
A Cache-Efficient Sorting Algorithm for Database and Data Mining
Computations using Graphics Processors

Naga K. Govindaraju, Nikunj Raghuvanshi, Michael Henson, David Tuft, Dinesh Manocha
University of North Carolina at Chapel Hill

{naga,nikunj,henson,tuft,dm}@cs.unc.edu
http://gamma.cs.unc.edu/GPUSORT

Abstract

We present a fast sorting algorithm using graphics pro-
cessors (GPUs) that adapts well to database and data min-
ing applications. Our algorithm uses texture mapping and
blending functionalities of GPUs to implement an efficient
bitonic sorting network. We take into account the commu-
nication bandwidth overhead to the video memory on the
GPUs and reduce the memory bandwidth requirements. We
also present strategies to exploit the tile-based computa-
tional model of GPUs. Our new algorithm has a memory-
efficient data access pattern and we describe an efficient
instruction dispatch mechanism to improve the overall sort-
ing performance. We have used our sorting algorithm to ac-
celerate join-based queries and stream mining algorithms.
Our results indicate up to an order of magnitude improve-
ment over prior CPU-based and GPU-based sorting algo-
rithms.

1 Introduction

Sorting is an integral component of most database man-
agement systems (DBMSs) and data stream management
systems (DSMSs). The performance of several DBMS
and DSMS queries is often dominated by the cost of the
sorting algorithm. Therefore, many techniques have been
proposed to analyze and improve the performance of sort-
ing algorithms. Recent studies have indicated that sort-
ing can be both computation-intensive as well as memory-
intensive. These investigations on the processor and mem-
ory behaviors indicate that there can be substantial overhead
in database and data mining applications due to memory
stalls on account of data cache misses, branch mispredic-
tions, and resource stalls due to instruction dependencies.
Many algorithms have been proposed to improve the perfor-
mance, including data parallel algorithms [40], cache con-
scious data structures and algorithms [10, 36, 38], instruc-
tion buffering algorithms [41] and better data storage mod-

els [3]. These techniques have been extensively studied for
CPU-based algorithms.

Recently, database researchers have been exploiting the
computational capabilities of graphics processors to accel-
erate database queries and redesign the query processing en-
gine [8, 18, 19, 39]. These include typical database opera-
tions such as conjunctive selections, aggregates and semi-
linear queries, stream-based frequency and quantile estima-
tion operations,and spatial database operations. These al-
gorithms utilize the high memory bandwidth, the inherent
parallelism and vector processing functionalities of GPUs
to execute the queries efficiently. Furthermore, GPUs are
becoming increasingly programmable and have also been
used for sorting [19, 24, 35].

The GPU-based sorting algorithms use the basic func-
tionalities of GPUs and can outperform popular CPU-based
algorithms such as quicksort [19]. Most work on GPU-
based sorting focused on using different features and ca-
pabilities of GPUs to design better sorting algorithms.
Though efficient, current GPU-based algorithms tend to be
memory-limited. As compared to CPU-based sorting algo-
rithms, there is relatively little or no work on optimizing the
memory performance of GPU-based sorting algorithms for
database applications.

The GPUs have a high memory bandwidth. However, the
performance of GPU-based sorting algorithms is dominated
by the latency in memory accesses. In order to reduce mem-
ory latencies, current GPUs use L1 and L2 caches internally.
These caches are optimized for rasterizing primitives, and
are usually designed based on a tile-based architecture of
GPUs. Furthermore, there can be restrictions within the
memory access model of graphics processors. Therefore,
cache-conscious optimizations designed for CPUs are not
directly applicable to GPUs.

Main Results: In this paper, we present a novel GPU-
based sorting algorithm that offers improved performance
as compared to prior GPU-based algorithms. Our algo-
rithm is based on the bitonic-sorting network and uses the
inherent parallelism and vector processing functionalities
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of GPUs. We use the texture mapping, blending or pro-
grammable functionalities of the GPUs to efficiently im-
plement the sorting network. In practice, our algorithm
is memory-bound and we present different techniques to
improve its memory efficiency. Our overall algorithm has
a better memory access pattern and locality in data ac-
cesses and significantly improves the cache efficiency and
the overall performance. We have used our fast sorting
algorithm to accelerate the computation of equi-join and
non-equi-join queries in databases, and numerical statistic
queries on data streams.

We have implemented our algorithms on a PC with a 3.4
GHz Pentium IV CPU and with an NVIDIA GeForce 6800
Ultra GPU. We have used our algorithm on databases con-
sisting of up to a million values and data streams consist-
ing of more than 100 million values. Our results indicate a
factor of4 − 10 times improvement over prior CPU-based
and GPU-based algorithms. In practice, our cache-efficient
optimizations result in more than30% improvement in the
computational performance.

Organization: The rest of the paper is organized in the fol-
lowing manner. We briefly survey related work on sorting
and database performance in Section 2. Section 3 gives an
overview of GPUs and memory layout. We present our sort-
ing algorithm in Section 4 and highlight its application to
database and data streaming operations in Section 5. We
analyze the performance of our algorithm in Section 6.

2 Related Work

In this section, we give a brief overview of prior work on
sorting algorithms and acceleration of database operations.

2.1 Sorting

Sorting is a well studied problem in the theory of algo-
rithms [25]. In fact, optimized implementations of some
algorithms such as Quicksort are widely available. These
include optimized implementations available as part of stan-
dard compilers such as Intel C++ compiler and Microsoft
Visual C++ 6.0 compiler. The implementation of Quick-
sort in the Intel compiler has been optimized using Hyper-
Threaded technology. More details on the implementation
of Quicksort are given here1. In the database literature,
many fast algorithms have also been designed for transac-
tion processing and disk to disk sorting [1]. However, the
performance of sorting algorithms on conventional CPUs is
governed by cache misses [26] and instruction dependen-
cies [40].

In terms of using GPUs for sorting, Purcell et al. [35]
described an implementation of bitonic merge sort on the

1http://www.intel.com/cd/ids/developer/asmo-
na/eng/20372.htm?prn=Y

GPUs. The bitonic sort is implemented as a fragment pro-
gram and each stage of the sorting algorithm is performed
as one rendering pass. Kipfer et al. [24] presented an
improved bitonic sort routine that achieves a performance
gain by minimizing the number of instructions in a frag-
ment program and the number of texture operations, but the
algorithm still requires a number of instructions. More re-
cently, Govindaraju et al. [19] presented an improved sort-
ing algorithm using texture mapping and blending opera-
tions, which outperforms earlier GPU-based algorithms.

2.2 Hardware Accelerated Database Operations

Many algorithms have been proposed to improve the per-
formance of database operations using multi-level memory
hierarchies that include disks, main memories, and sev-
eral level of processor caches. A recent survey on these
techniques is given by Ailamaki [2]. Over the last few
years, database architectures have moved from disk-based
systems to main-memory systems and the resulting appli-
cations tend to be either computation-bound or memory-
bound. In particular, memory stalls due to cache misses
can lead to increased query times [4, 28]. There is con-
siderable recent work on redesigning database and data
mining algorithms to make full use of hardware resources
and minimize the memory stalls and branch mispredictions
[3, 10, 27, 31, 36, 37, 38, 40].

Many acceleration techniques have been proposed to im-
prove the performance of database operations. These in-
clude use of vector processors to accelerate the execution of
relational database operations including selection, projec-
tion, and join [31] and SIMD implementations of scans, ag-
gregates, indexed searches and joins [40]. Recently GPUs
have been used to perform database and data mining com-
putations including spatial selection and join [39], spatial
database operations within Oracle 9I DBMS [8], predicates,
boolean combinations and aggregates [18], and stream data
mining [19].

3 Overview

In this section, we provide a brief overview of our cache-
efficient sorting algorithm. We describe the essential capa-
bilities of GPUs that are used to obtain improved sorting
performance. We first give an overview of GPUs and de-
scribe some of their architectural features that influence the
sorting performance. These include the texture access pat-
terns used for comparison between data elements, data par-
allelism, and instruction dispatch.

3.1 Background

The performance of some database and data mining ap-
plications is largely dependent upon sorting. In these appli-
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cations, sorting is often considered an expensive operation.
In particular, the performance on modern CPUs is mainly
governed by the sizes of the L1 and L2 caches. These cache
sizes are typically small (of the order of a few hundreds
KB or a few MB) and studies indicate that CPU-based al-
gorithms such as Quicksort can incur larger cache penalty
misses [26, 19]. As a result, the CPU-based sorting algo-
rithms do not achieve their peak computational performance
[26]. Moreover, conditional branches in sorting algorithms
often lead to pipeline stalls and can be expensive [40].

In contrast, GPUs are designed using SIMD vector
processing units that can access a high bandwidth video
memory. These programmable SIMD units offer a better
compute-to-memory performance. For example, a high-end
GPU such as NVIDIA GeForce6800 Ultra can perform up
to 64 comparisons in one GPU clock cycle and can achieve
a peak memory bandwidth of35.2 GBps. As a result, GPU-
based sorting algorithms such as periodic balanced sorting
network algorithm (PBSN) [19] on a high-end GPU can out-
perform well-optimized CPU-based sorting algorithms (e.g.
Quicksort) running on a high-end CPU.

The performance of GPU-based sorting algorithms is
primarily limited by the memory bandwidth. Similar to
CPUs, current GPUs also have L1 and L2 texture caches
and use memory layout schemes to improve the memory
bandwidth. A recent study on the memory performance
in fast matrix-matrix multiplication algorithms using GPUs
[15] indicates a poor performance on the use of CPU-based
blocking algorithms to improve the cache performance.
There is relatively little work on memory access patterns
of GPU-based sorting algorithms as compared to the CPU-
based algorithms. In this paper, we present a theoretical
and experimental study to demonstrate that the sorting per-
formance on GPUs can be significantly improved by de-
signing cache-efficient algorithms. In the rest of this sec-
tion, we provide a brief overview of the capabilities of the
GPUs used to implement a fast sorting algorithm. After
that, we present the computational model used for rasteriz-
ing primitives using GPUs and the memory organization on
the GPUs.

3.2 Graphics Processors

The graphics processor is designed to perform vector
computations on input data represented as 2D images or tex-
tures. Each element of a texture is composed of four color
components, and each component can store one floating
point value. We represent the input data in 2D textures and
perform comparison operations to sort the data elements.
To access the data on the GPUs and perform comparisons
between them, we use two main features - texture mapping
and color blending operations. These two features operate
on the 2D images or textures. Texture mapping is used to
map the input color from the texture to each pixel on the

Figure 1. Texture caches on a commodity GPU: NVIDIA
GeForce FX 6800 : It has16 programmable fragment pro-
cessors. The fragment processors have a high memory
bandwidth interface to the video memory. The GPU has
a core clock of400 MHz and a memory clock of1.2 GHz,
and can achieve a peak memory bandwidth of35.2 GBps.
Each fragment processor has access to a local L1 texture
cache and multiple fragment processors share accesses to
an L2 texture cache.

screen. The mapping is specified by rasterizing a quadri-
lateral that cover the pixels on the screen and each vertex
of the quadrilateral is associated with texture co-ordinates.
The texture mapping hardware performs a bi-linear inter-
polation of the texture co-ordinates to compute the mapped
co-ordinates for each pixel that is rasterized. A 2D lookup
is performed on the active texture or image, and the input
color is assigned to the pixel. The blending hardware is
used to compare the input color with the pixel color in the
frame buffer. For a detailed overview of these functionali-
ties, refer to [29].

3.2.1 Texture Memory Layout

We now present a broad overview of the texture memory
layout and the tile-based computational model for rasteriz-
ing primitives on the GPUs. These concepts are used in im-
proving the runtime performance of our sorting algorithm.

The texture memory layout and access on graphics
processors is highly optimized for rendering applications.
Hakura and Gupta [21] present the design and analysis
of the texture memory architecture on GPUs. We briefly
overview some of the general principles for efficient texture
memory accesses on GPUs.

The video memory is a DRAM memory system and can
have high latency for data accesses. In order to achieve
high computational throughput, each fragment processor is
associated with a local L1 texture cache. Moreover, a L2
texture cache is shared among multiple fragment proces-
sors as shown in Fig. 1. The L1 and L2 texture caches
are static memories and can provide fast texture accesses
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Figure 2. Tiling on a commodity GPU: NVIDIA GeForce
FX 6800: Each input triangle is decomposed into many
small 2 × 2 pixel tiles. Each tile is processed by a single
quad fragment processor pipeline, and four pixel tiles can
be processed simultaneously. Note that the triangle does
not entirely cover all the pixel tiles. In the partially cov-
ered pixel tiles, the fragment processors are active only on
the covered pixels. The efficiency of a tile-based architec-
ture is therefore dependent upon the size of the rasterized
primitives.

and reduce the latencies. Furthermore, the texture mem-
ory is internally represented as 2D regions known asblocks
or tiles. As graphics applications exhibit a high amount of
spatial coherence, a block transfer of cache lines between
the cache and the video memory usually leads to the most
efficient memory bus utilization. The blocked represen-
tation exploits the spatial locality during texture accesses.
Therefore, data representations that access texels close to
each other can improve the performance. Pre-fetching tech-
niques are also applied to further reduce the latency of data
accesses [22].

3.2.2 Rasterization

Graphics processors often traverse the rasterized pixels
of a triangle in a tiled order to improve the coherence
[23, 30, 32, 5]. In this scheme, the screen is statically de-
composed into small rectangular regions known as tiles and
all the pixels within a tile are traversed before rasterizing
the next tile. In current GPUs such as an NVIDIA GeForce
FX 6800, the triangles are first decomposed into2× 2 pixel
tiles. Each tile is then processed by a quad pipeline or a unit
with four SIMD processors. The GPU consists of four such
quad pipelines and at any instance, four pixel tiles can be
processed simultaneously [33]. Fig. 2 illustrates the tile de-
composition of a triangle. Rasterization based on pixel tile
decomposition has the benefit of efficient memory accesses
as it requires a small working set from the texture memory
and can fit well in the texture cache. However, tiling is not
efficient for rendering thin primitives as some of the pro-
cessors in the2× 2 pixel tiles could be inactive and thereby
affect the overall performance.

4 Sorting on GPUs

In this section, we present our sorting algorithm and
highlight its advantages over prior GPU-based sorting algo-
rithms. We also analyze the computational complexity and
the memory access bottlenecks of our algorithm. Next, we
analyze the memory access patterns on GPUs and present
techniques to improve the performance. We also describe
efficient instruction dispatch mechanisms used to improve
the computational throughput.

4.1 Sorting Networks

Current graphics processors do not support scatter oper-
ations i.e., the fragment processor cannot write to arbitrary
memory locations. This restriction avoids a write-after-a-
read hazard between multiple fragment processors access-
ing the same memory location. Therefore, most sorting
algorithms such as Quicksort cannot be efficiently imple-
mented on GPUs. On the other hand, sorting network algo-
rithms are a class of algorithms that map well to the GPUs.
Govindaraju et al. [19] provide a detailed overview of sort-
ing network algorithms and present a fast implementation
of a periodic balanced sorting network (PBSN) algorithm.
We briefly summarize their results.

A sorting network algorithm proceeds in multiple steps.
In each step, a comparator mapping is created at each pixel
on the screen and the color of the pixel is compared against
exactly one other pixel on the screen. The minimum is
stored in one of the pixels and the maximum is stored in
the other. The comparison operations are performed as vec-
tor operations using the blending functionality of the GPU
and the mapping is implemented using the texture mapping
hardware. In each step, we update the portions of the screen
where the minimum values are stored by setting the blend
function to output the minimum value. We then draw quads
with appropriate texture coordinates on these portions of the
screen. We update the portions of screen where maximum
values are stored in a similar manner. For more details, refer
to [19]. Alternately, we can also simulate the blending func-
tionality using two single instruction fragment programs for
computing the maximum and minimum values respectively.

4.1.1 Our Algorithm

We design an optimal sorting network that is more efficient
than PBSN. Our algorithm is based on the bitonic sorting
algorithm [9]. The bitonic sorting algorithm consists of a
sorting network that can sort bitonic sequences. A bitonic
sequence is a merger of two monotonic sequences. The
bitonic sorting algorithm proceeds in multiple stages, simi-
lar to the PBSN. The overall algorithm haslog n stages, and
for each stagei, we performi steps. In particular, stagei is
used to merge two bitonic sequences of sizes2i−1 and gen-
erate a new bitonic sequence of length2i. Our algorithm
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Figure 3. A bitonic sorting network for 8 data values:
Each arrow denotes a comparator which stores the smaller
of the two values at the location corresponding to the tail
and the larger value is stored at the head. The algorithm
on n input values proceeds inlog n stages, and the algo-
rithm processes the stages from1to log n. Furthermore,
each stage proceeds in multiple steps and an intermediate
stagei performsi steps. Within every step, each data value
is compared against another data value at a constant dis-
tance. Furthermore, the distance remains constant within
each step and in stepi it is equal to2i. However, the di-
rection of accesses changes based on the stage. In stage
j, the direction of access reverses every2j−1 data values
as shown in the figure. The reversal increases the distance
between successively accessed data values and can lead to
poor memory access patterns.

repeatedly applies a sorting network to each of the stages
i = 1, 2, . . . , log n. At the end of thelog nth stage, we ob-
tain a sorted sequence of lengthn.

Fig. 3 illustrates the bitonic sorting network on 8 data
values. Each arrow between the two elements indicates a
two-element comparator. The maximum is stored in the el-
ement pointed by the arrow head and the minimum is stored
in the other. For any given stage i and step j of the algo-
rithm, every element is compared against an element at a
distance of2j−1. However, every2i−1 elements, the di-
rection of data accesses that an element compares against
is reversed. On graphics processors, the memory is con-
ceptually represented in 2D textures of width W and height
H. We map the 1D input data into corresponding 2D values
using texture mapping. An element (x,y) in the texture cor-
responds to an element at the location(y ∗W + x) in a 1D
array. In each step, we update all the pixels on the screen
that correspond to the regions where the minimum values
are stored. These regions are either column-aligned quads
or row-aligned quads (as shown in Fig. 5). Moreover, we
ensure that we reverse the directions every2i−1 elements
by reversing the texture co-ordinates of the vertices of these
quads. The overall algorithm requires(5 n log n (log n+1)

2 )
memory accesses and(n log n (log n+1)

2 ) floating point
comparisons.

The comparison operations are fast, and each blending-

Figure 4. Our improved bitonic sort network: The mod-
ified network is very similar to the one shown in Fig. 3. It
proceeds in the same number of stages and steps. More-
over, it processes the stages and steps in the same order.
Furthermore, for each element the distance and the direc-
tion of accessing its corresponding element is the same in
all the steps except the first step in each stage. In the first
step, one of the bitonic sequences is reversed and the ac-
cesses are performed similar to the first step of PBSN [19].
Our improved algorithm is simple to implement, has better
locality in accesses and is more cache-efficient.

based comparison operation requires a single GPU clock
cycle [34]. For large input arrays (in the order of millions),
the memory access bandwidth is substantially large (tens of
giga bytes per second) and the algorithm is memory-limited,
as opposed to compute-limited. To utilize the high compu-
tational power of graphics processors, we improve the per-
formance of algorithm using three properties:

• Memory Access Pattern:Memory access patterns of
an algorithm can significantly affect the memory band-
width. To understand its influence, we now consider
the pattern of memory accesses within stagei and step
j of the bitonic sorting algorithm. In particular, we
examine the distance between two consecutively ren-
dered quads as they affect the locality of data accesses.
This distance is equal to2j−1 if the direction of ac-
cesses is not reversed. However, when the direction
is reversed, the distance between two consecutively
rendered quads becomes2j . The increase in the dis-
tance between the quads can significantly decrease the
overall performance. We modify our algorithm to im-
prove the locality of accesses by effectively reducing
the distance between the rendered quads, and thereby
improve the performance.

• Cache-Efficiency: The memory accesses are block-
based, and therefore, the size of two-consecutively ren-
dered quads can affect the number of cache misses.
We observe that in our sorting algorithm, based on the
internal block sizes in the video memory, there can
be multiple references to the data values within the
same block fetched from the texture memory. The fre-
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Figure 5. Mapping of Bitonic Sort on GPUs: We use
the texture mapping and blending functionalities for map-
ping the regions on the textures to compute the minimum
values or the maximum values. These regions that corre-
spond to either the minimum values or the maximum val-
ues are row-aligned or column-aligned quads. The width
or the height of the quads is dependent upon the step num-
ber, and denotes the distance between accessed elements for
performing comparisons. Larger steps require rasterization
of quads with larger width and lead to more cache misses.
Lower steps require the rasterization of thin quads and may
not be efficient.

quency of such referencesincreasesat the lower steps
of the algorithm. Moreover, these lower steps are per-
formed more frequently by the algorithm. For exam-
ple, step1 is performedlog n times whereas steplog n
is performed only once. It is important for the algo-
rithm to improve and reuse memory accesses based on
the block accesses. Otherwise, the number of cache
misses can increase. To illustrate this issue, let us con-
sider the case of memory accesses in a column-aligned
quads. If the height of the column is too large for the
cache size, then due to the block access model of tex-
ture memories, the cache will contain data values at
the bottom of the column as opposed to the top of the
column. Therefore, the memory references at the top
of the next consecutive column-aligned quad, will typ-
ically result in cache misses. We propose a simple
tile-based sorting algorithm to improve the cache ef-
ficiency.

• Data Layout: The 2D texture-based data layout used
on GPUs for sorting results in a number of thin
column-aligned and row-aligned quads. For example,
the width of a row-aligned quad in step 1 is unity and
there areW such quads to render. These thin quads are
not optimal for rendering as they involve large vertex
processing overheads. Furthermore, as these quads oc-
cupy a portion of the pixel tiles (as described in section
3.2.2), many of the fragment processors are inactive

and this affects the parallelism and the computational
throughput. We use stenciling techniques to reduce
the overhead of rendering several thin quads. Stencil-
based algorithms are techniques that allow write oper-
ations to only certain portions of the video memory.

4.2 Memory-Efficient Algorithm

We present an improved algorithm that has a better mem-
ory access pattern. Our improved algorithm is simple and is
very similar to the original Batcher’s algorithm [9]. Our
algorithm operates on bitonic sequences and proceeds in
the same number of stages and steps as bitonic sort. At
the beginning of each stage, a step is performed to reverse
one of the bitonic sequences and perform comparisons us-
ing a sorting network similar to PBSN. The remaining steps
are performed with coherent memory accesses i.e., in a step
j, the elements corresponding to the minimum regions are
compared against the elements at a distance of2j−1 in one
direction. Similarly, the elements corresponding to the max-
imum regions are compared against the elements at a dis-
tance of2j−1 in the opposite direction. Fig. 4 illustrates a
simple improved sorting network on 8 data values. It can
be easily proved that the sorting algorithm orders the data
values [11].

Our improved algorithm performs the same number of
memory accesses and comparisons as bitonic sort. How-
ever, our new algorithm has a better memory access pat-
tern than bitonic sort and can achieve higher performance.
We now describe some of the optimizations used to achieve
the improved performance and the relative improvements
obtained using each optimization. All of the timings were
computed on a Pentium IV PC with a GeForce 6800 Ultra
GPU.

4.2.1 Optimizations

We have performed four major optimizations to improve the
performance of our algorithm.

• Texture Access Pattern:The texture access pattern of
our new algorithm is better than bitonic sort. We ana-
lyze it based on the locality of accesses obtained during
each step of a stagei. At the beginning of the stage,
we may access elements at a distance of atmost2i for
performing comparisons. In this step, bitonic sort ac-
cesses elements at a distance of2i−1 for comparisons
and performs better than our algorithm. However, the
number of such steps is onlylog n and is quite small
in comparison to the total number of steps (which is
log2(n)). In each of the remaining stepsj, our algo-
rithm accesses elements at a distance of2j−1 for per-
forming comparisons whereas bitonic sort accesses el-
ements at a distance of2j or2j−1 based on whether the
direction of access is reversed or not. The number of
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Figure 6. Original Algorithm vs. Cache-Efficient Algo-
rithm: This graph highlights the performance improvement
obtained using our cache efficient bitonic sort algorithm.
Our improved algorithm has better locality in data accesses
and requires lesser number of memory accesses than the
original algorithm. Our results on varying database sizes
indicate a30− 35% improvement in computational perfor-
mance.

such steps is large and is the common case. Therefore,
in practice, our algorithm incurs lower cache penalties
than bitonic sort.

• Reducing Memory Accesses:Our GPU-based sorting
algorithm is memory-limited. During each step, the
sorting algorithm has the additional overhead of copy-
ing data values from the texture into a frame buffer.
The copy operation is essential as blending hardware
compares an input data value only against a data value
stored in the frame buffer. At the end of each step, we
store the frame buffer values into a separate texture. In
order to perform the computation efficiently, we alter-
nate between two render targets (or frame buffers) ev-
ery step. We have further optimized our algorithm to
reduce the number of memory accesses. We observe
that only50% of the data values from a texture need to
be copied into the frame buffer. These data values ei-
ther correspond to the regions where minimum values
are stored or the maximum values are stored during a
step. A simple algorithm is applied to update these re-
gions. We have also simulated the blending function-
ality in the programmable pipeline, and the resulting
algorithm completely eliminates the need for copying
data values, thus improving the overall memory per-
formance.

• Tiling: As described in Section 3.3, when a quad is
drawn, it is decomposed into pixel tiles and the rasteri-
zation hardware fetches blocks of texture memory that
correspond to the texels within these pixel tiles. Our
computations are performed on column-aligned quads
or row-aligned quads (as shown in Fig. 5). Therefore,

Figure 7. Influence of tiling on sorting performance: The
cache efficiency of our sorting algorithm is dependent upon
the size of cache. Moreover, the cache efficiency can be
improved using a tiling mechanism. This graph highlights
the performance improvement obtained using tile-based al-
gorithm on an input database of16 million floating point
values. We have varied the tile-sizes and measured the per-
formance improvement obtained on the same database. We
observe that at lower tile-sizes, the additional vertex ras-
terization overhead dominates the improvement obtained in
memory accesses. At higher tile-sizes, we observe a degra-
dation in performance due to more cache misses. The opti-
mal performance is obtained at a tile size of64× 64.

it is more efficient to rearrange the update of these re-
gions to account for spatial locality and improve the
cache efficiency. We propose a simple tiling technique
to improve the locality of accesses. When perform-
ing computations on column-aligned quads, we divide
each quad into multiple quads using a constant tile
height. We then perform computations on all the de-
composed quads based on their row-order. The ras-
terization of such decomposed quads involves an ad-
ditional overhead of performing vertex rasterization.
Therefore, if the tile-height chosen for decomposition
is too small, the overhead dominates the benefit of ef-
ficient memory accesses. On the other hand, if the
decomposition tile-height is too large, there are more
cache-misses. The optimal cache-size corresponds to
the block sizes in the texture memory (as shown in Fig.
7).

• Improve the Common Case:In the each stage, as the
step number decreases, the width of the quads corre-
sponding to the minimum regions and maximum re-
gions becomes small and finally approaches unity. In
these lower steps, the vertex rasterization overhead
dominates the computation time irrespective of the
tile-height used for tile-based memory optimizations.
In order to improve the performance in these lower
steps, we apply stenciling techniques and draw only
two screen-filling quads instead of several thin quads.
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Figure 8. Preliminary Improvements using Newer Exten-
sions: This graph compares the performance obtained us-
ing the current render target extensions against newer ex-
tensions such asEXT Framebuffer object. We have
used a pre-release driver7762 from NVIDIA corporation.
We have measured the sorting time on small data sizes up to
16K data values. Our preliminary results indicate a factor
of 3 improvement using the newer extensions.

We pre-compute a stencil value and store it at each lo-
cation in the stencil buffer of the screen. The stencil is
a mask that can be used to allow or disallow writes
to certain portions of the frame buffer. For a more
detailed description on stencil-based functionality, re-
fer to [18]. We illustrate a simple example on step
1 to explain the functionality. In this step, our algo-
rithm renders column-aligned lines. There areW

2 lines
that correspond to the minimum regions andW

2 lines
that correspond to the maximum regions. We store a
stencil value of1 in the regions corresponding to the
maximum values and0 in the regions corresponding
to the minimum values. At run-time, we update only
the minimum regions by allowing writes to the por-
tions corresponding to a stencil value of0. The maxi-
mum values are updated accordingly. The overhead of
stenciling is negligible and due to the pixel-tile-based
rendering model of graphics processors, the memory
accesses are automatically localized.

Fig. 6 highlights the performance improvement obtained
using our algorithm on varying database sizes. We have
used an optimal tile-size of64 × 64, along with the above
optimizations to improve the memory efficiency and per-
formance. Our results indicate a30− 35% improvement in
performance as compared to the original texture mapping
and blending-based algorithm [19].

4.2.2 Other Factors

We have also analyzed two other factors that affect the per-
formance of our algorithm including other GPU-based sort-

ing algorithms.

• Instruction Dispatch: The number of state changes
and draw commands sent to the graphics processor can
affect the performance of any rendering algorithm. We
have tested our algorithm using two configurations:

1. Perform one minimum computation on a region
followed by a maximum computation on a neigh-
boring region. This configuration involves one
state change per draw call and we need to per-
form a number of draw calls to update the mini-
mum regions and maximum regions.

2. Perform all minimum computations by using
only one draw call. This involves only one draw
call and a state change.

Our experiments indicate that the performance im-
proves by reducing the number of instructions dis-
patched to the GPU.

• Render Target Overhead: The current implementa-
tion of render targets on GPUs involves a significant
computational overhead whenever a texture is bound
to a texture unit. The number of such texture bind-
ing operations is proportional to the number of steps
in the sorting algorithm and may be expensive [16]. A
new specification called frame buffer objects has been
recently proposed to overcome the render target imple-
mentation overhead. We have performed experiments
on a pre-release driver obtained from NVIDIA Corpo-
ration. Our results (shown in Fig. 8) indicate a further
performance improvement of upto a factor of3 over
our current implementation.

5 Applications and Results

In this section, we describe two common database and
data mining applications whose performance can be sig-
nificantly accelerated using our new GPU-based sorting al-
gorithm. These include nested join operations and stream-
based frequency computations on sliding windows. We also
compare their performance against prior CPU-based and
GPU-based sorting algorithms. Finally, we highlight other
database and data mining algorithms that can be accelerated
using our algorithm.

5.1 Sorting Analysis and Performance

In this section, we present the theoretical and practical
performance of our algorithm, and compare it prior opti-
mized sorting algorithms. We will also analyze the band-
width requirements, and the performance growth rate of our
algorithm.
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Figure 9. Comparison with Other GPU-based Algo-
rithms: We have compared the performance of our new
algorithm with other GPU-based algorithms. Our results
indicate a factor of2 − 2.5 performance improvement
over GPU-based PBSN algorithm [19], 4 times improve-
ment over improved bitonic sorting algorithm [24] and
20 − 30 times performance improvement over prior GPU-
based bitonic sorting algorithms [35].

5.1.1 Performance

Our algorithm has better theoretical performance than prior
optimized GPU-based algorithms such as PBSN [19]. It re-
quires lower number of memory accesses and comparison
operations. Fig. 9 compares the performance of our algo-
rithm against prior fast GPU-based algorithms. We have
varied the database sizes up to8 million values and com-
pared the performance. Our results indicate that our new
GPU-based algorithm is atleast2 − 2.5 times faster than
PBSN [19],4 times faster than the improved bitonic sort-
ing algorithm presented in [24], and20 − 30 times faster
than other bitonic sort algorithms [35]. We have also com-
pared the performance of our algorithm against optimized
CPU implementations. Fig. 10 highlights the performance
improvement obtained by using our GPU-based algorithm
against Quicksort. We have observed a factor of6 − 25
times speedup over optimized CPU implementations. Over-
all, our new algorithm is able to sort nearly10 million float-
ing point keys per second. In addition, our preliminary re-
sults on frame buffer objects indicate further performance
improvements.

5.1.2 Bandwidth

Our algorithm has low bandwidth requirements. Givenn
data values, we transfer the data to and from the GPU. Our
overall bandwidth requirement is O(n), and is significantly
lower than the total computational cost i.e., O(nlog2(n)).
In practice, we have observed that the data transfer time is
less than10% of the total sorting time, and indicates that
the algorithm is not bandwidth limited.
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Figure 10. Comparison with CPU-based Algorithms:
This graph highlights the performance of our algorithm
against optimized Quicksort implementations on CPUs. We
have compared our algorithm against two implementations
of Quicksort on a 3.4 GHz Pentium IV CPU. Our results in-
dicate a6−25 times speedup over the Quicksort algorithm.

5.1.3 Growth Rate

Our algorithm maps well to the graphics pipeline and the
performance growth rate of our algorithm is only depen-
dent upon the growth rate of GPUs. We have measured
the growth rate of our algorithm on two high end GPUs in
successive generations: NVIDIA GeForce 6800 Ultra and
the NVIDIA GeForceFX 5900 Ultra. We have simulated
the blending functionality using single instruction fragment
programs on the NVIDIA GeForceFX 5900 Ultra GPU. Fig.
11 indicates the performance improvement of our algorithm
on these GPUs for varying data sizes. We observe that the
performance of our algorithm improved atleast3 times dur-
ing the past one year, and is more than the Moore’s law for
CPUs. Moreover, the GPU performance growth rate is ex-
pected to continue for many more years.

5.2 Applications: Join Operations

We have improved the performance of join operations by
applying our fast GPU-based sorting algorithm and com-
pared its performance against SIMD optimized nested join
algorithms [40]. Zhou and Ross [40] present three different
SIMD implementations:

• Duplicate-outer: The keys in the outer relation of the
nested join are compared in parallel against the keys in
the inner relation,

• Duplicate-inner: The keys in the inner relation are
compared in parallel against each key of the outer re-
lation, and

• Rotate-inner: Both inner and outer loops are SIMD
parallelized and keys are compared against each other
by performing rotations in the inner relation.
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Figure 11. Super-Moore’s Law Performance: This graph
highlights the performance improvement of our algorithm
on two high end GPUs in successive generations. We ob-
serve a performance improvement of 3 times during the last
one year.

Experiments indicate that these SIMD-based algorithms
significantly reduce the number of branch mispredictions in
nested join algorithms and can result in performance im-
provements of up to an order of magnitude. Using our
fast sorting algorithm, we present an alternate algorithm
to efficiently compute equi-joins and non-equi-joins. Sim-
ilar to the duplicate-outer join algorithm[40], we compute
bit-vectors representing the active records of each relation.
We sort both the relations based on the join keys. We use
our fast sorting algorithm to order the relations. We then
compute the bit-vectors efficiently using fast search algo-
rithms such as binary search. In practice, the size of these
bit-vectors is small as join-based selectivities are typically
small. Therefore, the computation of bit-vectors can sig-
nificantly reduce the computational overhead. We have im-
plemented our join-based algorithm and evaluated its per-
formance on queries proposed by Zhou and Ross [40]. In
particular, we have used three queries - an equi-join query,
a band-like join query and a band-join query. These queries
are performed on two relational tables with the outer re-
lation consisting of a million values and the inner relation
consisting of104 values. The equi-join query uses a selec-
tivity of 10−4 and the band-join queries have a selectivity
of 5 × 10−3. Fig. 12 compares the performance of our
GPU-accelerated algorithm against a nested-join algorithm
and the duplicate-outer join algorithm. Our results indicate
an order of magnitude performance improvement over the
prior nested-join algorithms.

5.3 Applications: Sliding Window Algorithms

Stream statistics computations in the sliding win-
dow model has a number of applications in networking,
databases, data mining, etc. These applications use limited
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Figure 12. Application to Join Computations: In this
graph, we compare the performance of our algorithm
against optimized nested join algorithms on CPUs [40].
We have used SIMD-intrinsic instructions available in
Intel C++ compiler 8.0 to improve the performance of
Duplicate-Outer nested join algorithm. The graph high-
lights the performance on an equi-join query (Query 1),
a band-like-join query (Query 2) and a band-join query
(Query 3).

amount of memory and are usually computation-intensive.
Recently, efficient algorithms have been proposed to per-
form frequency and quantile computations on large data
streams [7, 20]. In these algorithms, sorting is used to ef-
ficiently compute a summary data structure and used to ap-
proximately estimate the stream statistics. In practice, sort-
ing can be a major bottleneck in these algorithms [19]. A
fast GPU-based PBSN algorithm is used to accelerate the
computation of summary structures, and the resulting al-
gorithm achieves better performance over prior CPU-based
algorithms.

Although more efficient than CPU-based algorithms, the
PBSN algorithm has a major limitation in comparison to
bitonic sort. In summary structure computations, current
algorithms perform sorting of a window of data values at
multiple levels as shown in Fig. 13. As the data values in
the windows corresponding to the bottom levels are already
sorted, we can improve the performance of sorting algo-
rithm on the higher levels by using a fast merging routine.
Unfortunately, there is no obvious modification to improve
the performance of PBSN for merging sorted sequences. On
the other hand, bitonic merge can sort two sorted input se-
quences of lengthn in O(n log n) whereas PBSN can re-
quireO(n log2 n) operations. Furthermore, the bitonic sort
algorithm is inplace and requires no additional memory to
perform the merge operation.

Fig. 14 compares the performance of our new algorithm
against GPU-based PBSN algorithm [19]. We have mea-
sured the improvement computationally and also the total
time (which includes the CPU-based quicksort at lower lev-
els and data transfer overhead). We observe a factor of4−5
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Figure 13. Stream Statistics in Sliding Windows: A sum-
mary structure is efficiently computed at various levels as
shown in the figure. Each level maintains a window size
and an error factor to compute and update the summary
structure. Furthermore, histogram computations are per-
formed on each window using a sorting algorithm and each
level proceeds independently [7]. However, a more efficient
merge-based algorithm can be used to combine the sorted
sequences at lower levels for histogram computations at
higher levels. We apply our bitonic merge algorithm to effi-
ciently compute the summary structure.

times improvement in the performance against prior algo-
rithms.

5.4 Other Related Applications

Many other database and data mining algorithms can be
accelerated using our GPU-based cache-efficient sorting al-
gorithm. These include hierarchical heavy hitter computa-
tion [12, 13], correlated sum computation [6], approximate
join processing algorithms based on histogram computation
[14], similarity-based pattern queries in continuous streams
[17], etc. In addition, the performance of frequency and
quantile-based algorithms [19] can also be improved. Fur-
thermore, our cache optimizations are applicable to other
applications such as fast fourier transform computations,
linear systems, discrete cosine transform computations etc.

6 Analysis

In this section, we highlight three main factors that affect
the performance of our algorithm:

• Rasterization performance: The computational per-
formance of our algorithm mainly depends upon the
number of comparison operations that can be per-
formed per second. This is mainly governed by the
cost of blending. In our theoretical analysis, we ob-
served a5 : 1 ratio between the number of memory
access and comparison operations. Therefore, based
on the memory access time and the compute-time on
different GPUs, the algorithm can be either memory-
limited or compute-limited.

• Memory-based tile sizes: The tile sizes used for
block-fetches within the texturing hardware can influ-
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Figure 14. Performance of bitonic sort algorithm on
stream statistic computations: This graph highlights the
performance of our efficient bitonic-merge-based algorithm
against a prior optimized GPU-based PBSN algorithm
[19]. We have measured the performance on a large in-
coming data stream of size100M elements and used a slid-
ing window of size10M. The graph highlights the perfor-
mance improvement based on computation-time as well as
total time. The total time includes the data transfer time,
and CPU-based sorting time at the lower data levels. Over-
all, we observed a4 − 5 times performance improvement
using our GPU-based cache-efficient sorting algorithm.

ence the sorting performance. Also, based on texture
pre-fetching schemes, the performance can be further
improved. Moreover, efficient memory representations
such as compressed frame buffers can improve the per-
formance.

• Pixel-tile sizes: The performance at the lower steps
of the algorithm depends on the size of the pixel tiles.
These lower steps occur frequently and usually result
in a large fraction of partially covered tiles, which can
be computationally inefficient. It may be possible to
use stenciling techniques on the lower steps to improve
the performance.

7 Conclusions and Future Work

We have presented a cache-efficient sorting algorithm
that maps well to the GPUs. We analyzed the memory-
limitations of current GPU-based sorting algorithms and
presented techniques to improve the computational perfor-
mance. Furthermore, our new sorting algorithm performs
fewer number of memory accesses and exhibits better local-
ity in data access patterns. It takes into account the sorted
nature of the input sequence and improves the overall per-
formance. We have demonstrated its application on some
database and data mining applications. Our results indicate
a significant improvement over prior techniques.

There are many avenues for future work. We would like
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to investigate new features and capabilities of GPUs that
can further improve the performance, and compare against
other optimized algorithms such as hash-joins on CPUs. We
would like to use our sorting algorithm for other data mining
applications. Furthermore, we would like to develop cache-
friendly GPU-based algorithms for other computations in-
cluding nearest neighbors and support vector machine com-
putations.
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