X. There
is a sphere centered at x that does not cross the boundary
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Figure 1: The separation angle S(x) for a point on the medial
axis. The thick border is the boundary of X.

of X, but that touches it at just the points of NS(x).
For each pair of points p1,p2 ∈ NS(x), we can consider

the angle
�
p1xp2. (We will treat all angles as values in

[0, π].) If x has more than two nearest neighbors, then we
consider the largest angle subtended by a pair of nearest
neighbors. We call this angle the separation angle S(x) for
the medial axis point x:

S(x) = max
p1,p2∈NSx

(
�
p1xp2)

(see Figure 1).
The intuitive motivation for this definition is as follows: If

the separation angle is exactly π, then x is directly between
its nearest neighbors, while if the angle is small, then both
neighboring points are on the same side of x, and there is
space on the other side of x that is, in a natural sense, deeper
in X.

Given an angle θ, define the θ-simplified medial axis Mθ of
X to be the set of points of M with separation angle greater
than θ. When we wish to emphasize the relationship of Mθ

to a particular solid X, we will write Mθ(X). The following
facts follow from the definitions of M and Mθ:

• The θ-SMAs are nested, with larger angles implying
smaller subsets. That is, if 0 < θ1 < θ2 < π, then
Mθ2

⊂ Mθ1
.

•
�

θ∈(0,π)

Mθ = M , where X denotes the closure of X.

In this sense we can say that Mθ → M as θ → 0. Note that,
even though we specified X as a polyhedral solid, all of the
above applies to any solid.

3.1 Quantifying the Significance of θ

In this section we derive a formula that quantifies the
degree to which the θ-SMA retains the significant portions
of the medial axis. It is well known that X can be recon-
structed from M along with the radius values for each point
on M . If we use Mθ instead of M in the reconstruction, then
we get a subset of X, which we can call Xθ . The accuracy
with which Xθ approximates X is a measure of the degree
to which Mθ captures the important geometric features of
X. Next, we formalize these notions, explaining what we
mean by the accuracy of the approximation, and show how
the accuracy is related to the separation angle θ, used as the
angle cutoff in simplifying the original medial axis.

Formally, the medial axis transform is the set of all maxi-
mal balls contained in X. The centers of the balls constitute

the medial axis, and retaining the balls is equivalent to re-
taining the radius information associated to each medial axis
point. We define the θ-simplified medial axis transform (θ-
SMAT) to be the subset of the MAT consisting of those balls
centered on points of the θ-SMA. X can be reconstructed
as the union of all the maximal balls in the MAT of X, and
Xθ ⊂ X is the union of the balls in the θ-SMAT of X. By
construction, Mθ is the medial axis of Xθ , but note that Xθ

may not correspond to a polyhedron.
We can measure how closely Xθ approximates X in two

ways. First, we can compare the volumes of the two spaces,
computing the ratio Vol(X)/Vol(Xθ), where Vol(X) denotes
the volume of X. Second, we can look at the distance be-
tween points on the boundary of Xθ and the nearest neigh-
boring points on X. For each point p on the boundary of
Xθ , there is a well-defined local radius R(p) given by the ra-
dius of the smallest maximal ball touching p (see Figure 1).
We can measure the local error as the distance from p to its
nearest neighbor p′ on the boundary of X, as compared to
the local radius of p. That is, the local error E(p) is defined
by

E(p) =
‖p − p′‖

R(p)
,

where p′ is the point on the boundary of X that is nearest
to p.

The following theorem shows how well Xθ approximates
X, as a function of θ.

Theorem 1. Let

g(θ) =
1�

1 − 4
3

sin2 θ
2

.

Then Vol(X)/Vol(Xθ) ≤ g(θ)3 and, for each point p on the

boundary of Xθ, E(p) ≤ g(θ) − 1.

Proof. We claim that, if all the balls of the θ-SMAT are
enlarged by a factor of g(θ), then their union will contain
X. The largest local feature that can be excluded from Xθ

is a corner such that the normals to the respective faces
differ by an angle no greater than θ. If all the balls are
enlarged by an appropriate ratio to include such corners,
then their union will include all of X. We will argue that
g(θ) as defined above is the required ratio by which all the
balls of the θ-SMAT must be enlarged to include all of X.

First consider the 2D analogue (Figure 2). If there are
two adjacent edges whose normals differ by an angle equal
to the threshold angle θ, then no disk tangent only to those
two edges will be added to the medial axis transform. Hence
a disk such as the one shown will be the medial axis disk
that is closest to the vertex p, and the external radius rext

is the radius to which that disk must be enlarged to contain
all of that corner. Thus, in two dimensions, g(θ) = rext/r =
sec(θ/2).

In three dimensions, the corresponding situation consists
of three faces coming together at p such that each pair of
normals differs by θ. Let x be the center of the maximal
ball closest to the extremal vertex p, and let p1, p2, and p3

be the points nearest to x on each of the three faces meeting
at p (see Figure 3).

Consider the planes passing through x, p, and pi for i = 1,
2, and 3. Since each pair of normals differs by the same
angle, these planes must have dihedral angles of 2π/3 to one
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Figure 2: Computing the error bound. The angle subtended
by p1 and p2 is equal to θ, so no circle tangent only to the
edges containing p1 and p2 is represented in Mθ. If the solid
circle is enlarged into the dashed circle, then the vertex p will
be included. The radius r is equal to the local radius R(p1) =
R(p2).

Figure 3: Computing rext = ‖p−x‖. The vector (p1−x) is
a normal vector from x to a face on the boundary of X. There
are two other such faces; the endpoints of the normal vectors
to those faces, p2 and p3, are not shown. The point q bisects
p1p2, which is one side of an equilateral triangle.

another, and the points p1, p2, and p3 form an equilateral
triangle in a plane orthogonal to xp. Let q be the point
where this plane crosses xp, and let q′ be the midpoint of
p1p2. Let rext = ‖p−x‖, and r = ‖p1 −x‖. Then our goal
is to compute the ratio rext/r. For convenience, assume
without loss of generality that r = 1, so that we only need
to compute rext.

If we denote
�
p1xp by α, then rext = 1/ cos α. We will

compute sin α. Let a = ‖p1 − q′‖, and b = ‖p1 − q‖. Then
b = sin α, and a = sin(θ/2). (This is because

�
p1xp2 = θ.)

Also, a = b
√

3/2 because p1q′ is perpendicular to qq′, and
m

�
p1qq′ = π/3. Bear in mind that q is the center of the

equilateral triangle 4p1p2p3. Thus,

sin α = b =
2√
3
a =

2√
3

sin θ/2.

Therefore,

rext =
1�

1 − sin2 α
=

1�
1 − 4

3
sin2 θ

2

3.2 Stability and Connectivity
One of the benefits of the θ-SMA is that it is more stable

than the medial axis. The medial axis of a finely tessel-

lated polyhedron will have a sheet for every adjacent pair of
faces, and many other pairs as well. The θ-SMA will only
retain sheets for pairs of faces whose normals differ by an
angle greater than θ, and thus, whose respective dihedral
angles are less than π − θ. Thus, introducing new vertices
to generate a finer tessellation of the model will not create
new sheets of the θ-SMA unless the new faces that are in-
troduced to the polyhedron create sufficiently small angles
with each other or with other faces in the model.

Figure 4: Disconnectedness. The point x is on the medial
axis but has a small separation angle.

However, by design the θ-SMA detects small, elongated
features, as in Figure 4. If such features are expected to
arise as noise, then the θ-SMA will be affected by the noise.
The relationship of θ to the stability of the simplified medial
axis is illustrated by Figure 5.

The θ-SMA does not in general preserve the homotopy
type of the model. It can be disconnected and have holes,
even if X is simply connected. In Figure 4, Mθ(X) is shown
for θ ≈ π/3. The point x is on the medial axis of the space
X, but not on Mπ/3 because its separation angle is too low.
If x were to move towards the rectangular feature at the
top, the separation angle would increase until it exceeded
the threshold angle, at which point x would be on Mπ/3.

This lack of a connectivity guarantee can be problematic
for some applications. However, for others, what is desired
is a characterization of the geometric properties of an ob-
ject whose connectivity may already be understood. Also,
it is possible to use a larger value of θ to select significant
components of the object, and then compute again with a
smaller value of θ to achieve improved connectivity. The
more connected version can then be pruned, retaining just
enough information to connect the components correspond-
ing to the larger value of θ.

Finally, if it is desired to simplify X, one can remove small
detached components of Mθ, yielding a pruned version of the
θ-SMA. After that one can reconstruct an approximation to
X from the pruned θ-SMA.

4. ALGORITHM
In this section we present a fast algorithm to approximate

Mθ(X). The algorithm has two variations, one based on a
uniform voxel grid, and the other on an adaptive subdivi-
sion of space. We first give an overview of the algorithm.
We then describe in more detail the criterion we use to de-
termine whether to add a face to the representation of Mθ,
after which we describe the different spatial subdivision ap-
proaches. We conclude by describing two approaches to im-
proving the surface representation of the θ-SMA.

The algorithm is based on a vector field that we call the



Head model θ = 5◦ θ = 15◦ θ = 60◦.

Triceratops model θ = 15◦ θ = 30◦ θ = 60◦.

Figure 5: Different Θ-SMA for the same model. As the separation angle increases, the number of high frequency or sharp
components decreases.

neighbor direction field of X, denoted NX . If x is a point
having a unique nearest neighbor p on the boundary of X,
then

NX(x) =
1

‖p − x‖ (p − x).

This field consists of the negated gradients of the distance
field defined by the boundary of X, and it is well-defined
everywhere outside the boundary and medial axis of X.

Using NX , we define a separation criterion to determine
whether an arbitrary line segment in the interior of X crosses
a sheet of the medial axis. The essence of the criterion is
that two points x1 and x2 are taken to be on opposite sides
of a medial axis sheet if NX(x1) and NX(x2) diverge. We
use this criterion to test either the centers of the voxels of a
uniform grid, or the cell vertices of an adaptive subdivision.

When a pair of points passes the separation criterion, we
add a facet between them to our model of Mθ . Once the
polygonal model is generated, it can be filtered to improve
the fit of the represented sheets to those of the actual θ-
SMA.

4.1 The Separation Criterion
For a given pair of points we first determine the angle be-

tween the respective direction vectors given by NX . If the
angle is not greater than the threshold θ then we reject the
pair. However, if it is greater than the threshold, we need
to be careful to avoid false positives. If, say, a reflex vertex
is the nearest neighbor to both points in a pair, then both
direction vectors will converge towards the vertex (see Fig-
ure 6). If the points are close enough to the vertex, then the
angle between the vectors can be greater than the threshold,
even though the segment between the points does not cross
the medial axis.

To avoid this error, we need to check whether the vectors
diverge. We check this condition by ensuring that the heads
of the vectors are at least as far apart as the tails, where

p
v
1

v
2

x
1 x

2

Figure 6: The direction vectors at neighboring voxels can
differ by a large angle even when the voxels are not on different
sides of the medial axis.

the lengths of the vectors are scaled to equal the separation
between the neighboring points.

Given the separation criterion, we now present algorithms
for two spatial subdivision schemes, a uniform grid and an
adaptive grid.

4.2 Uniform Subdivision
The simplest spatial subdivision is a uniform grid. There

are efficient ways to compute a distance field and its gradient
that make use of the uniformity of the grid [17, 12]. We
extend the algorithm presented in [17] for fast computation
of the distance field.

Our goal is to create a uniform sampling of the direction
field of the model X. We divide the volume into an axis-
aligned voxel grid, referring to a set of voxels with a constant
z-value as a slice. The algorithm we use relies on the parallel
nature of interpolation-based graphics hardware to perform
the computation efficiently for one slice at a time. The al-
gorithm simultaneously computes a distance field and a di-
rection field over a uniform 2D grid for each slice. We will
describe the computation of the distance field first and then
explain how we use it for direction computation. For each
slice, the distance field is a scalar function DX : � × � → � .
If we decompose X into sub-objects Xi, then DX is deter-
mined by the lower envelope (or minima) of the set of all
the distance functions DXi

. We thus decompose X into its



faces, edges, and vertices and compute the lower envelope
of the distance fields of each of these primitives.

The distance functions of these primitives can be repre-
sented in a simple form. We highlight these functions for
points, lines and planes. For edges and triangular faces,
these definitions are combined in piecewise fashion to rep-
resent the full distance field for the primitive. We describe
formulas for the slice z = 0 and for primitives placed in par-
ticularly convenient configurations. The general forms can
be derived by simple coordinate transformations.

For a point p = (0, 0, c) and the slice z = 0, the distance
field is the hyperboloid

Dp(x, y) =
�

x2 + y2 + c2.

For a point with arbitrary coordinates we perform a trans-
lation on the distance field.

For the line L in the xz plane given parametrically by
(ta, 0, tc) with a2 + c2 = 1, the distance is given by the
elliptical cone

DL(x, y) =
�

x2c2 + y2.

For a general line, we perform a translation and a rotation.
Finally, let F be the plane defined by the equation ax +

by + cz + d = 0. If we assume that a, b, and c are chosen so
that a2 + b2 + c2 = 1, then the distance from a point to the
plane is simply found by evaluating the left-hand side of the
equation at that point. Thus, for the slice z = 0 we have

DF (x, y) = ax + by + d.

In 3-space, the Voronoi region of the interior of a triangu-
lar face is defined by the three planes perpendicular to the
face and passing through the edges. Points in this region
are closer to the interior of the triangle than any of its edges
or vertices. Similarly, the Voronoi region of the interior of
a segment is defined by the planes normal to the segment
and passing through the endpoints. For points outside the
Voronoi region of the interior of a face or segment, we define
the distance to be infinite by convention. Then, when the
lower envelope of the distance fields for all the faces, edges
and vertices is taken, the proper nearest neighbor will be
determined for each point.

As we generate the distance field for each primitive, we
also generate the direction field for that particular primitive.
The distance field allows the lower envelope to be defined,
and the lower envelope determines, for each point in the
volume, which primitive defines the direction field at that
point. With the point p, the line L, and the plane F defined
as above, unnormalized direction fields are given by

Np(x, y) = (−x,−y, c)

NL(x, y) = (−xc2,−y, xac)

NF (x, y) = −(ax + by + d)(a, b, c)

To extract Mθ , we construct NX for each slice by com-
bining the direction fields for the primitives of X. We then
evaluate each pair of voxels in the x, y, and z directions,
adding a face to the approximate θ-SMA for each pair that
passes the separation test. The computation of the distance
field and the direction field maps very well to the rasteriza-
tion hardware. More details are given in Section 6.

4.3 Adaptive Subdivision
Given the non-linear nature of the medial axis, in many

applications it is possible to compute a better approxima-
tion by using a non-uniform grid. We present an algorithm
based on octree subdivision of the space. This approach re-
quires two primitive operations. First, one needs to evaluate
the neighbor direction field NX(x) at an arbitrary point x

in the volume of interest. Second, one must be able to de-
termine whether an axis-aligned box contains, overlaps, or
is contained by the object X. Both of these tests can be
performed quickly using either a spatial subdivision to in-
dex the faces of the boundary of X, or by using a bounding
volume hierarchy of X. There are standard collision detec-
tion packages that also provide the capability for distance
queries, an example being PQP [20]. While these algorithms
have been designed for object-object distance computation,
it is straightforward to modify them to handle point-object
computation. For instance, given a bounding volume hierar-
chy of the object, one can compute the feature on X that is
closest to x by computing the distance from x to the bound-
ing volumes at different levels in the hierarchy. Given the
closest feature, the algorithm also computes the direction
vector from x.

Using these two primitive operations, the algorithm is as
follows:

1. Begin with a single cell containing X.

2. Until a chosen cell size is reached, iteratively subdivide
the cells that either

(a) contain at least part of X but are not contained
in X, or

(b) are contained in X and have a pair of neighboring
cell vertices that meet the separation criterion.

3. For each pair of vertices meeting the separation crite-
rion, add a face to the medial axis as in the uniform
grid approach.

This algorithm is more memory efficient, as well as more
time efficient (in terms of operation count), than the the
uniform grid algorithm. However, the uniform subdivision
scheme is simpler to implement and maps well to the ras-
terization hardware.

4.4 Refining the Medial-Axis Approximation
The polyhedral approximation generated by the spatial

subdivision schemes represents the θ-SMA up to a specified
resolution. However, the sheets of the medial axis (which
correspond to a portion of a quadric surface) are not well
approximated by the axis-aligned facets of the voxel grid.
In this section, we present two methods to refine the medial
axis approximation.

Smoothing. When we use uniform subdivision of space,
the algorithm we we use to compute the distance field pro-
duces distance values with a bounded error, with a bound
equal to half the diagonal width of a voxel. For this reason,
we cannot use the distance mesh to achieve subpixel accu-
racy in placing the faces of the medial axis mesh. However,
we use the smoothing algorithm proposed by Taubin [28],
a fast, non-shrinking smoothing filter. Because this filter
is non-shrinking, it retains the shape of the medial axis
sheets, while avoiding the stair-stepping appearance of the
axis-aligned faces.



Figure 7: The first step in an iterative refinement of the
approximate θ-SMA. x is the initial guess, and p is the nearest
neighbor of x on the boundary. Sx,p is the center centered
on x and passing through p. There is a maximal circle Smax

(not shown) that is contained in X and contains Sx,p. We
approach the medial axis by approaching Smax. Smax touches
the boundary in at least two places. p′ and p′′ are successive
approximations to to the second point where Smax touches the
boundary of X.

Iterative Retraction. We have described an approach to
perform distance queries (to the boundary) and direction
computation at arbitrary points in the space. Based on this
information, we can quickly find points that are very close
to the medial axis. Let x be a point in the interior of X, but
not on the medial axis. Let p be the unique point on the
boundary of X nearest to x, and let p′ be any other point on
the boundary of X. Then p′ places an upper bound on how
far x can be from the medial axis. Let Sx,p be the sphere
centered at x and passing through p, with radius ‖x − p‖.
Since x is not on the medial axis, Sx,p is not a maximal
sphere. Let Smax be the maximal sphere containing Sx,p.
Then Smax exhibits the following properties:

• It will be tangent to Sx,p, and hence centered on the
line px passing through p and x.

• It will be no larger than the unique sphere S′ centered
on px and passing through both p and p′, because S′

already touches two points on the boundary of X.

The center x′ of S′ is the most distant possible point from
x where px could cross the medial axis. See Figure 7.

In this way, points on the medial axis can be computed
using an iterative algorithm. The algorithm proceeds in the
following manner: Once S′ is found, we can define x′ to be
its center, and choose a new point p′′ on the boundary of
X as the boundary point nearest x′. Using p′′ in place of
p′, we construct S′′, and repeat the process. As we perform
more iterations, a sequence of circles is constructed that ap-
proaches Smax. This algorithm fits quite well with the adap-
tive subdivision approach as now we can compute vertices
that are very close to the medial axis. Our method is simi-
lar to a method used by Wilmarth, Amato, and Stiller [31]
to retract randomly generated sample points to the medial
axis.

5. ANALYSIS
In this section, we analyze the performance of our algo-

rithm. This includes the accuracy of our approximation as
well as the running time.

5.1 Accuracy
In this section we show that the discrete approximation

computed by our algorithm converges to the actual θ-SMA
as the resolution becomes arbitrarily fine. As before, let X
be a polyhedral subspace of � 3 , and let M be the medial
axis of X. Let Ẋ denote the interior of X. For a given ε >
0, let θ-simplified medial axis, Mε,θ , be the approximation
produced by our algorithm at the resolution ε.

The idea of our argument is that our algorithm estimates
the set of points over which the neighborhood direction field
NX is discontinuous. The following theorem says that, in-
side X, the direction field can only be discontinuous at the
medial axis. Since the direction field is not defined on the
medial axis, it follows that, in Ẋ, the medial axis is precisely
the set of discontinuities of the direction field. We prove it
based on the following theorem.

Theorem 2. The neighbor direction field NX is continu-

ous on the space Ẋ \ M .

Proof. Let x ∈ Ẋ be a point not on M . Either x is
in a Voronoi cell of one of the faces, edges, or vertices of
the boundary of X, or it is on the boundary between the
Voronoi cells of a reflex edge and a face, or between the cells
of a reflex vertex and a reflex edge. For each of these cases
the distance field can be computed explicitly and is shown
to be continuous in a neighborhood of x.

The result does hold for all curvilinear shapes of practi-
cal interest as well, but there are pathological cases where it
fails. Choi, Choi, and Moon [9] give examples of such patho-
logical cases in two dimensions, along with easily-satisfied
criteria to ensure that a region does not exhibit such behav-
ior.

Theorem 3. For a given ε > 0, the ε, θ-SMA is within

a Hausdorff distance of
√

3ε/2 from a subset of the medial

axis of X.

Proof. Let F be any face of Mε,θ. F is a square face
separating two voxels that satisfied the separation criterion.
Let x1 and x2 denote the centers of those two voxels. Note
that F is nowhere more than

√
3ε/2 from the most distant

point on the segment x1x2, because each cubical voxel has
side ε, and the distance from the center of a cube to the
farthest point on its face is

√
3/2 times the side of the cube.

We will show that the medial axis of X passes between x1

and x2. It follows that no point on F is farther than
√

3ε/2
from some point on the medial axis.

Let pi be the point on the boundary of X that is nearest
xi, for i = 1, 2. The separation criterion ensures that the pi

are farther apart than the xi, which implies that the pi are
on different features (faces, edges, or vertices) of the poly-
hedral boundary of X. This inference follows by considering
each type of feature in turn. Certainly the pi cannot be on
the same vertex. If the pi are on the same edge, then the
lines Li containing pi and xi for each i are perpendicular
to the edge. Thus the distance from p1 to p2 is the nearest
distance from L1 to L2, and so x1 can be no closer to x2.
The same reasoning applies to show that the pi cannot be
on the same face.

For each t with 0 ≤ t ≤ 1, define x(t) to be (1 − t)x1 +
tx2, so that x(t) traverses the segment x1x2. For each t,
let p(t) be the nearest neighbor to x(t), if the neighbor is



unique. There cannot be a path traversed by p(t) from
p1 to p2 that only crosses reflex vertices and edges, since
the direction vectors converge towards such edges, and the
vectors at the endpoints of the segment diverge. Hence,
there must be an intervening convex edge or vertex, resulting
in a discontinuity in the direction field. Therefore, x1x2

crosses the medial axis, and hence F is entirely within the
specified bound.

We have shown Mε,θ is within a bounded distance of the
medial axis of X. It remains to show that it actually con-
verges to Mθ .

Theorem 4. The ε, θ-SMA converges to the θ-SMA in

Hausdorff distance as ε → 0.

Proof. We need only consider the sheets, since the dis-
tance from the seams to the sheets is zero. Consider a point
x on a sheet of Mθ. Let v1 and v2 be the unit direction vec-
tors to its two nearest neighbors. Recall that S(x) denotes
the separation angle for x, that is, the angle between v1 and
v2. Since x is on Mθ , S(x) > θ. Let η = (S(x) − θ)/2. By
the continuity of NX , there is a neighborhood B containing
x such that the angle between NX(x′) and vi is less than η
for each x′ in B and on the same side of the medial axis as
vi.

Now for sufficiently small ε, there will be adjacent voxels
in the lattice of Mε,θ such that both voxels are contained in
B, and the voxel centers are on opposite sides of the medial
axis. Each such pair of voxels determines a face of Mε,θ that
is contained in B. Since this applies for any sufficiently small
neighborhood of x, this shows that the minimum distance
from x to Mε,θ can be made arbitrarily small. Combined
with Theorem 3, this completes the proof.

5.2 Time Complexity
In this section we discuss the time complexity of our algo-

rithm. For the uniform grid approach, the analysis depends
on the computational model that is used for the graphics
hardware. If we assume that the hardware takes a a con-
stant amount of time to render the distance field for each
primitive, then the algorithm we use to compute the direc-
tion field requires time Θ(p/ε) where ε is the resolution and p
is the number of primitives (faces, edges, and vertices) in the
model. Extracting the θ-SMA requires a single pass through
the volume, requiring time proportional to 1/ε3, so that the
running time for the entire algorithm is Θ(p/ε+1/ε3). If we
assume that rendering a slice of a distance field takes time
proportional to the number of voxels in the slice, then the
total time is Θ(p/ε3) or, equivalently, Θ(pv), where v is the
number of voxels.

For the approach using an adaptive subdivision, the run-
ning time is highly output sensitive. We note that each
distance query can require time logarithmic in the size of
the model, using current techniques, but the constant factor
is quite small.

6. IMPLEMENTATION AND RESULTS
In this section we describe the implementation of our algo-

rithm and highlight its performance on a number of complex
benchmarks.

Model Tris Resolution T( ��� ) T(SMA)
Bent Torus 2,000 127x128x42 5.42 0.321
Buddha 1 15,536 55x128x55 35.7 5.5
Buddha 2 67,240 222x512x222 1634 48.8
Buddha 3 1,087,474 55x128x55 1588 1.17
Skel. Hand 654,666 79x106x127 602 0.07
Elbow Pipe 5,306 96x59x77 6.95 1.10
Elbow Pipe 5,306 128x79x103 10.8 3.87
Elbow Pipe 5,306 192x119x155 20.4 5.59
Elbow Pipe 5,306 256x159x207 33.1 8.24
Elbow Pipe 5,306 512x318x414 127 69.3
Bunny 69,451 64x63x50 77.4 0.12
Bunny 69,451 128x126x100 238 0.982
Bunny 69,451 256x253x200 794 2.51
Head 21,764 31x41x50 13.3 0.09
Head 21,764 79x106x127 57.8 0.22
Primer Anvil 4,340 128x73x112 8.99 0.61
Shell Charge 4,460 126x128x126 33.0 10.9

Table 1: Timings for some models at various resolutions.
The Buddha model is shown at three different levels of detail.
Model: Name of the model. Tris: Number of triangles in
the model. Resolution: Number of voxels along each dimen-
sion. T(NX): Time to compute the neighbor direction field.
T(SMA): Time to extract the θ-SMA. All timings are in sec-
onds on a 2Ghz Pentium 4 with an nVidia geForce 4 graphics
card.

6.1 Implementation
We implemented the system in C++ using Microsoft Vi-

sual Studio, with OpenGL as our graphics API. Our imple-
mentation for computing the distance field is based on the
techniques described in Hoff et al. [17]. In that approach, a
volume is processed one slice at a time. For each slice, and
each geometric primitive in the model, a surface, called a
distance mesh, is rendered such that the depth buffer con-
tains the shortest 3-space distance from each point in the
slice to the given geometric primitive (which may not be
in the given slice). If a pixel from a given primitive’s dis-
tance mesh passes the depth test, then the pixel is in that
primitive’s Voronoi region.

We extend this method to acquire direction information
as well, by encoding the directions to the nearest primitive
in the red, green, and blue channels of the color buffer. Both
the directions and distances are linearly interpolated across
each triangle of the distance mesh, which is a source of error
that grows with the size of the triangles. The distance mesh
is designed to adjust the size of the triangles to keep the
error within acceptable bounds.

We encode the gradient vector at each vertex of the dis-
tance mesh. It is important to keep in mind that each trian-
gle is part of a distance mesh associated both to a geometric
primitive and a slice of the volume. The slice corresponds
to a z-value in the volume, but the z-coordinates of the
rendered triangles correspond to distances from the slice to
the primitive. The colors, likewise, correspond to directions
from points on the slice to the primitive. Henceforth, when
we refer to a given triangle of a distance mesh, we imply the
projection of the triangle onto the specified slice.

Each direction vector is of unit length, with the x, y, and
z components represented by the red, green, and blue color
components respectively. As the components are interpo-
lated across the triangle, the magnitude differs from unit



Figure 8: A torus and its θ-SMA. 2000 triangles. The grid
resolution is 127x128x42.

a. b.

Figure 9: The “primer anvil” for a shotgun shell. 4,340
triangles, SMA computed at 128x73x112 resolution. (a) The
model. (b) The θ-SMA. The seams and boundary curves of
the θ-SMA are shown.

length, so that the vectors must be normalized after being
read back and before computing a dot product to test the
separation angle. The direction differs from the true direc-
tion. Consider a vertex which we can assume to be located
at the origin, and a particular slice located at some depth z.
Let p1, p2, and p3 be the vertices of a mesh triangle that
has been projected into the plane of the slice. Then a point
in the triangle can be expressed in barycentric coordinates,
that is, as a sum � tipi with ti chosen so that � ti = 1.
The true unit vector pointing towards the vertex, v, and the
estimated vector ṽ, are given by

v = − � tipi

‖ � tipi‖
, ṽ = − � tip̂i

‖ � tip̂i‖
,

where p̂ = p/‖p‖. Then the error in the direction is given
by the angle cos−1(v · ṽ). We do not have a good bound
on this expression other than to say that it is bounded by
the largest angle subtended by the triangle from the point
of view of the primitive. We also note that, for triangles,
which are treated as primitives separately from their edges
and vertices, there is no interpolation error because the di-
rection vector is constant. Thus, for a voxel inside a convex
polyhedron, the only source of error in direction is the fact
that each component of the vector can only be expressed
with 8 bits of precision in the color buffer.

An alternative approach is to encode the full vector from

a. b.

Figure 10: Shotgun shell “charge” with 4460 triangles. The
grid resolution is 126x128x126. (a) The model. (b) Cross
section, showing different sheets in different shades.

each point on the slice to the given primitive, rather than
a unit-length direction vector. This approach raised con-
cerns with discretization error. However, with the advent
of floating-point color buffers, that objection may not be a
concern in the future.

6.2 Performance
We applied our algorithm to polygonal models of various

sizes, ranging from 2,000 triangles to more than 1 million.
Some of the models were triangulations of scanned data, and
others were CAD models. In general, scanned models have
triangles with good aspect ratios and uniformly distributed
over its boundary. However, many of these models have
a high genus. On the other hand, the CAD models tend
to have many sharp edges and uneven or high-aspect-ratio
triangles.

In our tests (Table 6.1), the bulk of the computation time
is taken by the computation of distance fields. Comparing
running times for different resolutions shows an increase that
is more than linear but less than cubic in the number of
voxels along one dimension.

Except where otherwise specified, the separation angle
θ = 60◦, and the θ-SMAs have been smoothed. The res-
olution is specified in terms of the dimensions of the scene.
The relative dimensions of the volume were determined by
slightly enlarging a tight bounding box for the model.

7. COMPARISON WITH OTHER
APPROACHES

There are by now a large array of approaches for com-
puting as well as simplifying the medial axis. Performance
comparisons between them are difficult, because they make
different assumptions about the input, and generate differ-
ent kinds of medial axis approximations as output.

The two main features of our approach are, first, that it
computes the θ-SMA and not the entire medial axis, and,
second, that we use a fast algorithm based on uniform spatial
subdivision to compute the distance field and its gradient.
As a result, we are able to compute good approximations of
the θ-SMA for complex models in a few minutes.

Tracing algorithms [11, 23, 24] are much more time con-
suming and have only been applied to models consisting of a
few hundred triangles. The adaptive subdivision algorithms
of [30] and [16] computed the generalized Voronoi diagram,



a. b.

Figure 11: Buddha model with 1,087,474 triangles. The grid
resolution is 55x128x55.

rather than the medial axis. Their methods were only ap-
plied to models with up to a few hundred polygons. Our
algorithm with adaptive subdivision is similar in approach
to that of [30], but it creates a simplified medial axis rather
than a generalized Voronoi diagram.

The surface sampling approaches such as those of [6], [1],
and [13], take point samples on the surface as input, rather
than the boundary features of a polyhedron. The accuracy
and topology of the resulting medial axis varies considerably
based on the sampling criterion used to generate the point
samples. This makes it difficult to compare the approaches.
Amenta et al. [1] report times of roughly six minutes for
models of around 30,000 points, and Dey et al. [13] process
around 122,000 points in a little over five minutes.

8. CONCLUSION
We have presented a medial axis approximation, the θ-

SMA, based on the idea of the separation angle for a point
on the medial axis. The criterion characterizing the θ-SMA
is easy to understand and analyze, and it results in a more
stable structure than Blum’s medial axis. In practice, it is
able to detect and capture most of the sharp features of the
original model. We have presented a formal characterization
of the simplification of θ-SMA as a function of θ.

We have described two algorithms for fast approximating
the θ-SMA. One, using a uniform grid, is well-suited for im-
plementation using the parallel features of modern graphics
hardware. We have highlighted its performance on a num-
ber of complex benchmarks. The other algorithm uses an
octree decomposition, in order to reduce the memory ex-
pense and make the time efficiency more output-dependent.
Both algorithms fit into a consistent framework; both pro-
duce approximations that remain within a specified distance

Figure 12: Skeleton hand with 654,666 triangles. The grid
resolution is 79x106x127. No smoothing was performed.

of some part of the full medial axis. We have analyzed the
approximation errors produced by our algorithm.

There are a number of areas of future work. The key
to our use of graphics hardware is that the direction vec-
tor field, stored as RGB triples, is associated to the scalar
distance field, represented as depth values. This approach
could be applied more generally to other pairs of associated
vector and scalar fields. The use of graphics hardware for
general computing purposes is currently an active area of re-
search. We would like to compute the θ-SMA of solids with
curved boundaries as well as procedural models. Moreover,
we would like to use θ-SMA for different applications includ-
ing mesh generation and shape analysis.
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