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We present a novel algorithm to control the physically-based animation of
smoke. Given a set of keyframe smoke shapes, we compute a dense se-
quence of control force fields that can drive the smoke shape to match
several keyframes at certain time instances. Our approach formulates this
control problem as a PDE-constrained spacetime optimization. In order to
compute the locally optimal control forces, we alternatively optimize the
velocity fields and density fields using an ADMM optimizer. In order to
reduce the high complexity of multiple passes of fluid resimulation during
velocity field optimization, we utilize the coherence between consecutive
fluid simulation passes. We demonstrate the benefits of our approach by
computing accurate solutions on 2D and 3D benchmarks. In practice, we
observe up to an order of magnitude improvement over prior optimal con-
trol methods.
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1. INTRODUCTION

Physically-based fluid animations are widely used in computer
graphics and related areas. Over the past few years, research in
fluid simulation has advanced considerably and it is now possible
to generate plausible animations for movies and special effects in a
few hours on current desktop systems. In this paper, we mainly
deal with the problem of the keyframe-based spacetime control
of smoke, a special kind of fluid. Given a set of keyframe smoke
shapes, our goal is to compute a dense sequence of control forces
such that the smoke can be driven to match these keyframes at cer-
tain time instances. This problem is an example of directable an-
imation and arises in different applications, including special ef-
fects [Rasmussen et al. 2004] (to model a character made of liquid)
or artistic animations [Angelidis et al. 2006] (to change the moving
direction of the smoke plume). Some of these control techniques,
such as [Nielsen and Bridson 2011], are used in the commercial
fluid software.

In practice, the keyframe-based control of fluids is still regarded
as a challenging problem. Unlike fluid simulation, which deals with
the problem of advancing the current fluid state to the next one
by time integrating the Navier-Stokes equations, a fluid controller
needs to consider an entire sequence of fluid states that results in a
high dimensional space of possible control forces. For example, to
control a 3D smoke animation discretized on a uniform grid at res-
olution 64® with 60 timesteps, the dimension of the resulting space
of control forces can be as high as 10%. The problem of comput-
ing the appropriate control force sequence in such a high dimen-
sional space can be challenging for any continuous optimization
algorithm. Furthermore, the iterative computation of control forces
would need many iterations, each of which involves solving a 2D
or 3D fluid simulation problem that can take hours on a desktop
system.

Fluid control problems have been well studied in computer
graphics and animation. At a broad level, prior techniques can be
classified into proportional-derivative (PD) controllers and optimal
controllers. PD controllers [Fattal and Lischinski 2004; Shi and Yu
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Fig. 1: Given the keyframe, we use spacetime optimization to compute a
dense sequence of control force fields, matching a smoke ball to the word
“FLUID”. We highlight the control force fields. Five such animations are
generated, at resolution 1282 with 40 timesteps. Each of these optimization
computations take about half an hour on a desktop PC, and is about 17 times
faster than conventional gradient-based optimizer.

Keyframe

2005] guide the fluid body using additional ghost force terms that
are designed based on a distance measure between the current fluid
shape and the keyframe. On the other hand, optimal controllers
[Treuille et al. 2003; McNamara et al. 2004] formulate the prob-
lem as a spacetime optimization over the space of possible con-
trol forces constrained by the fluid governing equations, i.e., the
Navier-Stokes equations. The objective function of this optimiza-
tion formulation consists of two terms: The first term requires the
fluid shape to match the keyframe shape at certain time instances,
while the second term requires the control force magnitudes to be
as small as possible.

Optimal controllers are advantageous over PD controllers in that
they are less sensitive to the choice of the parameters and they
search for the control forces with the smallest possible magnitude,
which usually provides smoother keyframe transitions as well as
satisfies the fluid dynamic constraints. Treuille et al. [2003] and
McNamara et al. [2004] use a simple gradient-based optimizer to
search for control forces. This method is easy to implement, but can
be computationally inefficient since each gradient evaluation needs
to solve a fluid simulation problem. Such repeated fluid simulations
slow down the overall performance. In the original work [Treuille
et al. 2003], this issue is alleviated by reducing the dimension of
the search space using a set of control force templates. However,
this treatment also restricts the amount of fluid-like details in the
controlled animations.

We present a new, efficient optimization algorithm for control-
ling smoke. Our approach exploits the special structure of the
Navier-Stokes equations discretized on a regular staggered grid,
and solves the optimization problem by finding the stationary point
of the first order optimality (Karush-Kuhn-Tucker) conditions [No-
cedal and Wright 2006]. However, unlike prior methods [Treuille
et al. 2003; McNamara et al. 2004] that only solve for the primal
variables, we maintain both the primal and dual variables (i.e., the
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Lagrangian multipliers). By maintaining the additional dual vari-
ables, we can iteratively update our solution without requiring it to
satisfy the Navier-Stokes equations exactly in each iteration. There-
fore, we alternatively update the velocity fields and control force
fields using the alternating direction method of multiplier (ADMM)
[Boyd et al. 2011]. In order to update the control force fields effi-
ciently without fluid resimulation, we present a nonlinear multigrid
solver: the full approximation scheme (FAS) [Brandt and Livne
2011]. Using a novel spacetime smoothing operator that takes all
the timesteps into consideration, our multigrid can converge within
a number of iterations independent of the grid resolution and the
number of timesteps.

We have evaluated our approach on several benchmarks. Our
benchmarks vary in terms of the grid resolution, the number of
timesteps, and the control force regularization parameter. We high-
light results with up to 60 timesteps at the resolution of 64°. With-
out using force templates, we allow each component of the velocity
field to be controlled. In practice, our algorithm can compute a con-
vergent animation in less than 50 iterations, and the overall runtime
performance is about an order of magnitude faster than a gradient-
based quasi-Newton optimizer [Nocedal and Wright 2006] for sim-
ilar accuracy. An example of achieved smooth transitions between
keyframes is illustrated in Figure 1.

2. RELATED WORK

In this section, we give a brief overview of prior techniques for fluid
simulation, multigrid solvers and animation control algorithms.

Fluid simulation has been an active area of research in both
computer graphics and computational fluid dynamics. The simula-
tion of fluid is typically solved by a discretized time integration of
the Navier-Stokes equations or their equivalent forms. At a broad
level, prior fluid simulators can be classified into Lagrangian or
Eulerian solvers according to the discretization of the convection
operator. In order to model smoke and fire, a purely Eulerian solver
[Fedkiw et al. 2001] is the standard technique. In terms of free-
surface flow, hybrid Lagrangian-Eulerian representation [Zhu and
Bridson 2005] has been widely used in computer graphics. In our
work, we confine ourselves to the control of fluids without free-
surface, i.e., smoke or fire. We use [Harlow and Welch 1965] as
our underlying fluid simulator.

Multigrid solvers are widely used for fluid simulation. Multi-
grid is a long-standing concept that has been widely used to ef-
ficiently solve linear systems discretized from elliptic partial dif-
ferential equations (see [Brandt and Livne 2011]). This idea has
been successfully applied to fluid simulation [Chentanez et al.
2007; Chentanez and Miiller 2011; Zhang and Bridson 2014] to
find the solenoidal component of the velocity field. In terms of
PDE-constrained optimization and control theory, the idea of multi-
grid acceleration has been extended to the spatial temporal domain.
Borzi and Griesse [2005] proposed a semi-coarsening spacetime
multigrid to control the time-dependent reaction-diffusion equa-
tion. Hinze et al. [2012] used a spacetime multigrid to solve the ve-
locity tracking problem governed by the Navier-Stokes equations.
The nonlinear multigrid used in our method is closely related to
[Hinze et al. 2012], which also solves a spacetime optimization
problem. However, our method is a spatial-only multigrid with the
smoothing operator that handles all the timesteps at once. More-
over, unlike [Hinze et al. 2012], which solves a velocity tracking
problem, our formulation is a density tracking problem. Therefore,
the multigrid is used as a subproblem solver in our ADMM opti-
mization framework.

Fluid control problems tend to be challenging and computation-
ally demanding. Compared to other kinds of animations, e.g., char-
acter locomotion [Mordatch et al. 2012], the configuration space of
fluid body is of much higher dimension. Prior work in this area can
be classified into two categories: PD controllers [Fattal and Lischin-
ski 2004; Shi and Yu 2005] and optimal controllers [Treuille et al.
2003; McNamara et al. 2004]. PD controllers compute the control
forces by considering only the configuration of the fluid at the cur-
rent and next time instance. For example, in [Shi and Yu 2005], a
PD controller is used where the control forces are made propor-
tional to the error between the current fluid shape and the target
keyframe shape. Similar ideas are used for controlling smoke [Fat-
tal and Lischinski 2004] and liquid [Shi and Yu 2005; Raveendran
et al. 2012]. In contrast, optimal controllers search for a sequence
of control forces that minimize an objective function. Prior meth-
ods [Treuille et al. 2003; McNamara et al. 2004] typically solve
spacetime optimization over a high-DOF search space to compute
such control forces. Recently, these two methods have been com-
bined [Pan et al. 2013] by first optimizing for the fluid shape at
each keyframe and then propagating the changes to the neighbor-
ing timesteps. Fluid control can also be achieved by combining or
modifying the results of existing fluid simulation data [Raveen-
dran et al. 2014] or guiding fluid using a designed or captured
low-resolution animation [Nielsen and Bridson 2011; Nielsen and
Christensen 2010; Gregson et al. 2014].

Our algorithm is based on spacetime optimization, similar to
[Treuille et al. 2003; McNamara et al. 2004]. In order to solve
this optimization problem, we use the ADMM method [Boyd et al.
2011]. This solver has also been previously used in [Gregson et al.
2014] for fluid capturing and guiding. However, our method differs
from these previous works in three ways. First, unlike [McNamara
et al. 2004], whose method solves for primal variables only, we
use a primal-dual formulation. This treatment does not require the
Navier-Stokes equations to be satisfied exactly in each iteration of
optimization. Moreover, to solve fluid tracking problem, [Gregson
et al. 2014] uses ADMM method to address incompressible con-
straints in one timestep. While we use ADMM method for space-
time optimization taking all timesteps into consideration. Finally,
[Gregson et al. 2014] considers the linear solenoidal constraints as
hard constraints. In our work, we take into account the entire non-
linear fluid governing equations as the hard constraints, resulting in
a nonlinear subproblem that is solved using a multigrid method.

3. FLUID CONTROL

In this section, we formulate the spacetime fluid control problem
based on fluid dynamics (Section 3.1) and optimal control theory
(Section 3.2). The set of symbols used throughout the paper can be
found in Figure 3, and the subscript ¢ is the timestep index. In gen-
eral, we are dealing with a dynamic system whose configuration
space is denoted as s; at physical time iA¢. Consecutive configu-
rations s; and s;4+1 are related by the partial differential equation
denoted as the function f: six1 = f(si,us, At), where u; is the
control input. An optimal controller computes a set of control in-
puts {u;|i = 0,---, N — 1} that minimize the objective function de-
noted as function F(so, -, sn). The overall optimal control prob-
lem is specified using the pair of functions f and E. In the case of
smoke control problems, f is a discretization of the Navier-Stokes
equations, and E measures the difference between the smoke and
keyframe shapes at certain time instances.
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Advection Optimization
argminey Equation (5)
s.t. Equation (2)(3)

Navier-Stokes Optimization
argmin.. Equation (5)
s.t. Equation (1)(2)

Stopping
Criterion

Fig. 2: Our Algorithm Pipeline: We use the ADMM method to decompose the problem into two subproblems: Advection Optimization ( AO
) which only considers passive advection as hard constraints; and Navier-Stokes Optimization ( NSO ) which only considers fluid dynamics

as hard constraints.

Symbol  Meaning Symbol  Meaning

vi velocity field v, slack velocity field

u; ghost force field Ai augmented Lagrangian multiplier field
pi density or dye field i Lagrangian multiplier for passive advection
Pi pressure field Yi Lagrangian multiplier for V - v} = 0
i state vector Di Lagrangian multiplier for V - v; = 0
Adv self advection operator K penalty coefficient for constraint v; = v
A passive advection operator T regularization coefficient for u;
At timestep size ci indicator of keyframe at timestep i
N number of timesteps Ci metric measure for density field

R restriction operator of FAS

P prolongation operator of FAS

S smoothing operator of FAS

Q solenoidal projection operator

(a) Symbols for fluid dy- (b) Symbols for spacetime optimiza-
namic system tion

Fig. 3: Symbol table.

3.1  Fluid Dynamic System

In our work, we restrict ourselves to the control of incompress-
ible fluids without a free surface. Fluids such as smoke and fire,
which are commonly used in movies and animations, fall into this
category. We omit viscous terms for brevity. Small viscosity can
be handled by a slight modification to f, which does not increase
the complexity of our algorithm. Following [Harlow and Welch
1965; Pavlov et al. 2011], we discretize the velocity-vorticity ver-
sion of the Navier-Stokes equations using finite difference scheme
and backward Euler time integrator for advection. Our configura-

tion space s; = (vz-T piT piT )T concatenates the velocity field
v;, the kinetic pressure field p;, and the density or dye field p;.
These scalar and vector fields are discretized on a staggered grid,
which has been widely used by previous works such as [Fedkiw
et al. 2001]. The transfer function f under such discretization can
be represented as:

% +Adv [vis1] = us — Vpisa, (D
V- vig1 = 07 (2)
pi+1 = Alpi,vi], 3)

where the self-advection operator Adv [e] is a discretization of
the quadratic operator V x e x e and we assume constant unit fluid
density. The pressure field p;+1 is identified with the Lagrangian
multiplier of the divergence free constraints V - v;+1 = 0. Finally,
the operator A [e, e] is the passive scalar advection operator dis-
cretized as: p;+1 = eA(”i)Atpi, where matrix A (v;) is the second
order upwinding stencil [Leonard 1979]. By approximating the ma-
trix exponential using Taylor series, the advection operator can be
defined as:

Alpivi] = Y - Aw) pi @

k=0

When k tends to infinity, this upwinding advection operator is
unconditionally stable since A(wv;) is skew-symmetric, so that
eA()A is an orthogonal matrix and |pis1| = ||pi|. In practice,
we truncate k to a finite value. Specifically, we set k£ adaptively to
be the smallest integer satisfying Akt!k A(v;)*p; < 1e7®. Although
this operator is computationally more expensive than the widely
used semi-Lagrangian operator, it generates smoother controlled
animations with large timestep size, as shown in Figure 4. This is
useful when fewer timesteps are used to reduce the runtime cost.

3.2 Spacetime Optimization

The optimal control of the dynamic system, discussed in Sec-
tion 3.1, can be formulated as a spacetime optimization over the
configuration trajectory so, -+, sy. Our objective function is simi-
lar to the ones proposed in prior works [Treuille et al. 2003; Mc-
Namara et al. 2004] that try to match p; to a set of keyframes p;
while minimizing the magnitude of control forces u;. The overall
optimization problem can be formulated as:

o 1 N *12 T =l 2
argmin E=—- Z cillpi = pill” + = Z [lus | 5)
ug 23 23

s.t. Si+l = f(sivu’iv At)a

where ¢; is 1 if there is a keyframe p; at frame ¢ and 0 otherwise. r
is the regularization coefficient of the control forces.

Treuille et al. [2003] and McNamara et al. [2004] solve this opti-
mization by eliminating the transfer function f and plugging them
into the objective function. Although this reformulation simplifies
the problem into an unconstrained optimization, their new objective
function takes a much more complex form, which is a long chain
of function compositions. To minimize the new objective function,
Treuille et al. [2003] and McNamara et al. [2004] use a general-
purpose gradient-based optimizer. A typical gradient-based opti-
mizer such as the Quasi-Newton method [Byrd et al. 1995] requires
repeated gradient calculation to approximate the Hessian matrix
and performs line search to compute the stepsize. Each such gra-
dient calculation requires a fluid resimulation, which becomes the
major bottleneck in their algorithm.

3.3 Our Approach

Prior methods require that the solution computed during each iter-
ation should satisfy the Navier-Stokes equations exactly, i.e., is a
feasible solution. As a result, each iteration takes considerable run-
ning time. In practice, this requirement can be overly conservative
because we only need to ensure that the final computed solution at
the end of the algorithm is feasible. Thus, we can relax this require-
ment during the intermediate steps, and only need to ensure that
the final solution lies in the feasible domain. This is a well-known
idea and has been used by many other numerical optimization al-
gorithms such as the interior point method [Nocedal and Wright
2006].
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Based on this observation, we design a new optimization algo-
rithm illustrated in Figure 2. We first notice that our objective func-
tion is essentially constrained by two kinds of partial differential
equations: the passive advection (Equation 3) governing the time
evolution of the density field p;; and the incompressible Navier-
Stokes (Equation 1 and Equation 2) governing the time evolution
of the velocity field v;. We introduce a set of slack variables to
break these two kinds of constraints into two subproblems: Ad-
vection Optimization ( AO ) is constrained only by Equation 3 and
Navier-Stokes Optimization ( NSO ) is constrained only by Equa-
tion 1 and Equation 2. In order to solve the Advection Optimiza-
tion (Section 4.1), we use a fixed point iteration defined for its KKT
conditions. For the Navier-Stokes Optimization (Section 4.2), we
update our solution using the full approximation scheme (FAS)
to avoid repeated fluid resimulations. This leads to considerable
speedup over prior methods, not only because of the fast conver-
gence of our multigrid solver, but also because the multigrid solver
allows warm-starting so that we can utilize coherence between con-
secutive iterations. In contrast, previous methods use fluid resimu-
lations, which always solve Navier-Stokes equations from scratch,
and solve them exactly.

4. SPACETIME OPTIMIZATION

In this section, we present our novel algorithm to solve Equa-
tion 5. By introducing a series of slack variables v;, we can de-
compose the overall optimization problem into two subproblems
and reformulate Equation 5 as:

argmin
Uj

1 & epz T RA 2
S clo o LY s
i=0 i=0

)\T * K R *112
i(vi—vi)+52||vi—vi“ (6)
i=0

s.t. % + Adv [vis1] = ui — Vpis1

Pi+1:A[pi7'U;]7 V- =0,

where we added the augmented Lagrangian term A (v; — v}) and
K

the penalty term % SNV v — vf||?. This kind of optimization
can be solved efficiently using the well-known alternating direc-
tion method of multipliers (ADMM) [Boyd et al. 2011]. Specifi-
cally, in each iteration of our algorithm, we first fix v;, p; and solve
for v; . This subproblem is denoted as the Advection Optimization
( AO ) because the PDE constraints are just passive advection of
the density field p;. We then fix v; and solve for v;, p;. We de-
note this subproblem as the Navier-Stokes Optimization ( NSO
), constrained by the incompressible Navier-Stokes equations. The
final step is to adjust \; according to the constraint violation as:
Ai = A + KB(v; — v} ) where (3 is a constant parameter.

The idea of introducing slack variables to relax hard constraints
has been used in several previous works, e.g., for fluid tracking
[Gregson et al. 2014] and projective dynamic simulation [Narain
et al. 2016]. The advantage of decomposing the problem up is that
we can derive simple and effective algorithms to solve each sub-
problem. Our algorithm directly solves the first order optimality
(KKT) conditions of both problems. To solve the AO subproblem,
we introduce a fixed point iteration in Section 4.1, while for the
NSO subproblem, which is the bottleneck of the algorithm, we in-
troduce the nonlinear multigrid solver (FAS) in Section 4.2.

4.1  Advection Optimization

The goal of solving the AO subproblem is to find a sequence of
velocity fields v to advect p; so that it matches the keyframes,
assuming that these v; are uncorrelated. By dropping terms irrel-
evant to v; from Equation 6, we get a concise formulation for the
AO subproblem:

. 1 N * *
argmin 3 2 =p)) Cilpi=pD)+ (D
'u: =0
K N-1 2
5 > i+ X/ K =] |
i=0
s.t. piv1 = A [pz-, v:] Vv =0,

where we can absorb the augmented Lagrangian term A} (v; — v})
by setting: v; < v; + A/ K.

Due to the inherent nonlinearity and ambiguity in the advection
operator, an AO solver is prone to falling into local minimum, lead-
ing to trivial solutions. We introduce two additional modifications
to Equation 7 to avoid these trivial solutions. First, we replace the
scalar coefficient ¢; with a matrix C; which could be used to avoid
the problem of a zero gradient if the keyframe p; is far from the
given density field p;. Similar to [Treuille et al. 2003; Fattal and
Lischinski 2004], we use the idea of Gaussian Pyramid [Adelson
et al. 1984] and take C; = ¢; X, Gi G to be a series of Gaussian
filters G with receding support. Specifically, G has a standard
deviation of 0(Gy) = 20(Gg-1). The Gaussian Pyramid makes
our method almost resolution invariant, since any local error in the
density field will always lead to a non-zero gradient value at every
point in the grid domain. We also introduce additional solenoidal
constraints on v; . Note that this term does not alter the optima of
Equation 6 since v; = v on convergence. However, it prevents the
optimizer from creating or removing densities in order to match the
keyframe, which is a tempting trivial solution.

We solve this optimization via a fixed point iteration derived
from its KKT conditions. To derive this system we introduce
Lagrangian multipliers p; for each advection equation p;+1 =
A [pi,vi] and ~; for the solenoidal constraints, giving a La-
grangian function:

1N T . KN—l .2
L=52(pi=pi) Cilpi=pi)+ 5 2 Jvi-vil"+
=0 i=0

N-1
> i (pivr = Alps, v ]) + 7 Vv
=0

After taking the derivative of the above Lagrangian against p;, v

(primal variables) and p;,y; (dual variables), respectively, we get

the following set of KKT conditions for 0 < ¢ < N:

_0A[pi,0f]"

8,01-

OA [pi1,via]” piaa
ov;, K

pis1 —A[pi,vi] =0, V-vi =0,

pi = Ci(pi = p7)

i-1

) ®

vio1 = Qui1 +

where we set pi—1 = pun = 0 to unify the index, and we have re-
placed ; with a solenoidal projection operator Q. This actually
defines a fixed point iteration where we can first update p; in a for-
ward pass and then update ;, v; in a backward pass. This is closely
related to the adjoint method [McNamara et al. 2004], which also
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Fig. 4: We tested the fixed point iteration Equation 8 using different ad-
vection operator A [e, ] to deform an initially circle-shaped smoke (top
left) into the bird icon (bottom left). The AO subproblem solved using the
semi-Lagrangian operator involves lots of popping artifacts (top row). The
upwinding operator in Equation 4 does not suffer from such problems (bot-
tom row).

takes a forward-backward form. Unlike [McNamara et al. 2004]
which then solves v; using quasi-Newton method, a fixed point it-
eration is much simpler to implement, and a general-purpose opti-
mizer is not needed. The most costly step in applying Equation 8 is
the operator Q where we use conventional multigrid Poisson solver
[Brandt and Livne 2011].

A pseudo-code of our AO solver is given in Algorithm 1. We
have introduced two additional strategies to guarantee the conver-
gence of the fixed point iteration. First, we determine the order of
Taylor expansion (k in Equation 4) in the forward pass (Line 11)
and fix this k value in the backward pass to ensure that the order of
expansion is fixed within each gradient estimation. Moreover, we
introduce a simple line search strategy (Line 14 to Line 28).

In the above derivation, since we do not exploit any structure in
the operator A [p;, v; ], basically any advection operator other than
Equation 4, such as semi-Lagrangian, could be used as long as its
partial derivatives against p;,v; are available. Empirically, how-
ever, Equation 4 generally gives smoother animations especially
under large timestep size. This is because the semi-Lagrangian op-
erator can jump across multiple cells when performing backtrack-
ing, and the density value changes in these cells are ignored. As a
result, the semi-Lagrangian operator suffers from popping artifacts
as illustrated in Figure 4, while our operator (Equation 4), being
purely grid-based, does not exhibit such problem. Unlike [Treuille
et al. 2003], where these popping artifacts can be alleviated by con-
straining control force fields to a small set of force templates, we
allow every velocity component to be controlled. In this case, the
use of our new advection operator is recommended.

4.2 Navier-Stokes Optimization

Complementary to Section 4.1, the goal of the Navier-Stokes Opti-
mization is to enforce the correlation between v; given the sequence
of guiding velocity fields v; . The optimization takes the following
form:

) » N=1
argmin 3
v i=0

KN—l
Jusl® + 5 3 i = o] |
2
i=0

Vitl — Vs
s.t. ———— + Adv [vis1] = ui — Vpi
At [ +1] Vpi+1

VvV -v; =0.

This subproblem is the bottleneck of our algorithm, for which a
forward-backward adjoint method similar to Equation 8 requires
solving the Navier-Stokes equations exactly in the forward pass. To
avoid this costly solve, we update primal as well as dual variables
from the previous iteration using a unified algorithm. In the same

Algorithm 1 The Fixed Point Iteration: This is used to solve the
AO subproblem. The algorithm consists of a forward sweep that
updates the density fields p; and a backward sweep that updates
w; and v; . Here, we introduce a line-search parameter « to ensure
algorithm convergence, where v * stores the tentative solution.

Input: Initial v;, po, « € (0, 1], and keyframes p;
Output: Fixed point solution v; , p;

1: B« oo
2: fort=0,---,N-1do
3 > Initialization
4: v < v
5: vt <
6: end for
7. while not converged do
8: > Forward pass
9: fori=1,---,N do
10: > Find primal variables p
11: Find smallest k such that Akt,k A(vf_*l)kpi_l <1le™®
12: pi < Alpi-1,v;"1]
13: end for
14: > Ensure function value decrease
L R > PR S T
16: if E™°" < F then
17: E <« E™%
18: fori=1,---,N-1do
19: v <"
20: end for
21: increase «
22: else
23: fori=1,---,N -1do
24: vt )
25: end for
26: decrease «
27: goto Line 8
28: end if

29: > Backward pass
30: set -1 < 0, uny < 0
31: fori=N,---,1do

32: > Find dual variables p
oA[pi, )T .
33: i1 < % i = Ci(pi = pi)
34: > Find primal variables v
*% * 8A[P7’—17'Ui ])Tyu,
35: vif < (1-a)vig +aQ(vimr + — == B
-1
36: end for

37: end while

way as in Section 4.1, we derive the KKT conditions and assemble
them into a set of nonlinear equations:

K * du; T ou;_, T _
7(1)»; - v; ) + 81;: U; + 811;,; Ui—1 + VPi
f = Vitl1~V4 v v = 07 VZ (9)
0+ Adv [vis1] - wi + Vpirs
V-u;
h h ial derivatives Ou;  _ I Qusy _ I
where the partial derivatives are ov; = " AE v, - ar Tt

Mgiv[”], and the additional variable p; is the Lagrangian multi-

plier for the solenoidal constraint: V - v; = 0. We refer readers to
Appendix A for the derivation of Equation 9. In summary, we have
to solve for the primal variables u;, v; as well as the dual variables
pi, i Unlike Equation 8, however, we do not differentiate these
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two sets of variables and solve for them by iteratively bringing the
residual f to zero.

Timestep Index i

\ 4

Spatial Resolution

Fig. 5: A 2D illustration of our full approximation scheme (FAS). We use
semi-coarsening only in the spatial direction (horizontal), with each finer
level doubling the grid resolution. We use trilinear interpolation operators
for P, R and tridiagonal SCGS smoothing for S, which solves the primal
variables v;,u; (defined on faces as short white lines) and dual variables
i, Pi (defined in cell centers as black dots) associated with one cell across
all the timesteps (vertical) by solving a block tridiagonal system. The solve
can be made parallel by the 8 — color tagging in 3D or 4 — color tagging in
2D.

To this end, we develop a full approximation scheme (FAS),
which is a geometric multigrid algorithm designed for solving a
nonlinear system of equations as illustrated in Figure 5. The multi-
grid solver is a classical tool originally used for solving linear sys-
tems induced from elliptical PDEs. Recently, the multigrid solver
has also been used for solving nonlinear problems such as PDE-
constrained optimization. For example, Hinze et al. [2012] used a
spacetime multigrid to track and stabilize the velocity field of in-
compressible Navier-Stokes flow, and Borzi et al. [2005] used a
semi-coarsening multigrid to control a reaction-diffusion flow. The
nonlinear multigrid in our formulation can be considered as a com-
bination of these two approaches: a semi-coarsening multigrid to
control the incompressible Navier-Stokes flow. Given that we want
to solve a density tracking problem, instead of a velocity tracking
problem, we use the spatial FAS multigrid as our NSO subprob-
lem solver. We refer the readers to [Brandt and Livne 2011] for a
detailed introduction and briefly review the core idea in the follow-
ing parts.

4.3 Full Approximation Scheme

Since Equation 9 is valid for all the indices i, we concatenate all the
timestep-related variables and discard subscripts for convenience.
A multigrid solver works on a hierarchy of grids in descending res-
olutions. In each FAS iteration, it refines the solution (v, p, u, p)
by reducing the residual f(v,p,u,p). Since different components
of the residual can be reduced most effectively at different reso-
lutions, the multigrid solver downsamples the residual to the ap-
propriate resolutions and then upsamples and combines their solu-
tions. With properly defined operators introduced in this section,
our multigrid algorithm can generally achieve a linear rate of error
reduction, which is optimal in the asymptotic sense.

To adopt this idea to solve Equation 9, we introduce a hier-
archy of spatial grids (vh,ph,uh,ph), where h is the cell size.
We use semi-coarsening in spatial direction only where every
coarser level doubles the cell size. We denote the coarser level as
(0", p*", ", p*"), and use the simple FAS-VCycle(2,2) iteration
to solve the nonlinear system of equations: f(v,p, u,p) = res. See
Algorithm 2 for details of the NSO solver.

Algorithm 2 FAS VCycle(v", 5", u", p", resh): This is used to
solve the NSO subproblem. The algorithm is a standard FAS-
VCycle with 2 pre and post smoothing (Line 8, Line 28) and 10
final smoothing (Line 3).

Input: A tentative solution (v", 5", u", p")

Output: Refined solution to f(v", 5", u", p") = res”

1: if h is coarsest then
2: > Final smoothing for the coarsest level
3: fork=1,---,10do
5: end for
6: else
7: > Pre smoothing
8: for k=1,2do
9: S(v",p",u", p")
10: end for
11: > Down-sampling
12: for t = v, p,u,p and do
13: " <« R(t™)
14: th < t" — P
15: end for
16: > Compute FAS residual by combining:
17: > 1. the solution on coarse resolution
18: > 2. the residual on fine resolution
19: reSZh <—f(’l}2h,]32h,u2h,p2h)
20: res’” « res®™ + R(res" - f(v", 5", u",p"))
21: > VCycle recursion
22: VCycle(v?",5?", u*" p*", res*")
23: > Up-sampling
24: fort =v,p,u,pdo
25: th < t" + P(t*)
26: end for
27: > Post smoothing
28: for k=1,2do

30: end for
31: end if

The fast convergence of the geometric FAS relies on a proper
definition of the three application-dependent operators: R, P and
S. The restriction operator R downsamples a fine grid solution to a
coarser level for efficient error reduction, and the prolongation op-
erator P upsamples the coarse grid solution to correct the fine grid
solution. We use simple trilinear interpolation for these two oper-
ators whether applied on scalar or vector fields. Finally, designing
the smoothing operator S is much more involved. S should, by it-
self, be a cheap iterative solver for f(v,p, u,p) = res. Compared
with previous works such as [Chentanez and Miiller 2011] where
multigrid is used for solving the pressure field p only, we are faced
with two new challenges. First, since we are solving the primal as
well as dual variables, which gives a saddle point problem, the Hes-
sian matrix is not positive definite in the spatial domain, so that a
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Fig. 6: Convergence history of FAS compared with that of the LBFGS
optimizer, running on two grid resolutions and with a different number of
timesteps (denoted as nd /IN). FAS achieves a linear rate of error reduction
independent of grid resolution and number of timesteps, as the two curves
overlap.

Jacobi or Gauss-Seidel (GS) solver does not work. Second, we are
not coarsening in the temporal domain, so the temporal correlation
must be considered in the smoothing operator.

Our solution is to consider the primal and dual variables at the
same time using the Symmetric Coupled Gauss-Seidel (SCGS)
smoothing operator [Vanka 1983]. SCGS smoothing is a primal-
dual variant of GS. In our case, where all the variables are stored in
a staggered grid, SCGS smoothing considers one cell at a time. It
solves the primal variables v, u stored on the 6 cell faces as well as
the dual variables p, p stored in the cell center at the same time by
solving a small 14 x 14 linear problem (10 x 10 in 2D). Like red-
back-GS smoothing, we can parallelize SCGS smoothing using the
8-color tagging (see Figure 5).

The above SCGS solver only considers one timestep at a time.
To address the second problem of temporal correlation, we augment
the SCGS solver with the temporal domain. We solve the 14 vari-
ables associated with a single cell across all the timesteps at once.
Although this involves solving a large 14N x 14N linear system
for each cell, the left hand side of the linear system is a block tridi-
agonal matrix so that we can solve the system in O(N). Indeed,
the Jacobian matrix of f takes the following form:

K BuQT
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where the size of each block is 5 x 5 in 2D and 7 x 7 in 3D. Due
to this linear time solvability, the optimal multigrid performance is
still linear in the number of spatial-temporal variables. The aver-
age convergence history for our multigrid solver is compared with
a conventional LBFGS algorithm [McNamara et al. 2004] in Fig-
ure 6. Our algorithm achieves a stable linear rate of error reduc-
tion independent of both the grid resolution and the number of
timesteps.

4.4 ADMM Outer Loop

Equipped with solvers for the two subproblems, we present our
ADMM outer loop in Algorithm 3. We find it very time-consuming
for either Equation 8 or a quasi-Newton method solving the AO
subproblem to converge to an arbitrarily small residual due to the
non-smooth nature of the operator A [e,e]. Both algorithms de-
crease the objective function in the first few iterations and then
wander around the optimal solution. In view of this, we run Equa-
tion 8 (Section 4.1) for a fixed number of iterations before moving
on to the NSO subproblem (Section 4.2) so that each ADMM itera-
tion has O(ndN ) complexity and is linear in the number of space-
time variables. Finally, our stopping criterion for the NSO sub-
problem is that the residual | f| e < €ras. Our stopping criterion
for the ADMM outer loop is that the maximal visual difference, the
largest difference of the density field over all the timesteps, gener-
ated by two consecutive ADMM iterations should be smaller than
€EADMM -

Algorithm 3 ADMM Outer Loop

Input: Parameters K, 7, p;, €STFAS, €EADMM

Output: Optimized velocity fields v; and density fields p;
1: fort=0,---,N do
2: Setv; < 0

last

3: Set p;**" < p;
4: end for
5. while true do
6: > Solve the AO subproblem
7: Run Algorithm 1 for a fixed number of iterations
8: > Solve the NSO subproblem
9: while Hf(v,@u,p)Hoo >esTras do
10: Algorithm 2
11: end while
12: > Stopping criterion
13: if maxinﬁ‘”t _piH‘” <E€EADMM then
14: Return v;, p;
15: end if
16: fori=0,---, N do
17: Set plet « p;
18: > Update augmented Lagrangian multiplier
19: Set)\i<—)\i+Kﬁ(vi—vf)
20: end for
21: end while

5. RESULTS AND ANALYSIS

Parameter Choice: We use
the same set of parameters

Name Value listed in Table I for all exper-

iments, where ppmaq. is the
At 04~ 3'05 maximal density magnitude
K 1& 4 at the initial frame. In our
r ) 10 experiments, the ADMM al-
B for updatmg Ai 1 gorithm always converges
#Equation 8 2 in fewer than 50 iterations.
€FAS 107° Further, running only 2 iter-
€EADMM ez ations of Equation 8 in each

ADMM loop will not dete-

Table I. : Parameters. riorate the performance. In
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fact, according to the aver-
aged convergence history of the AO subproblem illustrated in Fig-
ure 7, the fixed point iteration Equation 8 usually converges in the
first 4 iterations before it wanders around a local minimum. After
fine tuning, we found that 2 iterations lead to the best overall perfor-
mance. In this case, the overhead of solving the AO subproblem is
marginal compared with the overhead of solving the NSO subprob-
lem. Finally, unlike fluid simulation, the performance of spacetime
optimization does not depend on the timestep size due to our robust
advection operator (Equation 4). When we increase the timestep
size from 0.4s to 2s for the examples in Figure 8 and Figure 9,
which is extremely large, our algorithm’s convergence behavior is
about the same. Under this setting, the convergence history of the
ADMM outer loop for our first example (Figure 1) is illustrated
in Figure 7. The convergence history can be decomposed into two
stages. In the first stage, the first term of Equation 5 (keyframe
shape matching) dominates, the solver gradually evolves the so-
lution to match the keyframe shape, and the KKT-Residual is not
monotonically decreasing. In the second stage, however, the sec-
ond term (control force regularization) dominates Equation 5 and
the KKT-Residual quickly decreases. Since the solutions of con-
secutive ADMM iterations do not change much, we have also tried
to use just a few SCGS smoothing steps, instead of the entire FAS
Algorithm 2, to approximately solve the NSO subproblem. In prac-
tice, we observed this treatment smoothed out the fluid-like behav-
iors, when large regularization r is used.
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Fig. 7: We profile the convergence history of the example Figure 1. We plot
the logarithm of relative KKT residual of the optimized velocity field after
each ADMM loop (left); and the absolute residual of the AO subproblem’s
KKT conditions after each iteration of Equation 8 (right).

Benchmarks: To demonstrate the efficiency and robustness of
our algorithm, we used 7 benchmark problems that vary in their
grid resolution, number of timesteps, and number of keyframes.
The memory overhead and computational overhead are summa-
rized in Table II. All of the results are generated on a desktop PC
with an 17-4790 8-core CPU 3.6GHz and 12GB of memory. We use
OpenMP for multithread parallelization.

Our first example is five controlled animations matching a circle
to the letters “FLUID”. Compared with [Treuille et al. 2003], which
uses a relatively small set of control force templates to reduce the
search space of control forces, we allow control on every velocity
component so that the matching to keyframe is almost exact. After
the keyframe, we remove the control force, and rich smoke details
are generated by pure simulation as illustrated in Figure 1. How-
ever, in the controlled phase of Figure 1, this example seems “too
much controlled”, meaning that most smoke-like behaviors are lost.
This effect has also been noticed in [Treuille et al. 2003]. However,
unlike their method, in which the number of templates needs to
be carefully tuned to recover such behavior, we can simply adjust
the regularization r in our system to balance matching exactness
and the amount of smoke-like behaviors. In Figure 8, we generated
three animations with two keyframes: first two circles and then a
bunny, using r = 10%>* respectively. These animations are also
shown in the video. Our algorithm is robust to a wide range of pa-
rameter choices. But more iterations are needed for the multigrid to

Fig. 8: For this animation, we match the circle (red) first to two smaller
circles and then to a bunny (we show frames 20,40, 60,80 from top to
bottom). The resolution is 1282/80, and we test three different values of
ghost force regularization 7 = 10234 (from left to right). More smoke-like
behaviors are generated as we increase 7.

Fig. 9: In this example, we deform a sphere into letter “A”, then letter “B”
and finally letter “C”. For such complex deformation, it is advantageous to
allow every velocity component to be optimized. So that a lot of fine-scale
details can be generated as illustrated in the white circles.

converge for a larger r as shown in Table II. Finally, since we allow
every velocity component to be optimized, the resulting animation
exhibits lots of small-scale details as indicated in Figure 9, which is
not possible with the small set of force templates used in [Treuille
et al. 2003].

In addition to these 2D examples, we also tested our algorithm
on some 3D benchmarks. Our first example is shown in Figure 10
and runs at a resolution of 64°/40. We use two keyframes at frame
20 and 40, and the overall optimization takes about 7 hours. In our
second example, shown in Figure 11, we try to track the smoke
with a dense sequence of keyframes from the motion capture data
of a human performing a punch action. Such an example is con-
sidered the most widely used benchmarks for PD-type controllers
such as [Shi and Yu 2005]. With such strong and dense guidance,
our algorithm converges very quickly, within 5 iterations. Our third
example (Figure 13) highlights the effect of regularization coeffi-
cient r in 3D. Like our 2D counterpart Figure 8, larger r usually re-
sults in more wake flow behind moving smoke bodies. Finally, we
evaluated our algorithm on a benchmark with keyframe shapes of
varying genera. As illustrated in Figure 12, the initial smoke shape
has genus zero, but we use two keyframes, where the smoke shapes
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Example(nd/N) Boundary #ADMM Avg. AO (s) Avg. NSO (s) Total(hr) Memory(Gb) Total LBFGS(hr)
Letters "FLUID”(128%/40,r = 10%) Neumann 13 10 60 0.25 0.06 4
Letters "FLUID”(128%/80, = 10%) Neumann 17 21 142 0.76 0.12 9
Circle Bunny (128%/80, 7 = 10%) Neumann 25 20 130 1.04 0.2 12
Circle Bunny (128%/80, 7 = 10%) Neumann 37 20 220 2.46 0.2 15
Circle Bunny (128%/80,r = 10%) Neumann 43 20 218 2.84 0.2 16
Letters ABC(128%/60,r = 10*) Neumann 33 16 179 1.78 0.15 14
Sphere Armadillo Bunny(64®/40,7 = 10®)  Neumann 17 103 1341 6.81 1.34 N/A
Varying Genus (642 x 32/40,7 = 10%) Periodic 20 82 840 5.12 0.67 N/A
Human Mocap(642 x 128/60,r = 103) Periodic 5 1437 3534 6.9 4.0 N/A
Moving Sphere(64° /60,7 = 10?) Neumann 17 630 1792 11.43 22 N/A
Moving Sphere(64%/60,r = 10%) Neumann 22 630 1978 15.93 22 N/A
Letters ABC 3D(64°/150, = 10%) Periodic 20 1512 3220 26.28 5.9 N/A

Table II. : Memory and computational overhead for all the benchmarks. From left to right: name of example (resolution parameters); the
spatial boundary condition; number of outer ADMM iterations; average time spent on each AO subproblem; average time spent on each NSO
subproblem; total time until convergence using our algorithm; memory overhead; total time until convergence using LBFGS. By comparing
the three “Circle Bunny” examples, we can observe that the number of ADMM outer loops is roughly linear to logio (7). More ADMM
outer loops are needed, if more fluid-like behaviors are desired. From the two examples of the Letters “FLUID” (Line 1 and Line 2), we can
observe that the computational cost of each ADMM outer loop (Avg. AO + Avg. NSO ) is roughly linear in the number of timesteps. This
cost is also governed by the number of keyframes. By comparing Line 2 and Line 4, we can observe that the Circle Bunny example which
involves two keyframes requires more computation to solve the NSO subproblem.

Fig. 10: 3D smoke control example of deforming a sphere first to an armadillo and then to a bunny. This example runs at the resolution of
64> with 40 timesteps. The optimization can be accomplished in 7hr.

have genus one and two. Our algorithm can handle such complex
cases.

Comparison with LBFGS: We compared our ADMM-based
solver with a gradient-based quasi-Newton optimizer in solving the
original problem (Equation 5). Specifically, we use LBFGS method
[Nocedal and Wright 2006]. Such method approximates the Hes-
sian using a history of gradients calculated by past iterations. We
set the history size to be 8, which is typical. We use same stopping
criteria for both LBFGS and our method. Under this setting, we
compared the performance of LBFGS and the ADMM solver on
two of our 2D examples: Figure 1 and Figure 8. For the example
of letter matching in Figure 1, LBFGS algorithm takes 4hr and 71
iterations to converge. While for the example of changing regular-
ization in Figure 8, LBFGS algorithm takes 12hr and 152 iterations
at r = 102, 15hr and 170 iterations at = 10, and 16hr and 212
iterations at 7 = 10*. Therefore, our algorithm is approximately an
order of magnitude faster than a typical implementation of LBFGS.

The speedup over LBFGS optimizer occurs for two reasons.
First, we break the problem up into the AO subproblem and the
NSO subproblem, that have sharply different properties. The AO
subproblem is nonsmooth while the NSO subproblem is not. In
practice, neither our fixed point iteration scheme in Equation 8 nor
the LBFGS algorithm can efficiently solve AO to arbitrarily small
KKT residual. Without such decomposition, it takes a very long
time to solve the overall optimization problem by taking a lot of
iterations. The second reason is the use of warm-started FAS solver
for the NSO subproblem. Note that LBFGS algorithm not only

takes more iterations, but each iteration is also more expensive.
This is mainly because of the repeated gradient evaluation in each
LBFGS iteration, where each evaluation runs the adjoint method
with a cost equivalent to two passes of fluid resimulation.

Comparison with PD Controller: We also compared our
method with simple tracker type controllers such as PD controller
[Fattal and Lischinski 2004]. To drive the fluid body towards a tar-
get keyframe shape using heuristic ghost forces, PD controllers re-
sult in much lower overhead in terms of fluid resimulation, as com-
pared to our approach based on optimal controllers. In contrast,
optimal controllers provide better flexibility and robust solutions as
compared to PD controllers. A PD controller tends to be sensitive
to the parameters used for the ghost forces. Moreover, its perfor-
mance also depends on the use of the compressible control forces
(see Figure 14). These compressible forces can potentially elim-
inate the visually appealing vortical fluid motions. On the other
hand, an optimal controller always achieves exact keyframe timing,
while such exact timing requires fine-tuning the strength of control
forces in a PD controller, as shown in Figure 14. Moreover, with an
optimal controller, users can easily balance between the exactness
of keyframe matching and the amount of fluid-like behaviors based
on a single parameter r (see Figure 8).

Memory Overhead: Since fluid control problems usually have
a high memory overhead, we derive here an analytical upper bound
of the memory consumption M (n,d, N):

M(n,d,N) ~[(n?)* (1+d) *2% 2]+ [1+ 1+ 1]« N=8n(1+d)N,
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Fig. 11: We generate the famous example of tracking smoke with a dense sequence of keyframes, which comes from human motion capture
data. Our algorithm converges and generates rich smoke drags within 5 ADMM iterations.

Fig. 12: Example of smoke control where the keyframes have varying genera. The initial frame is a sphere (genus 0). The first keyframe
located at frame 20 is a torus (genus 1) and the second keyframe located at frame 40 is the shape eight (genus 2). The resolution is 64 x 32 /40

and the overall optimization takes 5hr with 7 = 10%.

frame=20

Fig. 13: A moving smoke sphere guided by the 3 keyframes (left). We ex-
perimented with 7 = 103 (top) and r = 10* (bottom). Larger regularization
results in more wake flow behind moving smoke bodies. The same effect
can be observed in Figure 8.

where n is the grid resolution, d is the dimension, and N is the
number of timesteps. To derive this bound, note that we can reuse
the memory consumed by Algorithm 2 in Algorithm 1, and Algo-
rithm 2 always consumes more memory than Algorithm 1, so that
we only consider the memory overhead of Algorithm 2. The first
term n? % (1 + d) is the number of variables needed for storing
a pair of pressure and velocity fields. This number is doubled be-
cause we need to store u;, p; in addition to v;, p; at each timestep.
We double it again because we need additional memory for stor-
ing res in FAS. Finally, the power series is due to the hierarchy
of grids. At first observation, this memory overhead is higher than
[Treuille et al. 2003; McNamara et al. 2004] since we require ad-
ditional memory for storing the dual variables at multiple resolu-
tions. However, due to the quasi-Newton method involved in their
approach, additional memories are needed to store a set of L gradi-
ents to approximate the inverse of the Hessian matrix. L is usually
5 ~ 10, leading to the following upper bound:

Mipras(n,d,N) ~ [(nd) « (1 +d)] « L+ N =Ln(1+d)N.

In our benchmarks, the memory overheads of our ADMM and
LBFGS solvers are comparable.

Convergence Analysis: Here we analyze the convergence of our
approach and discuss some modifications towards improved con-
vergence of Algorithm 3. We have applied some of these modifi-
cations for Line 7 and Line 9 of Algorithm 3, which then takes a
slightly more complex form.

Optimal No Guiding

No Viscosity Fine Tuned

— 5

“‘/K“)

,

-

Fig. 14: We deform a smoke ball into a dragon using our method (top
left) and PD controller with different parameter settings. Top Right: With-
out gathering forces, the keyframe shape is not matched. Bottom Left: The
animation appears to be oscillatory without viscous forces, resulting in lots
of escaped smokes. Bottom Right: A stable, non-oscillatory animation that
matches the keyframe well can be achieve by fine-tuning the three parame-
ters: the strength of guiding forces, the strength of gathering forces, and the
strength of viscous forces.

For our AO solver (Line 7 of Algorithm 3), we observe that it can
be difficult for Algorithm 1 to converge to an arbitrarily small KKT
residual in each loop of Algorithm 3. As illustrated in Algorithm 1,
one could use a simple strategy that can guarantee function value
decreases by blending a new solution with the previous solution
and tuning the blending factor in a way similar to the line search
algorithm. This modification has low computational overhead since
one does not need to apply the costly solenoidal projection operator
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Q again after the blending, as the sum of two solenoidal vector
fields is still solenoidal. In our benchmarks, this strategy leads to
a convergent algorithm with low overhead, but the error reduction
rate after the first few iterations can still be slow.
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Fig. 15: Convergence history of the NSO solver in the Circle Bunny ex-
ample. When the regularization coefficient r is extremely large, we have to
treat the FAS-Vcycle as a subproblem solver of the LM algorithm and the
entire NSO solve requires many more FAS-Vcycles.

The same analysis can also be used for the NSO solver (Line 9
of Algorithm 3). To ensure convergence of Algorithm 2, we could
add a perturbation to the penalty coefficient K in the Hessian ma-
trix Equation 10. Note that as K — oo, v; — v;. Therefore, this
strategy essentially makes Algorithm 2 the subproblem solver for
the Levenberg-Marquardt algorithm [Nocedal and Wright 2006],
which in turn guarantees convergence. As illustrated in Figure 15,
Levenberg-Marquardt modification can be necessary when one
uses extremely large regularization r, because we observe that the
convergence rate decreases as 7 increases. In these settings, how-
ever, many more FAS-Vcycles are needed to solve the NSO sub-
problem and the advantage over the LBFGS solver also decreases.

Finally, for the ADMM outer loop (Line 5 of Algorithm 3), state-
of-the-art results showing its convergence rely on strong assump-
tions of its objective function, such as global convexity. There-
fore, our current implementation of outer loop is not guaranteed
to converge. However, such guarantee can be provided by using a
standard Augmented Lagrangian solver, instead of ADMM solver.
Specifically, one can run Algorithm 3 without applying Line 18
until the decrease in function value is lower than some threshold.
Further exploration of this option is left as future work.

6. CONCLUSION AND LIMITATIONS

In our work, we present a new algorithm for the optimal control of
smoke animation. Our algorithm finds the stationary point of the
KKT conditions, solving for both primal and dual variables. Our
key idea is to refine primal as well as dual variables in a warm-
started manner, without requiring them to satisfy the Navier-Stokes
equations exactly in each iteration. We tested our approach on sev-
eral benchmarks and a wide range of parameter choices. The re-
sults show that our method can robustly find the locally optimal
control forces while achieving an order of magnitude speedup over
the gradient-based optimizer, which performs fluid resimulation in
each gradient evaluation.

On the downside, our method severely relies on the spatial struc-
ture and the staggered grid discretization of the Navier-Stokes
equations. This imposes a major restriction to the application of
our techniques. Nevertheless, generalizing our idea to other fluid
discretization is still possible. For example, our method can be used
with a fluid solver discretized on a general tetrahedron mesh such
as [Chentanez et al. 2007; Pavlov et al. 2011] since the KKT con-
ditions are invariant under different discretizations, and the three
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operators to define FAS stay valid. On the other hand, generaliz-
ing our method to free-surface flow or to handle internal bound-
ary conditions can be non-trivial. The distance metric C; in Equa-
tion 7 needs to be modified to make it aware of the boundaries, e.g.,
Euclidean distances should be replaced with Geodesic distances.
However, modifying the NSO solver to handle the boundaries can
be relatively straightforward. This is because our multigrid formu-
lation is the same as a conventional multigrid formulation in spatial
domain, using simple trilinear prolongation and restriction opera-
tors. Therefore, existing works on boundary aware multigrid such
as [Chentanez and Miiller 2011] can also be applied to our space-
time formulation.

In addition, unlike [Treuille et al. 2003; McNamara et al. 2004],
which use a set of template ghost force bases to reduce the search
space, our method allows every velocity component to be opti-
mized. This choice is application dependent. For matching smoke
to detailed keyframes with lots of high frequency features, our for-
mulation can be useful. However, using a reduced set of template
ghost forces could help to avoid the popping artifacts illustrated
in Figure 4, and at the same time it allows more user control over
the applied control force patterns. For example, the use of vortex
force templates encourages more swirly motions in the controlled
animations. Moreover, from Figure 8, we can see many small-scale
escaping smoke parcels using a large r. Our controller does not ap-
ply control forces on these parcels in order to reduce the magnitude
of control forces. If these smoke parcels are undesirable in the final
animation, a template-based formulation can be used. Combining
the control force templates with our formulation is considered as
future work.

In terms of computational overhead, since our optimal controller
always solves the spacetime optimization by considering all the
timesteps, it is much slower than a simple PD controller which
considers one timestep at a time. For example, it took more than
26 hours to generate our longest animation with 150 timesteps il-
lustrated in Figure 16. In order to reduce runtime cost, we can use
a larger timestep size to reduce the number of timesteps. Fluid sim-
ulation with a large timestep size has been addressed in prior work,
such as [Lentine et al. 2012]. We handle the large timestep size by
using a novel advection operator (Equation 4) with an adaptive or-
der of Taylor expansion. An alternative solution is to use a conven-
tional advection scheme with an adaptive timestep size determined
using the CFL condition. A thorough analysis of alternative advec-
tion schemes is a good topic of future work. Also, we can lower
the spatial resolution in the control phase and then use smoke up-
sampling methods such as [Nielsen and Bridson 2011] to generate
a high quality animation.

Further accelerations to our method are still possible. For ex-
ample, one can parallelize our algorithm in a distributed environ-
ment. Indeed, multigrid is known as one of the most cluster-friendly
algorithms. Moreover, meta-algorithms such as multiple shooting
[Bock and Plitt 1984] try to break the spacetime optimization into
a series of sub-optimizations that consider only a short animation
segment and are thus faster to solve. Finally, the benefits of both
optimal and PD controllers can be combined by borrowing the idea
of receding horizon control [Mayne and Michalska 1990]. In these
controllers, optimal control is applied only to a short window of
timesteps starting from the current one, and the window keeps be-
ing shifted forward to cover the whole animation.
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Fig. 16: The same example as Figure 9 in 3D. We use 150 timesteps with keyframes at timestep 50, 100, 150, respectively. Our algorithm

converges after 20 iterations and the total computation time is 26 hours.

APPENDIX

A. KKT SYSTEM OF THE NSO SUBPROBLEM

We derive here the KKT system for the NSO subproblem. Instead
of simply introducing the Lagrangian multipliers and following
standard techniques as we did for the AO subproblem, we present
a derivation based on the analysis of the ghost force u;. We first
eliminate the Navier-Stokes constraints by writing u; as a function
of v; and v;4+1. Next, we plug this function into our objective to
obtain:

N-—

[u

N-1
T 2 K 2

5 2 luivivia) [P+ 5 30 o =0 |7

23 2 =

Taking the derivative of this objective against v; and considering
the additional solenoidal constraints on v;, we get the first two
equations in f:

E(v- —v;)+ 8uiTu- + Quiy *
' ‘ ¢ 8’07; ¢ 81)1'

V"Uz‘:O,

Ui-1 +Vpi =0

where p; is the Lagrangian multiplier. Now in order to derive the
other two conditions in Equation 9, we need to determine the addi-
tional pressure p;. We assert that p;.; is the Lagrangian multiplier
of the solenoidal constraints on u;. In fact, if u; is not divergence-
free, we can always gerform a pressure projection on u; by mini-
mizing ||u; — Vpi+1]”“ to get a smaller objective function value. As
a result, u;, must be divergence-free at the optima with p;+1 being
the Lagrangian multiplier, and we get the two additional equations

of f:

Visl — Vi
T Adv [vis1] i + Vpis1 =0
At
V-u; =0.
From these two conditions, we can see that 8“’ =-Q4;, agf,’_l =

Q(L N aAd7‘”’1]). Here Q is the solen01da1 projection operator

introduced in Equation 8. However, we can drop this Q because we

T
have ag‘_l U; = E+8Advv YT QT u; and Q7w = Qui = u;

by the fact that u; is already solenoidal.
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